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Abstract

This paper describes the neural depen-

dency parser submitted by Stanford to the

CoNLL 2017 Shared Task on parsing Uni-

versal Dependencies. Our system uses

relatively simple LSTM networks to pro-

duce part of speech tags and labeled de-

pendency parses from segmented and tok-

enized sequences of words. In order to ad-

dress the rare word problem that abounds

in languages with complex morphology,

we include a character-based word rep-

resentation that uses an LSTM to pro-

duce embeddings from sequences of char-

acters. Our system was ranked first ac-

cording to all five relevant metrics for the

system: UPOS tagging (93.09%), XPOS

tagging (82.27%), unlabeled attachment

score (81.30%), labeled attachment score

(76.30%), and content word labeled at-

tachment score (72.57%).

1 Introduction

In this paper, we describe Stanford’s approach to

tackling the CoNLL 2017 shared task on Univer-

sal Dependency parsing (Nivre et al., 2016; Ze-

man et al., 2017; Nivre et al., 2017b,a). Our sys-

tem builds on the deep biaffine neural dependency

parser presented by Dozat and Manning (2017),

which uses a well-tuned LSTM network to pro-

duce vector representations for each word, then

uses those vector representations in novel biaffine

classifiers to predict the head token of each depen-

dent and the class of the resulting edge. In order to

adapt it to the wide variety of different treebanks

in Universal Dependencies, we make two note-

worthy extensions to the system: first, we incor-

porate a word representation built up from char-

acter sequences using an LSTM, theorizing that

this should improve the model’s ability to adapt

to rare or unknown words in languages with rich

morphology; second, we train our own taggers for

the treebanks using nearly identical architecture to

the one used for parsing, in order to capitalize on

potential improvements in part of speech tag qual-

ity over baseline or off-the-shelf taggers. This ap-

proach gets state-of-the-art results on the macro

average of the shared task datasets according to all

five POS tagging and attachment accuracy metrics.

One noteworthy feature of our approach is its

relative simplicity. It uses a single tagger/parser

pair per language, trained on only words and tags;

thus we refrain from taking advantage of ensem-

bling, lemmas, or morphological features, any one

of which could potentially push accuracy even

higher.

2 Architecture

2.1 Deep biaffine parser

The basic architecture of our approach follows that

of Dozat and Manning (2017), which is closely

related to Kiperwasser and Goldberg (2016), the

first neural graph-based (McDonald et al., 2005)

parser.1 In Dozat and Manning’s 2017 parser, the

input to the model is a sequence of tokens and their

part of speech tags, which is then put through a

multilayer bidirectional LSTM network. The out-

put state of the final LSTM layer (which excludes

the cell state) is then fed through four separate

ReLU layers, producing four specialized vector

representations: one for the word as a dependent

seeking its head; one for the word as a head seek-

ing all its dependents; another for the word as a de-

pendent deciding on its label; and a fourth for the

word as head deciding on the labels of its depen-

1For other neural graph-based parsers, cf. Cheng et al.
(2016); Hashimoto et al. (2016); Zhang et al. (2016)
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Figure 1: The architecture of our parser. Arrows indicate structural dependence, but not necessarily

trainable parameters.

dents.2 These vectors are then used in two biaffine

classifiers: the first computes a score for each pair

of tokens, with the highest score for a given to-

ken indicating that token’s most probable head; the

second computes a score for each label for a given

token/head pair, with the highest score represent-

ing the most probable label for the arc from the

head to the dependent. This is shown graphically

in Figure 1.

