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ABSTRACT Seismology is a data rich and data-driven science. Application of machine learning for

gaining new insights from seismic data is a rapidly evolving sub-field of seismology. The availability of

a large amount of seismic data and computational resources, together with the development of advanced

techniques can foster more robust models and algorithms to process and analyze seismic signals. Known

examples or labeled data sets, are the essential requisite for building supervised models. Seismology has

labeled data, but the reliability of those labels is highly variable, and the lack of high-quality labeled data sets

to serve as ground truth aswell as the lack of standard benchmarks are obstacles tomore rapid progress. In this

paper we present a high-quality, large-scale, and global data set of local earthquake and non-earthquake

signals recorded by seismic instruments. The data set in its current state contains two categories: (1) local

earthquake waveforms (recorded at ‘‘local’’ distances within 350 km of earthquakes) and (2) seismic noise

waveforms that are free of earthquake signals. Together these data comprise∼ 1.2million time series or more

than 19,000 hours of seismic signal recordings. Constructing such a large-scale database with reliable labels

is a challenging task. Here, we present the properties of the data set, describe the data collection, quality

control procedures, and processing steps we undertook to insure accurate labeling, and discuss potential

applications. We hope that the scale and accuracy of STEAD presents new and unparalleled opportunities to

researchers in the seismological community and beyond.

INDEX TERMS Earthquakes, seismic waveform data, machine learning, seismic measurements, artificial

intelligence, benchmark testing.

NOMENCLATURE

Benchmark, data set, earthquake, seismic signal, machine

learning, AI.

I. INTRODUCTION

Earthquakes are sudden movements across faults that release

elastic energy stored in rocks and radiate seismic waves

that travel throughout Earth. Every day there are about fifty

earthquakes worldwide that are strong enough (magnitude

> 2.5) to be felt locally, and every few days an earthquake

occurs that is capable of damaging structures [1]. In addition,

a multitude of smaller earthquakes (magnitude < 2.5) are

happening (Fig. 1) that are too weak to be felt, but that

are readily recorded by modern instruments. These small

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Zhou .

earthquakes provide valuable information about earthquake

processes [2] .

The seismic waves generated by earthquakes are recorded

in the form of seismograms, which are records of ground

motion at a particular place as a function of time. To charac-

terize the vector components of ground motion, earthquakes

are usually recorded by three-component instruments (seis-

mographs) equipped with one vertical and two orthogonal

horizontal sensors (Fig. 2). Several seismic wave arrivals,

called phases, are observable on seismograms. P and S phases

are the two fundamental types of seismic phases observable

on earthquake seismograms. In P or compressional waves,

material moves back and forth in the direction in which the

wave propagates, while in S or shear waves, material moves at

right angles to the propagation direction. P waves travel faster

than S waves, such that the first arriving pulse labeled ‘‘P’’ is

a Pwave that followed a direct path from the earthquake to the

seismic station (Fig. 2). An earthquake begins to rupture at a
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FIGURE 1. Gutenberg-Richter law [3] for b = 1. N is the number of
earthquakes having a magnitude M, a and b are constant. For the typical
case of b = 1, the number of earthquakes increases by a factor of 10 for
each single unit decrease in M.

FIGURE 2. A schematic showing propagation of seismic waves and
recording of the ground motion from them by seismic stations (receivers).
E, N, and Z represent east, north, and vertical components of each
instrument recording ground motions. An annotated earthquake
waveform is presented in the zoomed window above.

hypocenter (or focus), which is defined by a position on the

surface of the earth (epicenter) and a depth below this point.

The hypocenter of an earthquake is found from the arrival

times of seismic waves recorded on seismometers at different

sites.

The size of an earthquake at its source is measured from the

amplitude (or sometimes the duration) of the motion recorded

on seismograms, and is expressed in terms of magnitude.

