Stanford’s 2014 Slot Filling Systems

Gabor Angeli*, Sonal Gupta*, Melvin Jose*, Christopher D. Manning*
Christopher Ré*, Julie Tibshirani*, Jean Y. Wu*, Sen Wu*, Ce Zhang'
*Stanford University; Stanford, CA 94305
{angeli, sonalg, melvinj, manning}@stanford.edu

{chrismre, jtibs,

jeaneis, senwu}@stanford.edu

TUniversity of Wisconsin; Madison, WI 53706
czhang@cs.wisc.edu

Abstract

We describe Stanford’s entry in the TAC-
KBP 2014 Slot Filling challenge. We sub-
mitted two broad approaches to Slot Fill-
ing: one based on the DeepDive frame-
work (Niu et al., 2012), and another based
on the multi-instance multi-label relation
extractor of Surdeanu et al. (2012). In ad-
dition, we evaluate the impact of learned
and hard-coded patterns on performance
for slot filling, and the impact of the par-
tial annotations described in Angeli et al.
(2014).

1 Introduction

We describe Stanford’s two systems in the 2014
KBP Slot Filling competition. The first, and best
performing system, is built on top of the Deep-
Dive framework. We describe the system briefly
below, and in more detail in Section 2; the cen-
tral lesson we would like to emphasize from this
system is that leveraging large computers allows
for completely removing the information retrieval
component of a traditional KBP system, and al-
lows for quick turnaround times while processing
the entire source corpus as a single unit. DeepDive
offers a convenient framework for developing sys-
tems on these large computers, including defining
the pre-processing pipelines (feature engineering,
entity linking, mention detection, etc.) and then
defining and training a relation extraction model.
The second system Stanford submitted is based
around the MIML-RE relation extractor, follow-
ing closely from the 2013 submission, but with the
addition of learned patterns, and with MIML-RE
trained fixing carefully selected manually anno-
tated sentences. The central lesson we would like
to emphasize from this system is that a relatively
small annotation effort (10k sentences) over care-
fully selected examples can yield a surprisingly

large gain in end-to-end performance on the Slot
Filling task (4.4 F1). We describe the two systems
briefly below.

1.1 DeepDive

Stanford submitted two runs using the Deep-
Dive framework for relation extraction (http://
deepdive.stanford.edu/). The systems
differed only in the threshold chosen for propos-
ing relations. DeepDive is a framework for con-
structing trained systems whose goal is to make
it easier to integrate domain-specific knowledge
and user feedback. It runs in two phases: fea-
ture extraction, and statistical inference and learn-
ing. The first phase is implemented as steps in
a pipeline, with intermediate results stored in a
large distributed database. For example, once ini-
tialized with a Sentences table, mention detection
runs a simple Python script on each row in the Sen-
tences table and populates the resulting mentions
in a Mentions table. Featurization can then take
every pair of mentions from this mentions table,
and run a featurization script to populate the fea-
tures table. Importantly, the entire source corpus
is processed as a single unit, without need for an
information retrieval component.

Inference (and consequently learning) over the
data is performed by grounding a factor graph via
a set of database queries, and then running a Gibbs
sampler to infer relation probabilities (Niu et al.,
2011a). The model uses the distant supervision
assumption, as in Mintz et al. (2009a).

Negative examples are constructed identically
to the 2013 system, taking incompatible and in-
complete relations with respect to the input knowl-
edge base. The training corpus consists of only
the source corpus for the year it is evaluated on —
for the 2013 dev set and 2014 evaluation set, this
consists of only the 2013 source corpus. In ad-
dition, snowball sampling over a large web cor-
pus was used to collect additional named entity

(2) Probabilistic Engineering (3) Inference and Learning

Unstructured Info.