Put formally, given a sequence of n word em-

beddings (to be described in more detail in Section

2.2) (v
(word)
1 , . . . ,v

(word)
n ) and n tag embeddings

(v
(tag)
1 , . . . ,v

(tag)
n ), we concatenate each pair to-

gether and feed the result into a BiLSTM with ini-

tial state r0:3

xi = v
(word)
i ⊕ v

(tag)
i (1)

ri = BiLSTM
(

r0, (x1, . . . ,xn)
)

i
(2)

hi, ci = split(ri) (3)

We then produce four distinct vectors from each

recurrent hidden state hi (without the recurrent

cell state ci) using ReLU perceptron layers:

h
(arc-dep)
i = MLP(arc-dep)(hi) (4)

h
(arc-head)
i = MLP(arc-head)(hi) (5)

h
(rel-dep)
i = MLP(rel-dep)(hi) (6)

h
(rel-head)
i = MLP(rel-head)(hi) (7)

In order to produce a prediction y
′(arc)
i for token

i, we use a biaffine classifier involving the (arc)

2Interestingly, other researchers have found similar ap-
proaches to be beneficial for other tasks; cf. Reed and de Fre-
itas (2016); Miller et al. (2016); Daniluk et al. (2017)

3We adopt the convention of using lowercase italics for
scalars, lowercase bold for vectors, uppercase italics for ma-
trices, and uppercase bold for tensors. We maintain this con-
vention when indexing and stacking; so ai is the ith vector of
matrix A, and matrix A is the stack of all vectors ai.

hidden vectors:

s
(arc)
i = H(arc-head)W (arc)

h
(arc-dep)
i (8)

+ H(arc-head)
b
⊤(arc)

y
′(arc)
i = arg max

j
s
(arc)
ij (9)

Note first the similarity between line 8 and a tra-

ditional affine classifier of the form Wh + b,

with each of W and b first being transformed by

H(arc-head). Note also that both terms of the bi-

affine layer have intuitive interpretations: the first

relates to the probability of word j being the head

of word i given the information in both h
(arc) vec-

tors (for example, the probability of word i de-

pending on word j given that word i is the and

word j is cat); the second relates to the probability

of word j being the head of word i given only the

information in the head’s vector (for example, the

probability of word i depending on word j given

that word j is the, which should be very small no

matter what word i is).

After deciding on a head y′i for word i, we use

another biaffine transformation—this time involv-

ing the (rel) hidden vectors—to produce a pre-

dicted label:

s
(rel)
i = h

⊤(rel-head)

y
′(arc)
i

U
(rel)

h
(rel-dep)
i (10)

+ W (rel)
(

h
(rel-dep)
i ⊕ h

(rel-head)

y
′(arc)
i

)

+ b
(rel)

y
′(rel)
i = arg max

j
s
(rel)
ij (11)

Again, each term in line 10 has an intutive inter-

pretation: the first term relates to the probability

of observing a label given the information in both

h
(rel) vectors (e.g. the probability of the label det

given word i is the with head cat); the second re-

lates to the probability of observing a label given
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Figure 2: The architecture of our embedding model. Arrows indicate structural dependence, but not

necessarily trainable parameters.

either h(rel) vector (e.g. the probability of the label

det given that word i is the or that word j is cat);

the last relates to the prior probability of observing

a label.

We jointly train these two biaffine classifiers by

optimizing the sum of their softmax cross-entropy

losses. At test time, we ensure the tree is well-

formed by iteratively identifying and fixing cycles

for each proposed root and selecting the one with

the highest score, which is both simple and suffi-

cient for our purposes. 4

2.2 Character-level model

Dozat and Manning (2017) represented words as

the sum of a pretrained vector5 and a holistic word

embedding for frequent words. However, that ap-

proach seems insufficient for languages with rich

morphology; so we add a third representation built

up from sequences of characters. Each character

is given a trainable vector embedding, and each

sequence of character embeddings is fed into a

unidirectional LSTM. However, the LSTM pro-

duces a sequence of recurrent states (r1, . . . , rn),
which we need to convert into a single vector. The

simplest approach is to take the last one—which

would represent a summary of all the information

aggregated one character at a time—and linearly

transform it to the desired dimensionality. An-

other approach, suggested by Cao and Rei (2016),

is to use attention over the hidden states, and then

4Although in the future we intend to implement than the
Chu-Liu/Edmonds algorithm for nonprojective MST parsing
(Chu and Liu, 1965; Edmonds, 1967)

5We use the provided CoNLL vectors trained on
word2vec (Mikolov et al., 2013); for Gothic, which had no
provided vector embeddings, we used Facebook’s FastText
vectors (Bojanowski et al., 2016)

trasform the resulting context vector to the desired

size; in theory, this should both allow the model

to learn morpheme information more easily by at-

tending more closely to the LSTM output at mor-

pheme boundaries. We choose to combine both

approaches, using the hidden states for attention

and the cell state for summarizing, shown in Fig-

ure 2.