Magnitude is a logarithmic measure. At the same distance

from the earthquake, the amplitude of the seismic waves

from which the magnitude is determined are 10 times as

large during a magnitude 5 earthquake as during a magnitude

4 earthquake. The total amount of energy released by an

average earthquake, depending on magnitude type, increases

by a factor of approximately 32 for each unit increase in

magnitude.

Earthquakes are not the only sources that generate seismic

waves. Many other sources such as explosions, landslides,

oceanic waves, planes, helicopters, trains, wind, thunder-

storms, traffic, and people, generate ground motions that are

recorded by thousands of seismic instruments that are contin-

uously operated by seismic monitoring networks around the

world. Hence, there is an enormous amount of seismic data

generated every day, and much of that ground motion is due

to sources other than earthquakes, which we refer to as ‘‘non-

earthquake’’ signals.

Seismology is a data-rich and data-driven science, and the

rate of data acquisition is accelerating as seismic sensors

get steadily less costly. The massive and rapidly growing

amount of data highlights the need for more effective tools

for the efficient processing and extraction of as much useful

information as possible to enable scientist to realize the full

potential to gain new insights into earthquake processes from

them. Seismologists use only a portion of the recorded data to

understand the physics of earthquakes and learn about Earth’s

deep interior, where direct observations are impossible. Most

seismic data sets have not been fully analyzed and important

discoveries can result from reanalysis of data sets using new

data analysis tools.

Machine learning (ML) techniques have been shown to

be powerful tools for processing (e.g. [4]–[6]) and exploring

(e.g. [7], [8]) seismic data. The success of these ML-based

methods in achieving state-of-the-art performance is mainly

due to availability of large-scale and accurately labeled train-

ing data sets. Although, hundreds of terabytes of archived

seismic waveform data and tens of millions of human picked

parameters are available, a large and high-quality-labeled

benchmark data set for seismic waveforms does not yet exist.

This is attributable to several technical issues regarding reli-

able synchronization of metadata and waveform data and a

lack of comprehensive and efficient quality control mecha-

nisms.

Preparing a training set is one of the most time-consuming

steps in making supervised models. Both the quantity

and the quality of the training set are crucial to the

performance of a model. Without a standard benchmark

(e.g. ImageNet [9]), it is difficult to compare the perfor-

mance of different approaches and to identify, adopt, and

improve on best practices [10]. As an example, for the mul-

tiple deep-learning-based phase picking models that have

been developed recently, each used a different data set

for training and demonstration of its performance. In the

absence of a standard benchmark, authors set their own

criteria for evaluating performance. This inhibits progress

because it makes it difficult to determine the relative perfor-

mance, as well as the advantages and weaknesses, of each

method.
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FIGURE 3. Location, size, and depth distributions of recorded earthquakes.

Here we introduce STEAD, the first high-quality large-

scale global data set of earthquake and non-earthquake sig-

nals recorded by seismic instruments. Benchmark data sets

such as STEAD can accelerate progress in applying machine

learning to problems in seismology. It facilitates training,

validation, and performance comparisons, and the adoption

of best practices. Moreover, this data set could have appli-

cations beyond seismology. The database is publicly avail-

able through https://github.com/smousavi05/STEAD. In the

following sections, we first present the properties of the

database. Then we discuss pre- and post-processing during

the construction of the data set. In the last section we address

some potential applications of the data set.

II. PROPERTIES OF THE DATA SET

STEAD includes two main classes of earthquake and non-

earthquake signals recorded by seismic instruments. At this

stage the earthquake class contains only one category of

local-earthquakes with about 1,050,000 three-component

seismograms (each 1 minute long) associated with

∼ 450,000 earthquakes (Fig. 3) that occurred between

January 1984 and August 2018. The earthquakes in the data

set were recorded by 2,613 receivers (seismometers) (Fig. 4)

worldwide located at local distances (within 350 km of the

earthquakes). The non-earthquake class currently contains

only one category of seismic noise including ∼100,000 sam-

ples. Locations of instruments recording noise waveforms

are presented in Fig. 5. Most of the seismograms have been

recorded since 2000 (Fig. 6) in the United States and Europe

where denser station coverage is available.