Query Relation

Knowledge Base

Probability (Inference)

Evidence Schema

ml m2

Web Pages M prob
.’p) Sentence mI{IasSpouse o --¢ Barack Obama | M. Williams | 0.1 HasSpouse
v Crawl i %egack Obama and his wife I Barack Obama | M. Williams r Barack Obama | M. Obama 0.9 -
§ >| Mi. Obama .. i : !
M ; i-p Barack Obama | M. Obama _ ¢---- Weights (Learning) - M
HE Mentions _ N i > -
: o word offsetl | offset2 i \ h Feature Weight
M. Obama | 6 7 i Factor Grap & and_his_wife 30 : "
ML) [M. Obama | l ! : variables factors | and 30 d
Structured Info. i | : » wh
[WordNet] MentionPairFeatures : Calibration Plots -
-4 ml m2 f : ! —— o~
 GeoNames Barack | M. and_his ==
~ Freebase Obama | Obama _wife i X M N <
R feature="and_his_wife” - - -

Figure 1: An overview of a system built with DeepDive that takes as input both structured and unstruc-
tured information and creates a knowledge base as the output. There are three phases of DeepDive’s
execution model: (1) Feature Extraction; (2) Probabilistic Engineering; and (3) Inference and Learning.
Section 2 contains a more detailed walkthrough of these phases, and Figure 2 shows more details of how
to conduct tasks in these three phases using SQL and script languages, e.g., Python.

triggers, and some high-precision relation triggers.
We used Freebase as our source of training data,
aligned to the set of KBP relations. Entity Link-
ing was performed with a series of high-precision
rules.

The system obtained an F; of 36.7 on the 2014
evaluation. In development runs, the system ob-
tained an F; of 62 on the 2010 data, and 56 on the
2013 data.

1.2 MIML-RE

In addition to the DeepDive system, Stanford sub-
mitted three systems making use of the MIML-RE
model. These are to a large extent similar to Stan-
ford’s submission last year, but with some key im-
provements.

First, the MIML-RE model was re-trained us-
ing selective human-annotated relation mention
labels, as described in Angeli et al. (2014) and
summarized in Section 4. Two submitted runs dif-
fer only by their use of the unmodified versus ac-
tive learning models.

In addition, our model employed a somewhat
extended set of hand-coded patterns, as well as a
larger collection of automatically learned patterns
(see Section 5). Two runs differ in their use of
these patterns versus using only the MIML-RE re-
lation extractor.

For training, we used both the 2010 and 2013
source corpora, as well as a 2013 dump of
Wikipedia. For testing, we used only the official
corpus for the evaluation year, as this was shown
to perform better in the 2013 evaluation than using
all three corpora.

The dev F; scores for each year for the best
MIML-RE based system are as follows. Slot
thresholds were trained on a per-relation basis to
maximize the score on the 2013 development set.
Our best MIML-RE based system obtained an F;
of 32; active learning gained us an improvement of
4.4 F1, while patterns gained us 1.9 F;. Our scores
on the development sets were:

2009 | 2010 | 2011 | 2012 | 2013
25.54 | 32.02 | 28.53 | 30.74 | 40.86

We proceed to describe our two approaches in
more detail.

2 A Brief Overview of DeepDive

We briefly introduce the programming and execu-
tion model of DeepDive. There are three phases
in DeepDive’s execution model, as shown in Fig-
ure 1, and described below. All of the experiments
on the KBP corpus were performed using a 1.5 TB
memory computer; a distributed GreenPlum rela-
tional database (a distributed Postgres) was set up
with 40 nodes on the computer. Therefore, it is
relevant to point out that each of these phases oc-
curs in parallel on 40 cores, and is run primarily if
not entirely out of main memory.

(1) Feature Extraction. The input to this stage
often contains both structured and unstruc-
tured information, and the goal is to produce
a relational database that describes the fea-
tures or signals of the data, which we call the
evidence schema. We use the phrase evidence
to emphasize that, in this stage, data is not re-
quired to be precisely correct; a fact which