That is, given a sequence of n character em-

beddings and an initial state r0 for the LSTM, we

each embedding into an LSTM as before, extract-

ing hidden and cell states:

ri = LSTM
(

r0, (v
(char)
1 , . . . ,v(char)

n )
)

i

(12)

hi, ci = split(ri) (13)

We then compute linear attention over the stack of

hidden vectors H and concatenate it to the final

cell state:

a = softmax
(

Hw
(attn)

)

(14)

h̃ = H⊤
a (15)

v̂ = W
(

h̃ ⊕ cn

)

(16)

In this way we use the hidden states for attention

and the cell state as a final summary vector.

After computing the character-level word em-

bedding, we add together elementwise the pre-

trained embedding, the holistic frequent token em-

bedding, and the newly generated character-level

embedding. We also add together embeddings for

the language’s UPOS and XPOS tags. The result-

ing two vectors are used as input to the BiLSTM

parser in Section 2.1.
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2.3 POS tagger

The final piece of our system is a separately-

trained part of speech tagger. The architecture

for the tagger is almost identical to that of the

parser (and shares fundamental properties with

other neural taggers; cf. Ling et al. (2015); Plank

et al. (2016))—it uses a BiLSTM over word vec-

tors (using the tripartite representation from Sec-

tion 2.2), then uses ReLU layers to produce one

vector representation for each type of tag.

Thus we use a BiLSTM, as with the parser ar-

chitecture:

ri = BiLSTM
(

r0, (v
(word)
1 , . . . ,v(word)

n )
)

i

(17)

hi, ci = split(ri) (18)

And we use affine classifiers for each type of tag,

which we add together for the parser:

h
(pos)
i = MLP(pos)(hi) (19)

s
(pos)
i = Wh

(pos)
i + b

(pos) (20)

y
′(pos)
i = arg max

j
s
(pos)
ij (21)

The tag classifiers are trained jointly using cross-

entropy losses that are summed together during

optimization, but the tagger is trained indepen-

dently from the parser.

3 Training details

Our model largely adopts the same hyperparam-

eter configuration laid out by Dozat and Man-

ning (2017), with a few exceptions. The parser

uses three BiLSTM layers with 100-dimensional

word and tag embeddings and 200-dimensional re-

current states (in each direction); the arc classi-

fier uses 400-dimensional head/dependent vector

states and the label classifier uses 100-dimensional

ones; we drop word and tag embeddings inde-

pendently with 33% probability;6 we use same-

mask dropout (Gal and Ghahramani, 2015) in the

LSTM, ReLU layers, and classifiers, dropping in-

put and recurrent connections with 33% proba-

bility; and we optimize with Adam (Kingma and

Ba, 2014), setting the learning rate to 2e−3 and

β1 = β2 = .9. We train models for up to 30,000

training steps (where one step/iteration is a single

minibatch with approximately 5,000 tokens), at

6When only one is dropped, we scale the other by a factor
of two

first saving the model every 100 steps if fewer than

1,000 iterations have passed, and afterwards only

saving if validation accuracy increases (or training

accuracy for languages with no validation data).

When 5,000 training steps pass without improving

accuracy, we terminate training.

For the character model, we use 100-

dimensional uncased character embeddings

with 400-dimensional recurrent states. We don’t

drop characters but do include 33% dropout in the

LSTM and attention connections.

In the tagger we use nearly identical settings,

with a few exceptions: the BiLSTM is only two

layers deep, we increase the dropout between re-

current connections to 50%, and we use cased

character embeddings.