We provide seismic data as individual NumPy arrays con-

taining three waveforms (each waveform has 6000 samples

FIGURE 4. Locations of seismic instruments recording earthquakes
shown by navy blue triangles.

FIGURE 5. Distribution of stations recording seismic noise shown by navy
blue triangles.

associated with 60 seconds of ground motion recorded in

east-west, north-south, and vertical directions respectively).

35 attributes (labels) for each earthquake and 8 attributes
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FIGURE 6. Number of earthquake seismograms as a function of time.

FIGURE 7. Example of noise data. a) time-series ground motions for
east-west, north-south, and vertical directions respectively. b) header
information (labels) associated with the seismogram.

for each noise seismogram are associated with each NumPy

array. Noise attributes are mainly limited to the information

about the recording instrument (e.g. network code, code, type,

and location of the reciever) (Fig. 7). For the earthquake

data (Fig. 8), in addition to the station information, we also

provide information about the earthquake (e.g. origin time,

epicentral location, depth, magnitude, magnitude type, focal

mechanism, arrival times of P and S phases, estimated errors,

etc), and recorded signal (e.g. measurement of the signal-to-

noise ratio for each component, the end of signal’s dominant

energy (coda-end), and epicentral distance).

The unit of each attribute is included in the attribute’s

name. The epicenters of earthquakes (source_latitude

and source_longitude) are given in units of latitude and

longitude in the WGS84 reference frame. The depths

(source_depth_km) where the earthquakes begin to rupture,

are given in km. Based on the seismic network providing the

metadata, this depth may be relative to the WGS84 geoid,

mean sea-level, or the average elevation of the seismic

stations that provided arrival-time data for the earthquake

location.

FIGURE 8. A sample earthquake seismogram. a) time-series ground
motions for east-west, north-south, and vertical directions respectively.
b) header information (labels) associated with the seismogram. The unit
of each label is given in the label name.

Earthquake hypocenters and origin times (source_

origin_time), when an earthquake began to rupture, have

been estimated by seismic networks using earthquake

location methods based on observed phase arrival times

at multiple stations. The distances between earthquakes

(source_distance_km and source_distance_deg) and the

recording stations are calculated and provided in two formats

of degree (the angle subtended at the center of the earth by the

great circle arc between the two points) and kilometers. The

distribution of the source_distance_km are given in Fig. 9.

Most of the seismograms were recorded within 110 km of the

earthquakes. Earthquakes are mainly shallower than 50 km

(Fig. 10).

Magnitude is approximately related to the released seismic

energy and provides an estimate of the relative size or strength

of an earthquake. There are different methods (scales) for

measuring the magnitude. The data set contains seismograms

associated with a wide range of earthquake sizes frommagni-

tude −0.5 to magnitude 7.9 (Fig. 11), but small earthquakes

(magnitudes < 2.5) comprise the majority of the data set.

Magnitudes have been reported in 23 different magnitude
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FIGURE 9. Distribution of epicentral distances for earthquake data.

FIGURE 10. Distribution of earthquake depths.

FIGURE 11. Distribution of earthquake magnitudes.

scales where local (ml) and duration (md) magnitudes are the

majority(Fig. 12). This is because of the distance range of

the data where these two magnitude scales are the most com-

mon scales. Unfortunately, the uncertainties for magnitude

estimations have not been reported and only in ∼ 24 % of

the cases, the name of institute that calculated the magnitude

(source_magnitude_author) were reported and have been

provided.

source_id is a unique identification number provided by

monitoring network that can be used to retrieve the wave-

forms and metadata (or additional information such as shake

maps, etc) from established earthquake data centers.

More than 6200 waveforms contain information about

the earthquake focal mechanisms (Fig. 13). These include

one or two nodal plane solutions for events at different loca-

tions and with different mechanisms.