(a) Input (b) Feature Extraction (c) Constants & Domain Knowledge (d) Distant Supervision
sql: sql: sql:
Sentence SELECT content SELECT t0.%, tl.x SELECT t1.Mentionl,
— FROM Sentence FROM HasSpouse t0 tl.Mention2
Barack Obama and his wife py_func: HasSpouse t1 FROM FreebaseSpouse t@
Supporters. for ¢ in sys.stdin(): WHERE t0.el = tl.el MentionPairs t1
FreebaseSpouse mentions = extMentions(c) AND t0.e2 <> tl.e2 EntityLinking t2
[t [e2 for ml in mentions: function: AND(t@, t1) EntitylLinking t3
[Barack Obama | Michelle Obama | for m2 in mentions: weight: -2 WHERE tl.ml = t2.m
f = extFeature(c,ml,m2) Q AND tl1.m2 = t3.m
MentionPairs print [m1, m2, fl AND t0.el = t2.e
[m1 [m2 Factor Graph AND t0.e2 = t3.e
[Barack Obama | Michelle | MentionPairFeature (Barack_Obama, function: AND Q
EntityLinking mi m2 T Michelle Obama) >:|\\cighl: -2 PostiveExamples
m [e Barack | Michelle | and his_ (Barack_Obama, ml m2
[Michelle [Michelle Obama | | Obama wife Michelle_ Williams) Barack Obama | Michelle

Figure 2: Illustration of popular operations in DeepDive. (a) Prepare data sets in relational form that can
be used by DeepDive. (b) Generate labels using distant supervision with SQL; (c) Integrate constraints
with SQL and logic functions; (d) Extract features with SQL and script languages (e.g., Python).

is very relevant for distantly supervised sys-
tems.

(2) Probabilistic Engineering. The goal of this

phase is to transform the evidence schema
into a probabilistic model, specifically a fac-
tor graph that specifies:

e The set of random variables that the user
wants to model. To define the set of
random variables in DeepDive is to cre-
ate new relations called query relations,
in which each tuple corresponds to one
random variable. This operation can be
done by using SQL queries on existing
relations.

e How those random variables are corre-
lated; e.g., “The mention ‘Obama’ refers
to the president is correlated with the
random variable that indicates whether
‘Obama’ is a person.” To specify how,
the user specifies a factor function. Al-
though our submissions do not make use
of more complex constraints, they are
easy to encode in the framework. Fig-
ure 2(c) shows a rough example that de-
scribes the intuition that “people tend
to be married to only a single person.”
One (of many ways) to say this is to
say that there is some correlation be-
tween pairs of married tuples; i.e., us-
ing the logical function AND(1O, t1) re-
turns 1 in possible worlds in which both
married tuples are true and O in oth-
ers. DeepDive then learns the “strength”
of this correlation from the data, which

is encoded as weight.! Here, —2 indi-
cates that it is less likely that both mar-
ried tuples are correct. This phase is
also where the user can write logical
constraints, e.g., hard functional con-
straints.

Our previous work has shown that this
grounding phase (Niu et al., 2011b) can be
a serious bottleneck if one does not use scal-
able relational technology. We have learned
this lesson several times.

(3) Inference and Learning. This phase is
largely opaque to the user: it takes the fac-
tor graph as input, estimates the weights,
performs inference, and produces the out-
put database along with a host of diagnos-
tic information, notably calibration plots (see
Fig. 3). More precisely, the output of Deep-
Dive is a database that contains each ran-
dom variable declared by the user with its
marginal probability. For example, one tuple
in the relation HasSpouse might be (Barack
Obama, Michelle Obama), and ideally, we
hope that DeepDive outputs a larger proba-
bility for this tuple as output.

2.1 Operations to Improve Quality in
DeepDive

We describe three routine tasks that a user per-
forms to improve a DeepDive based system.

' A weight is roughly the log odds, i.e., the log ﬁ where
p is the marginal probability of this random variable. This is
standard in Markov Logic Networks (Richardson and Domin-
gos, 2006), on which much of DeepDive’s semantics are
based.

Feature Extraction. DeepDive’s data model
allows the user to use any scripting language for
feature extraction. Figure 2(b) shows one such
example using Python. One baseline feature that
is often used in relation extraction systems is the
word sequence between mention pairs in a sen-
tence (Mintz et al., 2009b; Hoffmann et al., 2010),
and Figure 2(b) shows an example of extracting
this feature. The user first defines the input to the
feature extractor using an SQL query, which se-
lects all available sentences. Then the user defines
a UDF that will be executed for each tuple returned
by the SQL query. In this example, the UDF is
a Python function that first reads a sentence from
STDIN, extracts mentions from the sentence, ex-
tracts features for each mention pair, and outputs
the result to STDOUT. DeepDive will then load
the output of this UDF to the MentionPairFea-
ture relation.