Our approach for dealing with the surprise lan-

guages was to train delexicalized “language fam-

ily” parsers with the same architecture detailed in

Section 2.1 on UDPipe v1.1 (Straka et al., 2016)’s

UPOS tags with no word-level information. For

Buryat (Altaic), we used as input the training

datasets for Turkish, Uyghur, Kazakh, Korean, and

Japanese; for Kurmanji (Indo-Iranian), we used

Persian, Urdu, and Hindi; for North Sámi (Uralic),

we used Finnish, Finnish-FTB, Estonian, and

Hungarian; and for Upper Sorbian (Slavic), we

used Bulgarian, Czech, Old Church Slavonic, Pol-

ish, Russian, Russian-SynTagRus, Slovak, Slove-

nian, Slovenian-SST, and Ukrainian.

There’s substantial variability in training and

testing speed across treebanks, but on an NVidia

Titan X GPU the models train at 100 to 1000 sen-

tences/sec and test at 1000 to 5000 sentences/sec.

Even without GPU acceleration a tagger or parser

can be run on an entire test treebank in ten to

twenty seconds. By far the greatest runtime over-

head comes not from the model itself, but from

reading in the large matrices of pretrained em-

beddings, which can take several minutes. A full

run over the 81 test sets on the TIRA virtual ma-

chine (Potthast et al., 2014) takes about 16 hours,

but when parallelized on faster machines it can be

done in under an hour.

4 Results

Our model uses a provided tokenization and seg-

mentation and produces UPOS tags, XPOS tags,

arcs, and labels. Thus the relevant metrics for the

system are UPOS accuracy, XPOS accuracy, unla-

beled attachment score, labeled attachment score,
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UPOS XPOS UAS LAS CLAS

ar 89.36 87.66 76.59 71.97 68.17
ar pud 71.17 0.00 58.87 49.50 46.06
bg 98.75 96.71 92.89 89.81 86.53
bxr 84.12 99.35 51.19 30.00 25.37
ca 98.59 98.58 92.88 90.70 86.70
cs 98.83 95.86 92.62 90.17 88.44
cs cac 99.05 95.16 93.14 90.43 88.31
cs cltt 97.91 89.98 86.02 82.56 79.62
cs pud 96.42 92.60 89.11 84.42 81.60
cu 95.90 96.20 77.10 71.84 70.49
da 97.40 99.69 85.33 82.97 80.03
de 94.41 97.29 84.10 80.71 76.97
de pud 85.71 20.89 80.88 74.86 73.96
el 97.74 97.76 89.73 87.38 83.59
en 95.11 94.82 84.74 82.23 78.99
en lines 96.64 95.41 85.16 82.09 78.71
en partut 95.22 95.08 86.10 82.54 77.40
en pud 95.40 94.29 88.22 85.51 82.63
es 96.59 99.69 90.01 87.29 82.08
es ancora 98.72 98.73 92.11 89.99 86.15
es pud 88.39 1.76 88.14 81.05 74.60
et 93.01 95.05 78.08 71.65 69.85
eu 95.89 99.96 85.28 81.44 79.71
fa 97.15 97.12 89.64 86.31 82.93
fi 96.62 97.37 87.97 85.64 84.25
fi ftb 96.30 95.31 89.24 86.81 84.12
fi pud 97.54 0.00 90.60 88.47 86.82
fr 96.20 98.87 88.57 85.51 82.14
fr partut 96.16 95.88 88.64 85.05 79.49
fr pud 89.32 2.40 83.45 78.81 77.37
fr sequoia 97.41 99.06 88.48 86.53 83.37
ga 92.43 91.31 78.50 70.06 61.38
gl 97.72 97.50 85.87 83.23 78.05
gl treegal 94.51 91.65 78.28 73.39 66.02
got 95.74 96.49 73.10 66.82 63.87
grc 92.64 84.47 78.42 73.19 67.59
grc proiel 97.06 97.51 78.30 74.25 68.83
he 82.42 82.45 67.70 63.94 56.78
hi 97.50 97.01 94.70 91.59 87.92
hi pud 85.48 34.82 67.24 54.49 48.87
hr 97.68 99.93 90.11 85.25 82.36