FIGURE 12. Distribution of magnitude scales for earthquake data. ml is
the local magnitude, mb, body wave magnitude, and md is the duration
magnitude. etc include mw, ms, mwr, mb_lg, mn, mpv, mlg, mwc, mc, mg,
mh, mlr, mww, mpva, mbr, mblg, mwb, mlv, h, m, and mdl scales.

The category of each seismogram (trace_category) and its

name (trace_name) are given in the attributes as well. The

trace_name is a unique name containing station, network,

recording time, and category code (‘‘EV’’ for earthquake and

‘‘NO’’ for noise data).

The sample points where P and S phases arrive

(p_arrival_sample and s_arrival_sample) are provided while

status (p_status and s_status) shows how these arrival times

have been determined. There are three types of arrival statuses

in the data set (Fig. 14). ‘‘Manual’’ picks are arrival times

that are hand-picked by human analysts, ‘‘automatic’’ picks

are those measured by automatic algorithms by monitoring

networks, and ‘‘autopicker’’ are arrival times determined

using our AI-based model in this study. About 70 % of the

picks are manually picked arrival times that we expect to have

high accuracy. For the ‘‘autopicker’’ picks we use only arrival

times with high confidence (high probabilities given by the

deep-learning model [4]). As a measure of uncertainties in

arrival time picks, a weight (a number between 0 and 1) is

provided for most cases. Moreover, we have cross-checked

the quality of the ‘‘manual’’ and ‘‘automatic’’ picks using the

deep-learning method as discussed in the next section.

The back azimuth angle (back_azimuth_deg) is the direc-

tion that seismic waves arrive at the receiver. It is measured

clockwise from the local direction of north at the receiver to

the great circle arc connecting the receiver and epicenter. The

data set contains earthquake signals arriving at receiver from

all backazimuths (Fig. 15). P_travel times (p_travel_sec) are

given in seconds and are calculated based on the arrival

time of the P-wave at a receiver and the earthquake origin

time. The coda_end_sample is the sample point where the

dominance of scattered energy from an earthquake signal

ends and the noise takes over. The network_code is the

code for the seismic monitoring network to which the instru-

ment belongs. This code can be use for retrieving either

the waveform or metadata directly from the monitoring net-

work. The instruments used for making the data set belong

to 144 seismic networks operated at local, regional, and

global scales by different national and international agencies.

Here, we used data recorded by only 7 types of instruments.
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FIGURE 13. Geographical distribution of focal mechanisms shown by beach balls.

FIGURE 14. Proportions of the status of P-arrival and S-arrival picks.
Manual picks are arrival times that were hand-picked by experienced
human analysts. Automatic picks are those made by automatic
algorithms reported by seismic networks, while autopicker are arrival
times that we picked using our AI-based model.

Of these, 99.5% are either high-gain broad band or extremely

short period (Fig. 16). All seismograms (earthquake and non-

earthquake) are three-component, resampled to 100 HZ, and

have the same 60 second (6000 samples) duration where the

time of first sample is given by trace_start_time in UTC.

trace_start_time is randomly selected to be between 5 and

10 seconds prior to the P-arrival time. For more details see

the following section.

The focal mechanism refers to the direction of slip in an

earthquake and the orientation of the fault on which it occurs.

These focal mechanisms are computed using a method that

attempts to find the best fit to the direction of P-wave first

motions observed at each receiver. There is an ambiguity in

distinguishing the fault plane, on which slip occurred, from

the orthogonal, mathematically equivalent, auxiliary plane.

Hence, the parameters for two nodal planes are provided for

those earthquakes that the focal mechanism solutions have

been calculated and available through data centers. Each

nodal plane is given by 3 values (strike, dip, and rake). Fault

FIGURE 15. Distribution of the back-azimuths at which earthquake
signals arrive from at seismic statins.