Constraints and Domain Knowledge. One
way to improve a KBP system is to integrate do-
main knowledge. DeepDive supports this opera-
tion by allowing the user to integrate constraints
and domain knowledge as correlations among ran-
dom variables, as shown in Figure 2(c).

Imagine that the user wants to integrate a sim-
ple rule that says “one person is likely to be
the spouse of only one person.”” For exam-
ple, given a single entity “Barack_Obama,” this
rule gives positive preference to the case where
only one of (Barack_Obama, Michelle_ Obama)
and (Barack_Obama, Michelle_Williams) is true.
Figure 2(c) shows one example of implementing
this rule. The SQL query in Figure 2(c) defines a
view in which each tuple corresponds to two rela-
tion candidates with the same first entity but dif-
ferent second entities. The function AND(10, t1)
defines the “type of correlation” among variables,
and the weight “-2” defines the strength of the cor-
relation. This rule indicates that the it is less likely
that both (Barack_Obama, Michelle_Obama) and
(Barack_Obama, Michelle_Williams) are true (i.e.,
when AND(t0, t1) returns 1). Typically, DeepDive
is used to learn the weights from data.

Distant Supervision. Like the MIML-RE
system, DeepDive is built on top of the distant su-
pervision assumption, allowing more data to be in-
corporated easily.

As we have described, the user has at least the
above three ways to improve the system and is free

to use one or a combination of them to improve the
system’s quality. The question we address next is,
“What should the user do next to get the largest
quality improvement in the KBP system?”

3 Calibration Plots in the DeepDive

A DeepDive system is only as good as its features
and rules. In the last two years, we have found
that understanding which features to add is the
most critical—but often the most overlooked—
step in the process. Part of this process is the
usual fine-grained error analysis; however, we
have found that a macro-error analysis can be use-
ful to guard against statistical errors and give an at-
a-glance description of an otherwise prohibitively
large amount of output.

In DeepDive, calibration plots are used to sum-
marize the overall quality of the results. Because
DeepDive uses a joint probability model, each
random variable is assigned a marginal probabil-
ity. Ideally, if one takes all the facts to which
DeepDive assigns a probability score of 0.95, then
95% of these facts are correct. We believe that
probabilities remove a key element: the developer
reasons about features, not the algorithms under-
neath. This is a type of algorithm independence
that we believe is critical.

DeepDive programs define one or more test sets
for each relation, which are essentially a set of la-
beled data for that particular relation. This set is
used to produce a calibration plot. Figure 3 shows
an example calibration plot for the another Deep-
Dive application: PaleoDeepDive, which provides
an aggregated view of how the system behaves. By
reading each of the subplots, we can get a rough
assessment of the next step to improve our system.
We explain each component below.

As shown in Figure 3, a calibration plot contains
three components: (a) accuracy, (b) # predictions
(test set), which measures the number of extrac-
tions in the test set with a certain probability; and
(c) # predictions (whole set), which measures the
number of extractions in the whole set with a cer-
tain probability. The test set is assumed to have
labels so that we can measure accuracy, while the
whole set does not.

(@) Accuracy. To create the accuracy his-
togram, we bin each fact extracted by DeepDive
on the test set by the probability score assigned to
each fact; e.g., we round to the nearest value in the
set k/10 for k = 1,..., 10. For each bin, we com-

Accuracy

(a) Accuracy (Testing Set)
45000

(b) # Predictions (Test Set)

(c) # Predictions (Whole Set)
9e+06

1 . 40000
w» 35000

08 S 30000
0.6 B 25000
® 20000

04 & 15000
#* 10000

02 / 5000
0 L 0

0 02 04 06 08 1 0 02
Probability

8e+06
Te+06

w

5 6e+06

T 5e+06

B 4e+06

O 3e+06

o 2e+06

1e+06
0 —

04 06 08 1 0 02 04 06 08 1
Probability Probability

Figure 3: Illustration of calibration plots in DeepDive.

pute the fraction of those predictions that is cor-
rect. Ideally, this line would be on the (0,0)-(1,1)
line, which means that the DeepDive-produced
probability value is calibrated, i.e., it matches the
test-set accuracy. For example, Figure 3(a) shows
a curve for calibration. Differences in these two
lines can be caused by noise in the training data,
quantization error due to binning, or sparsity in the
training data.