UPOS XPOS UAS LAS CLAS

hsb 90.30 99.84 67.83 60.01 56.32
hu 95.34 99.82 82.35 77.56 76.08
id 94.09 99.99 85.17 79.19 77.15
it 98.04 97.93 92.51 90.68 86.18
it pud 93.74 2.48 91.08 88.14 84.49
ja 88.14 89.68 75.42 74.72 65.90
ja pud 89.41 7.50 78.64 77.92 68.95
kk 57.36 55.72 43.51 25.13 19.32
kmr 90.04 89.84 47.71 35.05 28.72
ko 96.14 93.02 85.90 82.49 80.85
la 90.67 76.69 72.56 63.37 58.96
la ittb 98.36 94.79 89.44 87.02 84.94
la proiel 96.72 96.93 73.71 69.35 66.56
lv 93.59 80.05 79.26 74.01 70.22
nl 93.24 90.61 85.17 80.48 75.19
nl lassysmall 98.39 99.93 89.56 87.71 85.22
no bokmaal 98.35 99.75 91.60 89.88 87.67
no nynorsk 98.11 99.85 90.75 88.81 86.41
pl 98.15 91.97 93.98 90.32 87.94
pt 97.24 83.04 89.90 87.65 83.27
pt br 98.22 98.22 92.76 91.36 87.48
pt pud 88.99 0.00 83.27 77.14 71.68
ro 97.59 96.98 90.43 85.92 81.87
ru 96.99 96.73 87.15 83.65 81.80
ru pud 86.85 80.17 82.31 75.71 73.13
ru syntagrus 98.59 99.57 94.00 92.60 90.11
sk 96.87 85.00 89.58 86.04 83.86
sl 98.63 94.74 93.34 91.51 88.98
sl sst 94.04 86.87 61.71 56.02 51.04
sme 86.81 88.98 51.13 37.21 39.22
sv 97.70 96.40 88.50 85.87 83.71
sv lines 96.74 94.84 86.51 82.89 79.92
sv pud 94.33 92.33 81.90 78.49 76.48
tr 93.86 93.11 69.62 62.79 60.01
tr pud 72.73 0.00 58.72 37.72 31.71
ug 76.65 78.69 56.86 39.79 30.11
uk 94.31 79.42 81.44 75.33 71.72
ur 93.95 92.30 87.98 82.28 75.88
vi 75.28 73.56 46.14 42.13 38.59
zh 85.26 85.07 68.95 65.88 62.03

UPOS XPOS UAS LAS CLAS

All treebanks 93.09 82.27 81.30 76.30 72.57
Large treebanks 95.58 94.56 85.16 81.77 78.40
Parallell treebanks 88.25 30.66 80.17 73.73 69.88
Small treebanks 87.02 82.03 70.19 61.02 54.76
Surprise treebanks – – 54.47 40.57 37.41

Table 1: Results on each treebank in the shared task plus the macro average over all of them. State of the

art performance by the system is in bold.
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Figure 3: How the percent of nonprojective arcs in the training and test set influence accuracy of our

graph-based and a transition-based parser

and content labeled attachment score. Our system

achieves the highest aggregated score on all five of

these metrics in the shared task. Below we explore

where our model does particularly well, and where

it can be improved. We choose to evaluate on

CLAS performance because we feel it more accu-

rately reflects model performance, being a princi-

pled extension of the common practice of remov-

ing punctuation from evalution. We also exclude

surprise languages from the following analyses.

One small point to that end is that our sys-

tem assumes tokenization and segmentation has

already been done; we therefore trained on gold

segmentation and evaluated using the segmenta-

tion provided by UDPipe. For most treebanks

this was easily sufficient, but for Vietnamese, Chi-

nese, Japanese, and Arabic, UDPipe’s lower per-

formance at segmenting or tokenizing was corre-

lated with a relatively large gap between CLAS

and gold-aligned CLAS. Because our model re-

ports comparable numbers for nearly all other tree-

banks, we take this to mean that alignment errors

propagated through the system into parsing errors.