FIGURE 16. Types of seismic instruments used in building the data set.
The first letter specifies the general sampling rate and the response band
of the instrument where B are broad band, H represnts high broad band,
E are extremely short period, and S are short period instruments.
The second letter specifies the family to which the sensor belongs where
H and L represent high gain and low gain seismometers respectively.

strike is the direction of a line created by the intersection of

a fault plane and a horizontal surface, 0◦ to 360◦, relative to

North. Strike is always defined such that a fault dips to the

right side of the trace when moving along the trace in the
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strike direction. Fault dip is the angle between the fault and

a horizontal plane, 0◦ to 90◦. Rake is the direction a hanging

wall block moves during rupture, as measured on the plane of

the fault. A rake of 90◦ means that the hanging wall moves

up-dip (thrust), 0◦ means it moves in the strike direction (left-

lateral),−90◦ means it moves in down-dip direction (normal),

and 180◦ means it moves opposite to the strike direction

(right-lateral).

III. CONSTRUCTION OF STEAD

A. METADATA

Themetadata used in the construction of STEADmainly con-

sist of the information about the recording stations, recorded

earthquakes, and hand-picked parameters, such as arrival

times of P and S waves at each station. The metadata was

acquired from multiple resources including: 1) the Interna-

tional Seismological Center [11], 2) the National Earthquake

Information Center [12], 3) the Northern California Seis-

mic Network [13], 4) the Southern California Seismic Net-

work [14], 5) the Pacific Northwest Seismic Network [15],

6) the New Madrid Seismic Network [16], 7) the Incorpo-

rated Research Institutions for Seismology (IRIS) [17], 8) the

Advanced National Seismic System Composite Catalog [18],

9) the Global Seismograph Network (GSN) [19] and 10)

the broader literature (e.g. [20], [21]). In total, we processed

more than 120 million data entries from these resources to

extract and re-organize the metadata associated with local

waveforms. For the lower magnitude ranges where fewer

manual picks were available, we used theoretical arrival

times. This information was combined with the earthquake

and station information to build a comprehensive relational

database. The final database includes more than 4 million

phase arrival times of earthquake waveforms recorded by

3-component stations at local stations from around the world

between January 1984 and August 2018.

B. EARTHQUAKE WAVEFORMS

We used the database of metadata to request the associ-

ated waveforms from continuous time-series archived at the

IRIS data management center [22], [23]. To ensure that

each waveform only includes one earthquake signal (with

known parameters) and to prevent inclusion of unknown

(non-cataloged) earthquake signals, we used a short, fixed

window (1 minute) around the phase arrival times at different

stations to request data. Each window contains both P and S

waves and begins from 5 to 10 seconds prior to the P arrival

and ends at least 5 second after the S arrival. Only 1.5 million

waveforms associated with the earthquakes in our database

were available on the IRIS archive. We then detrended and

removed the mean from all the waveforms, and resampled

them at 100 Hz.

In the post-processing step, we checked the quality of

existing labels using auxiliary algorithms, added new labels

such as P-wave travel time, the end of earthquake sig-

nal (coda_end_sample) and computed a measure of the

FIGURE 17. Distribution of signal-to-noise ratio (averaged over all
components) for earthquake seismograms.

signal-to-noise ratio (snr). We estimated the end of earth-

quake signal based on the time series envelope, and measured

the snr separately for each component as:

snr = 10 log10
‖S‖22

‖N‖22

, (1)

where S and N are 95th percentile of amplitudes in a short

window after S and prior to the P arrival time respectively.

The distribution of the signal-to-noise ratio for earthquake

seismograms is presented in Fig. 17.Most of the seismograms

have snr between 10 and 40 decibels. The snr can be used to

distinguish data with one or two faulty channels (where some

of the components are mainly noise but earthquake signal can

still be observed on a remaining component) or to select high-

quality waveforms for tasks that are sensitive to the waveform

quality.

C. ERRORS

Four types of errors can be included in the waveform data.