(b) # Predictions (Testing Set). We also cre-
ate a histogram of the number of predictions in
each bin. In a well-tuned system, the # Predictions
histogram should have a “U” shape. That is, most
of the extractions are concentrated at high proba-
bility and low probability. We do want a number of
low-probability events, as this indicates DeepDive
is considering plausible but ultimately incorrect al-
ternatives. Figure 3(b) shows a U-shaped curve
with some masses around 0.5-0.6. Intuitively, this
suggests that there is some hidden type of exam-
ple for which the system has insufficient features.
More generally, facts that fall into bins that are not
in (0,0.1) or (0.9,1.0) are candidates for improve-
ments, and one goal of improving a KBC system is
to “push” these probabilities into either (0,0.1) or
(0.9,1.0). To do this, we may want to sample from
these examples and add more features to resolve
this uncertainty.

(c) # Predictions (Whole Set). The final his-
togram is similar to Figure 3(b), but illustrates
the behavior of the system, for which we do not
have any training examples. We can visually in-
spect that Figure 3(c) has a similar shape to (b);
If not, this would suggest possible overfitting or
some bias in the selection of the hold-out set.

Next, we proceed to describe our MIML-RE
based KBP system; in particular, we describe the
improvements to the system made since the 2013

entry.

4 Active Learning in MIML-RE

A key improvement in the 2014 KBP entry is
the re-training of MIML-RE incorporating fixed
labels for uncertain sentences. The approach is
described in more detail in Angeli et al. (2014).
We describe the process for incorporating these
sentence-level statistics, and the selection crite-
ria used for selecting sentences to annotate. This
work yielded a net gain of 4.4 F; in the evaluation.

4.1 Training with sentence-level annotations

Following Surdeanu et al. (2012), MIML-RE is
trained through hard discriminative Expectation
Maximization, inferring the latent z values in the
E-step and updating the weights for both the z and
y classifiers in the M-step. During the E-step, we
constrain the latent z to match our sentence-level
annotations when available.

We describe three criteria for selection exam-
ples to annotate. The first — sampling uniformly
—is a baseline for our hypothesis that intelligently
selecting examples is important. For this criterion,
we select mentions uniformly at random from the
training set to annotate. The other two criteria rely
on a metric for disagreement provided by QBC;
we describe our adaptation of QBC for MIML-RE
as a preliminary to introducing these criteria.

4.2 QBC For MIML-RE

We use a version of QBC based on bootstrap-
ping (Saar-Tsechansky and Provost, 2004). To
create the committee of classifiers, we re-sample
the training set with replacement 7 times and train
a model over each sampled dataset. We mea-
sure disagreement on z-labels among the classi-
fiers using a generalized Jensen-Shannon diver-
gence (McCallum and Nigam, 1998), taking the

T T
Sample JS —-—-— -
High JS
Uniform - -- -

Precision

0.4 |-

0.3 [

0 0.05 0.1 0.15 0.2 0.25 0.3
Recall

Figure 4: A comparison of models trained with
various selection criteria on the evaluation of Sur-
deanu et al. (2012), all initialized with the corre-
sponding supervised classifier.

average KL divergence of all classifier judgments.
We first calculate the mention-level confi-
dences. Note that zi(m) € M; denotes the latent

variable in entity pair ¢ with index m; zl(_m) de-
(m),

notes the set of all latent variables except z;

plyi, 2™ x:)
p(yilxi)
>, -m P(Yi, Zi|xi)

o Dy 2™ i)

Notice that the denominator just serves to nor-
malize the probability within a sentence group.
We can rewrite the numerator as follows:

p(ZZ(m)IYi,Xi) =

> plyirzilxi)

zi(fm)