4.1 Nonprojectivity

In Universal Dependencies, unlike many other

popular benchmarks, several treebanks have a

large fraction of crossing dependencies, so any

competitive system will need to be able to produce

nonprojective arcs. One of the most frequently

used approaches for producing fully nonprojec-

tive parsers in transition-based systems is to add

the swap action (Nivre, 2009). This makes any

arbitrary nonprojective arc possible, but increases

the number of transition steps required to produce

that arc. One valid concern is that this might bias

the model toward producing projective arcs; in our

graph-based system, by contrast, there’s little rea-

son to think nonprojective arcs should be harder to

predict than projective ones. Here we aim to ex-

plore how the fraction of nonprojective arcs in a

treebank affects the performance of the two types

of systems.

To test the relative performance of a graph-

based and a transition-based model, we compute

the difference in per-treebank CLAS performance

between our parser and the UDPipe v1.1 baseline

(Straka et al., 2016), which uses a transition-based

parser with the swap operation (Straka et al.,

2015). We then plot this against the frequency of

nonprojective arcs in the test set. To determine

whether there is a significant relationship between

the difference in performance, we fit the data to a

generalized linear mixed effects regression model

(Fisher, 1930), using Markov chain Monte Carlo

sampling (Hadfield, 2010). We include log data

size, morphological complexity (see Section 5.2),

and training set projectivity as random effects. We

plot the data with the learned regression lines in

Figure 3a. What we find is that the margin be-

tween the performance of the graph-based and

transition-based parsers increases with the nonpro-

jectivity of the test set significantly (p < 0.001).
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Figure 4: Performance difference between our

model and the highest-performing model other

than ours as a function of log training data size

This remains significant even when outliers7 are

excluded (p < 0.05). To the extent that UDPipe

represents a typical nonprojective transition-based

parser, our results suggest that a graph-based ap-

proach is better suited to parsing UD treebanks

that have significant syntactic freedom or com-

plexity than a transition-based one.

Predicting crossing arcs requires more opera-

tions (and therefore more long-term planning on

behalf of the parser) when using the swap fea-

ture in a transition-based system, but in our graph-

based system they can be predicted as easily as

projective arcs. One might hypothesize that be-

cause of this, a transition-based swapping sys-

tem would need to see more examples of cross-

ing dependencies than a graph-based system in or-

der to generalize well. The data shown in Figure

3b support this hypothesis: we computed the dif-

ference between the projectivity of each test and

training set, and used this as the fixed effect in

another mixed effects model with data size, mor-

phological complexity, and train/test nonprojec-

tivity as random effects. We find that when the

training set has drastically fewer crossing depen-

dencies than the test set, the graph-based model

achieves relatively higher accuracy; but when the

transition-based parser can train on many cross-

ing arcs, the models are closer in performance

(p < 0.001), even when excluding the same out-

liers (p < 0.05). This suggests that the graph-

based approach learns and generalizes crossing

dependencies more efficiently than the transition-

7Korean (top); Ancient Greek, Latin (right)
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Figure 5: Performance difference between a ver-

sion of our model trained on our own predicted

tags and a version trained on UDPipe v1.1 tags as

a function of the performance difference between

our taggers and the UDPipe taggers

based approach, although this again comes with

the assumption that UDPipe’s parser is represen-

tative of most transition-based swapping parsers

when it comes to producing nonprojective parses.

4.2 Data size

We use the same hyperparameter configuration for

all datasets, regardless of how much training data

there is for that treebank, which means we may

have overfit to small training datasets or underfit

to large ones. To test this, we computed the per-

treebank difference between the test CLAS per-

formance of our model and that of the highest-

performing model other than ours, and plotted that

ratio against the log training data size in Figure

4. We fit the differences to another mixed ef-

fects regression model with train/test projectivity

and morphological complexity set as random ef-

fects, finding that our system on average tends to

do relatively better on larger datasets compared

to other approaches and worse on smaller ones

(p < 0.001). When the outliers are excluded,8

this tendency is still significant (p < 0.001). This

suggests that our model is overfitting to smaller

datasets, and that increasing regularization or de-

creasing model capacity may improve accuracy

for lower-resource languages.