1) earthquake characterization errors: these include errors

in location, depth, origin time, and magnitude estimates of

the earthquakes and can be due to errors in the arrival time

picking, inaccurate velocity models, non-robust algorithms,

number of recording stations etc. These errors can also affect

the calculated epicenter distance, back azimuth, and P travel

time. 2) errors in arrival time picks: these are either due to

inaccurate theoretical arrival time estimates or human errors

in the manual picks. 3) some time series do not contain the

expected earthquake signals: this can be due to either inaccu-

rate theoretical arrival time estimation during the preparation

of the database or to timing errors between phase catalogs and

archived data. 4) some time-series containing multiple uncat-

alogued earthquakes in addition to the expected earthquakes:

this is due to either non-robustness or lack of sensitivity of

current detection algorithms used by seismic networks, and

leads to an incompleteness in current earthquake catalogs.

From our point of view, this would lead to labeling errors

to the data set by labeling the waveforms of uncatalogued

earthquakes as noise or vice versa.
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Unfortunately, the uncertainties in location, depth, and

origin time estimates are not uniformly reported for all

events by our resources and it is difficult to estimate

them; however, we provide five parameters (source_gap

_deg, source_error_sec, source_horizontal_uncertainty_km,

source_origin_uncertainty_sec, source_depth_uncertainty

_km) Fig. 18, for earthquakes for which this information

were available. This can be used to assess the quality

of reported parameters. source_gap_deg Fig. 18c, is the

largest azimuthal gap between azimuthally adjacent stations

(in degrees). In general, the smaller this number, the more

reliable is the calculated horizontal position of the earth-

quake. Earthquake locations in which the azimuthal gap

exceeds 180 degrees typically have large location and depth

uncertainties. source_horizontal_uncertainty_km Fig. 18d,

defined as the length of the largest projection of the

three principal errors on a horizontal plane. The horizon-

tal uncertainty varies from about 100 m horizontally for

the best located events to 10s of kilometers for global

events. source_depth_uncertainty_km, defined as the largest

projection of the three principal errors on a vertical line.

source_error_sec, is the RMS of the travel time residuals of

the arrivals used for the origin computation.

The source depth is the least-constrained parameter in

the earthquake location, and the error bars are generally

larger than the variation due to different depth determination

methods. Sometimes when depth is poorly constrained by

available seismic data, the location programwill set the depth

at a fixed value. For example, 33 km is often used as a default

depth for earthquakes determined to be shallow, but whose

depth is not satisfactorily determined by the data, whereas

default depths of 5 or 10 km are often used in mid-continental

areas and on mid-ocean ridges since earthquakes in these

areas are usually shallower than 33 km.

Estimated uncertainties for most of the arrival time picks

are given in terms of weights. To replace the theoretical

arrival timeswithmore accurate picks and to double check the

quality of manual and automatic picks, we used PhaseNet [4],

a deep-leaning based phase picker. To identify traces with

no earthquake or with more than one earthquake, we used

CRED [6], a deep-learning-based model that detect earth-

quakes signals based on their time-frequency characteristics.

With the help of these algorithms, we found during pos-

tprocessing that many of the traces that should have lacked

earthquake signals, contained uncatalogued-earthquake sig-

nals, or suffered from inaccurate arrival time picks. Exam-

ples of problematic data with incorrect labels identified by

post-processing are shown in Fig. 19. This processing to

remove problematic waveforms reduced the size of the orig-

inal waveform data set by ∼ 8 %. To estimate the remaining

errors, we visually inspected 116,000 waveforms, randomly

selected from the data set after the post-processing. Based on

that sample, the remaining waveform data with error types

of 2, 3, and 4 combined, make up less than 1% of the data set. FIGURE 18. Uncertainties in the earthquake characterization.
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FIGURE 19. Examples of problematic seismograms detected by AI-based
models during post-processing. a) is a seismogram that does not contain
any earthquake signal. b) and c) are seismograms that in addition to the
expected earthquake (with annotated picks) contain signals from
uncataloged earthquakes. d) is an example of seismogram where the
manual P-arrival pick is incorrect. P and S arrival times are marked by
vertical blue and red lines respectively.