= > plyilz:)p(zix:)

zi(_m)

=p(="xi) Y plyilz)p(™ |xi).

ngm)

For computational efficiency, we approximate
p(z; ’|xi) with a point mass at its maximum.
Next, we calculate the Jensen-Shannon (JS) diver-

gence from the k bootstrapped classifiers:

k

1 m m

= DKL=y, %0 [Pmean (™ lyi. x1)) (1)
c=1

where p. is the probability assigned by each of the

k classifiers to the latent zgm), and pmean 18 the av-
erage of these probabilities. We use this metric

System P R F,
Mintz++ 41.3 282 335
MIML + Dist 38.0 30.5 ' 33.8
Supervised + SampleJS | 33.5 35.0 | 34.2
MIML + Sup 35.1 35.6 | 355
MIML + Sup + SamplelJS | 39.4 36.2 ' 37.7

Table 1: A comparison of the best performing su-
pervised classifier with other systems on the 2013
development set. The top section compares the su-
pervised classifier with prior work. The lower sec-
tion highlights the improvements gained from ini-
tializing MIML-RE with a supervised classifier.

to capture the disagreement of our model with re-
spect to a particular latent variable. This is then
used to inform our selection criteria.

We note that QBC may be especially useful in
our situation as our objective is highly nonconvex.
If two committee members disagree on a latent
variable, it is likely because they converged to dif-
ferent local optima; annotating that example could
help bring the classifiers into agreement.

The second selection criterion we consider is
the most straightforward application of QBC — se-
lecting the examples with the highest JS disagree-
ment. This allows us to compare our criterion, de-
scribed next, against an established criterion from
the active learning literature.

4.3 Sample by JS Disagreement

We propose a novel active learning sampling cri-
terion that incorporates not only disagreement but
also representativeness in selecting examples to
annotate. Prior work has taken a weighted combi-
nation of an example’s disagreement and a score
corresponding to whether the example is drawn
from a dense portion of the feature space (e.g.,
McCallum and Nigam (1998)). However, this re-
quires both selecting a criterion for defining den-
sity (e.g., distance metric in feature space), and
tuning a parameter for the relative weight of dis-
agreement versus representativeness.

Instead, we account for choosing representa-
tive examples by sampling without replacement
proportional to the example’s disagreement. For-
mally, we define the probability of selecting an
example zi(m) to be proportional to the Jensen-
Shannon divergence in (1). Since the training set is
an approximation to the prior distribution over ex-
amples, sampling uniformly over the training set is

Slot
per:employee_of

Dependency Pattern

ENTITY (nsubjpass) < dropped —(prep_from) {ner:/ORGANIZATION/}=FILL

per:country_of_death {ner:/COUNTRY/}=FILL (nsubj) <— mourns —(dobj) ENTITY

org:founded_by

founders —(conj_and) {ner:/PERSON/}=FILL —(nn) ENTITY

Table 2: Some examples of learned dependency patterns used by the system. The format of the patterns
is in SemGrex format over Stanford Dependencies, where ENTITY and FILL are the entity head token

and the slot fill head token respectively.

an approximation to sampling from the prior prob-
ability of seeing an input . We can view our crite-
rion as an approximation to sampling proportional
to the product of two densities: a prior over exam-
ples z, and the JS divergence mentioned above.

4.4 Analysis of Selection Criteria

It’s worth emphasizing at least three results from
this line of work. First, that the selection crite-
ria for annotating examples is very important for
performance. Figure 4 shows the performance of
the model using various selection criteria; we note
that highJS and sampleJS noticeably outperform
the uniform criterion. Second, that MIML-RE is
very sensitive to initialization. To illustrate, the
gains in Figure 4 disappear entirely if the model is
initialized with Mintz++ (as in the original paper);
gains only appear if the model is initialized from
a supervised classifier. Lastly, it’s worth noting
that this supervised classifier, used on its own, per-
forms surprisingly well on the 2013 development
set. Table 1 shows the system’s performance using
distant supervision, vanilla MIML-RE (33.8 F; on
2013), and a supervised classifier trained from the
Sample]S examples (34.2 F;). This suggests that
it may be reasonable for newcomers to the task to
train a relatively simple classifier, and perhaps fo-
cus on downstream processes; although, of course,
the best classifiers are still those which incorporate
the examples into MIML-RE (37.7 Fy).