8Kazakh, Uyghur (left); Japanese (bottom); Czech-CAC,
Russian-SynTagRus, Czech (right)
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Figure 6: Performance difference between parsers using our taggers and parsers without tags (left) and

between parsers using UDPipe v1.1’s tags and parsers without tags (right), with both histograms fit to

skew normal distributions

5 Ablation Studies

5.1 POS Tagger

We chose to train our parsers on our own pre-

dicted tags instead of using provided taggers; here

we aim to justify that strategy empirically with an

ablation study. We trained another set of parsers

with otherwise identical hyperparameter settings

using the baseline tags provided by UDPipe v1.1,

and computed the difference in CLAS between

our reported models and the new ones. We also

computed the difference in UPOS accuracy be-

tween UDPipe v1.1’s taggers and our own. In

Figure 5, we plot how the difference in tagger

quality affects the CLAS of the parser, making

two noteworthy observations. The first is that the

performance difference between the set of mod-

els trained on our own tags is statistically signif-

icantly better than the performance of the models

trained on UDPipe tags according to a Wilcoxon

test (p < 0.001). The second is that this can be

explained by the improvement of our tagger over

UDPipe v1.1, again accounting for dataset size,

nonprojectivity, and morphology in a mixed ef-

fects model (p < 0.001). This suggests that im-

proving upstream tagger performance is an effec-

tive way of improving downstream parser accu-

racy. We also examined the effect of training size

on the difference in parser performance, finding no

significant correlation (p > 0.05).

The approach laid out in this paper uses one

neural network to tag the sequences of tokens,

and a second neural network to produce a parse

from the tokens and tags. One might ask to what

extent the tagger network is actually necessary,

for a number of reasons: presumably whatever

predictive patterns it learns from the token se-

quences would also be learnable by the parser net-

work; errors by the tagger are likely to be propa-

gated by the parser; and Ballesteros et al. (2015)

found that POS tags are drastically less impor-

tant for character-based parsers. In order to ex-

amine how useful the POS tag information is to

our character-based system, we trained an addi-

tional set of parsers without UPOS or XPOS in-

put, comparing them to the other two, with the

differences graphed in Figure 6. We find that the

variant with no POS tag input is likewise signif-

icantly worse than our reported model according

to a Wilcoxon test (p < 0.001), but not statisti-

cally different from the one trained with UDPipe

tags (p > 0.05). This suggests that predicted POS

tags are still useful for achieving maximal parsing

accuracy in our system, provided the tagger’s per-

formance is sufficiently high.

5.2 Character model

One of the ways in which we build on Dozat and

Manning’s 2017 work is by adding a character-

level word representation similar to that of Balles-

teros et al. (2015), hypothesizing that it should al-

low the model to more effectively learn the rela-

tionships between words in languages with rich

morphology and loose word order. We test this

using another ablation study; we trained a sec-

ond set of taggers and parsers on the dataset with

only whole token and pretrained vectors, leaving

out the vector composed from character sequences
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Figure 7: Performance difference between our character-based approach and a pure token-based ap-

proach for parsing (left) and tagging (right) as a function of approximated morphological complexity

(for maximal comparability, we use the origi-

nal character-based taggers for the token-based

parsers). As morphological complexity increases,

the difference between the models should increase

as well.