D. NOISE WAVEFORMS

We randomly selected one-minute noise waveforms from

the time periods between the cataloged earthquakes. After

performing the same pre-processing (detrending, band-pass

filtering, and resampling), we performed post-processing

consisting of de-signaling followed by double checking using

the generalized earthquake detector, CRED [6] to ensure that

the noise traces do not contain earthquake signal (even hidden

within the background noise). The de-signaling algorithm

used here is a combination of the methods introduced in [24]

and [25] that identifies the anomalous spectral features asso-

ciated with earthquake signals (based on statistical consider-

ations) in a continuous wavelet domain.

IV. STEAD APPLICATIONS

Developing more robust models for processing seismic sig-

nals and characterizing earthquakes is a direct applica-

tion of STEAD. Previous studies showed that deep-learning

approaches can outperform traditional algorithms in these

tasks. Existence of a large-scale data set with highly accurate

labels like STEAD can facilitate development of more robust

deep-learning models.

Denoising, detection, phase picking, and classifica-

tion/discrimination are common processes performed on

seismic signals. Denoising refers to suppressing the noise

level and is traditionally done using simple band-pass filter-

ing [26]. Earthquake signals generally have simpler wave-

forms compared to signals such as speech or audio; however,

denoising of seismic signals can be more challenging due

to the existence of strong coherent, non-stationary, and non-

Gaussian noise [27]. Seismic denoising is particularly impor-

tant because it can improve the snr and as a result improve

subsequent processing such as detection [28] and phase pick-

ing. Examples of applications of machine learning methods

for denoising seismic signals include both supervised [29]

and unsupervised [30]–[33] methods. Recorded seismic noise

and earthquake signals characterized by their snr and the

beginning/end of the signals make the data set well-suited

for building denoising models. Moreover, the data set can

be used for developing decomposition models for separating

overlapping signals (either two earthquakes, or earthquake

and non-earthquake signals), which is another common and

closely related problem in observational seismology.

Earthquake detection is one of the first data processing

steps and remains a challenging problem in earthquake seis-

mology. A good detection algorithm should: have few false

positives (does not detect non-earthquake signals as earth-

quakes), few false negatives (does not miss small or weak

earthquake signals), generalize well (is not limited to a spe-

cific shape, range, or setting of earthquakes), be insensitive

to background noise, and be efficient for processing large

data volumes. Characteristic-function-based (e.g. [34]) and

similarity-search based (e.g. [35]–[37]) are the two main

categories of algorithms commonly used for detection. In the

characteristic-function based method a simple transforma-

tion is typically used to construct a function (e.g. STA/LTA)

that highlights abrupt changes in the continuous data and

makes it easier to distinguish earthquake signals. The advan-

tages are that these methods are fast and generalize well-

meaning that they can detect non-repeated earthquakes with
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non-similar waveforms. This generalization tends to also

be the weakness of these methods because they inherently

can not make a distinction between an earthquake signal

and a non-earthquake pulse. Moreover, they are sensitive to

background noise. On the other hand the similarity-search

based methods look for repeated events with strictly similar

waveforms. So they are more robust and generally result in

much lower false positive rates; however, they are limited to

repeated events and this can come with much higher compu-

tational cost. Neural networks have been used for earthquake

signal detection (e.g. [5], [6], [38]–[43]). These methods

can combine the advantages of characteristic-function and

similarity-search based methods. In this approach a machine

is trained to learn general characteristics of an earthquake

signal by being exposed to many examples of earthquake and

non-earthquake signals. Once the machine learns this general

model, its application is fast since the detection is done in

just one round. Previous studies showed that supervised learn-

ing can be a powerful tool for earthquake signal detection,

however, there is still ample room for improvement and the

development of more general and robust models. The global

distribution of data, wide magnitude range, high accuracy

of labels, and the end of earthquake signal as well as its

beginning, positions STEAD to serve as an ideal data set for

building more robust and comprehensive detection models.