5 Learning Patterns to Augment
MIML-RE

To extract slot fillers, we also used two types
of patterns in our system: surface word lexico-
syntactic patterns (such as, “X was married to Y”)
and dependency patterns (such as, “X (nsubj)
marry — (dobj) Y”). Patterns often are useful for
extracting slots with high precision, even though
with low recall. Usually recall is increased by it-
eratively learning patterns by using the extractions
learned in the previous iteration as labeled data.

The lexico-syntactic patterns were hand written
and the dependency patterns were both hand writ-
ten and learned.

We learned the dependency patterns for each
slot independently. For each slot, first, the the
known entities and slot fillers were matched to
sentences as described above. For each pair of
entity head word and slot filler head word in a
matched sentence, we extracted the shortest path
between them in the dependency tree of the sen-
tence as the candidate pattern. If any of the entity
or the slot filler were tagged with a named entity
tag, we included the restriction in the pattern. The
candidate patterns were weighted by the measure:

Pos
VNeg + All + 2

where Pos is the number of times the pattern
matched the correct pair of entity and slot filler,
Neg is the number of the times the pattern ex-
tracted a pair of entity and slot filler that were re-
lated by another slot, and All is the total number
of times the pattern matched the sentences. Pat-
terns above a certain threshold were selected. We
learned a total of 1073 patterns for all slots. Due to
lack of time, we ran the system on a small sample
of the training data for one iteration. In future, we
plan to extend this to run pattern learning for mul-
tiple iterations and improve pattern scoring using
the approach of Gupta and Manning, 2014.

Some examples of the learned dependency pat-
terns are given in Table 2.

6 Conclusion

We have described Stanford’s two systems in the
2014 KBP competition: one based on DeepDive,
and another around the MIML-RE relation extrac-
tor. We hope to convey at least two central mes-
sages: First, that there is an undervalued benefit
to scaling computing resources proportional to the
size of the task being solved. That is to say, using
DeepDive to effectively harness large computers

to quickly iterate features and debug a KBP system
is very valuable for creating top-performing sys-
tems. Second, that carefully annotating selected
difficult examples can, with minimal cost and hu-
man intervention, yield large improvements in re-
lation extraction accuracy.

References

Gabor Angeli, Julie Tibshirani, Jean Y. Wu, and
Christopher D. Manning. 2014. Combining dis-
tant and partial supervision for relation extraction.
In EMNLP.

Raphael Hoffmann, Congle Zhang, and Daniel S.
Weld. 2010. Learning 5000 relational extractors.
In ACL.

Andrew McCallum and Kamal Nigam. 1998. Employ-
ing EM and pool-based active learning for text clas-
sification. In ICML.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009a. Distant supervision for relation extrac-
tion without labeled data. In ACL.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009b. Distant supervision for relation extrac-
tion without labeled data. In ACL.

Feng Niu, Christopher Ré, AnHai Doan, and Jude
Shavlik. 2011a. Tuffy: Scaling up statistical infer-
ence in markov logic networks using an rdbms. Pro-
ceedings of the VLDB Endowment, 4(6):373-384.

Feng Niu, Christopher Ré, AnHai Doan, and Jude
Shavlik. 2011b. Tuffy: Scaling up statistical infer-
ence in Markov logic networks using an RDBMS.
PVLDB.

Feng Niu, Ce Zhang, Christopher Ré, and Jude W
Shavlik. 2012. Deepdive: Web-scale knowledge-
base construction using statistical learning and in-
ference. In VLDS, pages 25-28.

Matthew Richardson and Pedro Domingos. 2006.
Markov logic networks. Machine Learning.

Maytal Saar-Tsechansky and Foster Provost. 2004.
Active sampling for class probability estimation and
ranking. Machine Learning, 54(2):153-178.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallap-
ati, and Christopher D. Manning. 2012. Multi-
instance multi-label learning for relation extraction.
In EMNLP.