The basis of our approach to quantifying mor-

phological complexity will be the assumption that

in a morphologically complex language, the ra-

tio between the size of the vocabulary |V (X)| of

a corpus to the size of the corpus |X| will be rel-

atively high, because the same lemma may occur

with many different forms; but in a morphologi-

cally simplex language, that ratio will be smaller,

because a given lemma will normally appear with

only a few forms. Assuming both languages have

the same number of lemmas, the vocabulary size

of the complex language will then be larger. The

most principled way of modeling this intuition is

through Heaps’ law (Herdan, 1960; Heaps, 1978)

in Equation 22, which says that the log vocabulary

size increases linearly in the log corpus size.

log(|V (X)|) = w log(|X|) + b (22)

We can take advantage of Heaps’ law directly in

approximating morphological complexity. Mor-

phologically richer languages should increase the

size of their vocabulary at a faster rate as the cor-

pus size grows, because a new token being added

to the corpus has a higher probability of having

a previously observed lemma with a previously

unobserved morphological form, thereby increas-

ing the vocabulary size; in a morphologically sim-

plex language, previously observed lemmas are

unlikely to have many morphological forms that

could increase |V |. Therefore, we would expect

the parameter w of Equation 22 to be higher for

languages with rich morphology. We computed

this value for each treebank, and the results gen-

erally align with our intuition (although not with-

out some variation, attributable to domain and

dataset size): Hindi and Urdu—which have sig-

nificant allomorphy—are among the lowest, hav-

ing w = .555 and .585 respectively; English and

Vietnamese have .631 and .661; Spanish and Por-

tuguese have .7 and .704; and Finnish, Estonian,

and Hungarian have some of the highest, at .806,

.822, and .846.

Thus we use the coefficient w in Equation 22 as

our metric for morphological richness, and plot the

difference between models trained with character-

level word embeddings and token-level word em-

beddings against this value in Figure 7. First we

perform a Wilcoxon signed rank test, finding that

the difference between the two approaches is sta-

tistically significant for the taggers (p < 0.001)
and parsers (p < 0.001). Then we fit a mixed

effects model to the data with treebank size and

training/test projectivity as random effects, finding

that the character-level approach tends to signifi-

cantly improve performance more as complexity

grows both for parsing (p < 0.005) and tagging

(p < 0.001).9 This indicates that incorporating

subword information into UD parsing models is

a promising way to improve performance on lan-

guages with significant morphology.

9The assumption of linearity is clearly wrong, but the neg-
ative y-values preclude using a log-linear model on which we
run significance tests
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6 Conclusion

In this paper we describe our relatively simple

neural system for parsing that achieved state-of-

the-art performance on the 2017 CoNLL Shared

Task on UD parsing without utilizing lemmas,

morphological features, or ensembling. The sys-

tem uses BiLSTM networks for tagging and pars-

ing, and includes character-level word representa-

tions in addition to token-level ones. We also ex-

amined what can be learned more generally from

our model’s performance. We explore the rel-

ative performance of nonprojective graph-based

and transition-based architectures on this task,

finding evidence that modern graph-based parsers

might be better at producing nonprojective arcs

(with some caveats). Additionally, our network

performs better when there’s an abundance of data,

suggesting that more regularization could improve

accuracy on lower-resource languages.

We also sought to quantitatively justify the ad-

ditional complexity of our system. We consid-

ered how important the POS tagger is to the sys-

tem, comparing the downstream performance of

parsers using our tagger, the baseline tagger, and

no tagger at all. We find that our tagger beats

both baselines significantly, whereas the two base-

lines don’t statistically differ from each other, in-

dicating that POS tags can help our system but

must be sufficiently accurate. The character-based

approach was found to significantly boost perfor-

mance on languages that scored high on our met-

ric for morphological complexity—both for pars-

ing and tagging—suggesting that constructing to-

ken representation from subtoken information is

effective for capturing the influence of morphol-

ogy on syntax, and the naı̈ve approach of using

only holistic word embeddings is insufficient. Our

success at the shared task demonstrates that a well-

tuned, straightforward neural approach to parsing

and tagging can get state-of-the-art performance

for datasets with a wide variety of syntactic prop-

erties.
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Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of the conference on Human Language Technology
and Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 523–530.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. International Conference on
Learning Representations .

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason We-
ston. 2016. Key-value memory networks for directly
reading documents. In ACL 2016. pages 1400–
1409.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP:
Volume 1-Volume 1. Association for Computational
Linguistics, pages 351–359.
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