Once an earthquake signal is detected, the arrival times

of P and S waves need to be picked to locate the source.

In addition to low false positive and false negative rates, pick

accuracy is a crucial factor for obtaining reliable locations.

Only 1 millisecond of error in determining P-wave arrivals

can lead to ∼ 7 m errors in estimated location [44]. While

traditional algorithms for phase picking have a statistical

basis [45]–[49], machine learning approaches use a variety of

techniques (e.g. [4], [50]–[55]) to identify and pick different

phases. The scale and reliability of picks in STEAD can

foster buildingmore accurate phase pickers. The random time

lag between the beginning of each earthquake seismogram

and first arrival reduces the data preparation process for this

purpose.

Classification/discrimination of seismic signals is another

problem in observational seismology where STEAD could

be useful through transfer learning. Some examples

include classification of volcanic signals (e.g. [56]–[59]),

the discrimination of explosions from natural earthquakes

(e.g. [60]–[64]), discrimination of quarry blasts from

microearthquakes (e.g. [65], [66]), discrimination of seismic

signals from earthquake and tectonic tremor (e.g. [67]),

and discrimination of local from teleseismic earthquakes

(e.g. [68]).

Direct earthquake characterization is yet another line

of research where STEAD can be useful. Rapid estima-

tion of the back-azimuth (e.g. [69]–[71]), magnitude, dis-

tance, and depth have applications for earthquake early

warning systems. This is where the limited data used in

previous efforts at applying machine learning techniques

(e.g. [72], [73]) may have been problematic. A large,

accurately labeled data set like STEAD could help overcome

these limitations. Moreover, STEAD also has potential to

be used to directly determine the earthquake locations using

machine learning approaches (e.g. [74]–[76]), a challenging

problem that has not yet been fully solved. This data set

might be used for building ground-motion prediction models.

These models are one of the most important elements used

for seismic hazard assessments [77], [78]. Ground-motion

prediction models are used to estimate the strong motion

given a hypothetical earthquake source. Linear regression

analysis is commonly used for developing ground-motion

prediction equations [79], [80]. However, ML has shown to

be a powerful tool for developing such models [81]–[84].

In addition to these, similarity of seismic signals to

other time series data such as audio (see [85]–[88]) sug-

gests a potential for using STEAD beyond seismological

applications. Denoising, detection, and classification are

common problems for audio and acoustic signals as well

(e.g. [89]–[91]). Despite some differences, the existence of

millions of human-picked labels, and extra information such

as known locations of sources and receivers are unique char-

acteristics of STEAD that do not exist in most equivalent

audio data sets.

V. CONCLUSION

Understanding the properties of earthquakes and subsurface

processes they express must come through the analysis of

recorded signals by near surface sensors. The complex, non-

stationary nature of these signals requires powerful and sensi-

tive processing tools to exploit them fully. Machine learning

(ML) techniques are powerful tools that can learn the rela-

tionships and discover patterns directly from the data. The

efficient extraction of as much useful information as possible

from the recorded signals and the potential of gaining new

insight is a challenge and the focus of an active field of

research.

Here we introduce STEAD as the first high-quality

large-scale global labeled data set of earthquake and non-

earthquake signals recorded by seismic instruments. Bench-

mark data sets such as STEAD can accelerate progress in

applying machine learning to problems in the seismology.

It facilitates validation and comparison of competing meth-

ods, which promotes adoption of best practices, and acceler-

ates research progress.

Future directions will concentrate on expanding the data

set to regional (400 to 2000 km distance) and teleseismic

(> 2000 km distance) earthquake seismograms, and include

other non-earthquake categories such as seismic waves

generated by explosions, volcanoes, landslides, oceanic

waves, planes, helicopters, trains, wind, thunderstorms, and

traffic.

We hope the high-precision monitoring techniques and

models that will be developed with the help of this data

set, can ultimately improve our understanding of earth-

quake processes by sharpening our ability to characterize

seismicity.
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