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STANLEY DECOMPOSITIONS OF THE BRACKET RING

BERND STURMFELS* and NEIL WHITE*

Abstract.

Methods from algebraic combinatorics are applied to give an explicit Stanley decomposition of the
commutative ring generated by the d x d-minors of a generic n x d-matrix.

1. Introduction.

Let K[x;;] denote the polynomial ring freely gerlerated over a field K by the
entries of a generic n x d-matrix (x;;) where n = d. The bracket ring B, ; is the
subring of K[x;;] generated by the d x d-minors

Xig,1 o0 Xigd
[iliz...id]:=det : e

Xig1 " -).Cid,d
of (x;;). Let A, , denote the set of brackets [i;i,...i;] with 1 £i; <i;<...<
ig £ n, and let K[A4, ,] denote the polynomial ring freely generated by the

(Z)-element set A, ;. Products of brackets (i.e. monomials in K[ 4, ,]) are called

tableaux.

We write the bracket ring as B, ; = K[ A4, 41/1,.« where I, ; is the ideal of
syzygies or algebraic dependencies among the d x d-minors. Recall the First and
Second Fundamental Theorems of Invariant Theory which state respectively that
B, qis the invariant ring under the canonical action of SL (K?) on K[x;;] and that
the syzygy ideal I, , is generated by the quadratic Grassmann-Pliicker relations
(7], [14].

It is the objective of this note to derive an explicit representation of the bracket
ring as finite direct sum of K-vector spaces

(l) Bn.d = ® Tl:K[Bi.o’Bi,l’-'-9Bi,d(n—d)]’
i=1
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where the T; are suitable tableaux and the B, ; are suitable brackets. Such
a Stanley decomposition for the special case d = 2 has been found by Cushman,
Sanders and White [6]. We remark that explicit combinatorial decompositions
of classical invariant rings such as B, ; are of considerable importance in the
Cushman-Sanders normal form theory for nilpotent vector fields [5].

The reader is referred to our earlier paper [15] for an introduction to Stanley
decompositions of affine algebras in general. In [15, Section 2] an algorithm
based on Buchberger’s Grobner bases method [4] is given for computing Stanley
decompositions. The result of the present note is an application of several
interesting techniques from algebraic combinatorics, including the classical
straightening algorithm, Stanley-Reisner rings and shellability of distributive
lattices. We wish to thank Paul Edelman and Michelle Wachs for helpful ideas
regarding this paper.

2. The construction.

We begin by considering Stanley decompositions arising from shellings of
simplicial complexes. See [3], [9], [10], [11] for details on shellings. The
square-free monomials in the polynomial ring K[x,, ..., x,] are identified with the
subsets of {x;,...,x,;}. The Stanley-Reisner ring of a simplicial complex 4 on
{xy,%3,..., X} is the quotient ring K[4]:= K[x,,...,x,]/1, where I is the ideal
generated by all (square-free) monomials not contained in 4.

LEMMA 1. Suppose that A is shellable and that (61,0,,...,06,,) is an ordering of

the facets of A arising from a shelling. Let n; be the unique minimal (with respect to
i-1

inclusion) face of &; which is not a face of the subcomplex U gj, fori=1,2,...,m.
i=1

Then

K[4] = ® 1Ko

is a Stanley decomposition of the Stanley-Reisner ring K[4].

Lemma 1 is an easy analogue to Kind & Kleinschmidt’s [10] and Garsia’s [9] -
constructive proof for the Cohen-Macaulayness of shellable complexes, and to
Stanley’s decompositions of diophantine rings in [12, Theorem 5.2]. Every
monomial peK[x,,...,x,] which is non-zero in K[4] appears in exactly sum-
mand 7; K[0;] in Lemma 1. The corresponding index i is the least integer such
that the face supp (u) is in the facet o;.

In order to apply Lemma 1 to the bracket ring B, ;, we need the following
definitions. A tableau T = [iy iy ...13,4][i2,102,2-- 12,4]-. [im1im,2 -+ imal €
K[A,4] is standard if i,, <i, .4, and i,, i+, for all r, s; otherwise T is
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non-standard. If we consider T as arectangular m x d-tableau, then T is standard
if its rows are increasing and its columns are non-decreasing. Let J, 4 = K[ 4, 4]
denote the monomial ideal generated by all non-standard tableaux.

In [14] we used the classical straightening algorithm to see that J, ,is the initial
ideal of the syzygy ideal I, ; with respect to a suitable term order on K[ 4, 4]. By
the results of [15], it suffices to find a Stanley decomposition for the ring
K[ A, 41/s.4- More precisely, [15, Lemma 2.6] implies that every Stanley decom-
position of K[ 4, ,]/J,.4 is automatically a Stanley decomposition of B,, 4.

Identifying the subsets of 4, ; with the square-free monomials of K[ 4, 4], the
set of (square-free) standard tableaux defines a simplicial complex 4, 4 on the set
A, 4. The Stanley-Reisner ring of 4,, ;equals the above monomial ring: K[ 4, ;] =
K[A,,41/J,.4- Using Lemma 1 it suffices to show that 4, , is shellable.

LeMMA 2. The simplicial complex 4,4 of square-free standard tableaux of
shape k by d (where k is necessarily less than or equal to d(n — d) + 1) is an
(n — d)d-dimensional shellable complex on the set A, 4 of brackets. The maximal
simplices of 4, 4 are in one-to-one correspondence with the standard tableaux of
shape d by n — d on d(n — d) distinct symbols.

ProOF. We define a partial order “<” on the set 4, 4 by setting
[iyiz.. 1] <[jij2..-Jad<>iy Sjrandi; S jr and... and iy < ji

The simplicial complex 4, 4 is the chain complex of the resulting poset (4,4, <)
and hence it suffices to show that the poset (4, ¢, <) is shellable.

Now, 4, 4 is a distributive lattice because it is the lattice of order ideals of the
poset C; x C,-4 (= the direct product of a d-chain and an (n — d)-chain).
Aresult of J. S. Provan [11, Section 3.4.2] states that every distributive lattrice is
shellable, and hence A, 4 is shellable.

The maximal chains of A4, 4 are in one-to-one correspondence with the linear
extensions of C; x C,_,, that is, with labelings of C; x C,_,4 with the integers
1,2,3,...,d(n — d) which respect the ordering, which are in turn the standard
d by n — d tableaux. The dimension of 4, 4 equals the length of the maximal
chainsin A, 4, which equals #(C; x C,-4) = d(n — d). The maximal simplices of
4, , are the maximal chains of A4, 4, and h, the number of such simplices, equals
the number of standard d by n — d tableaux, which may be computed by the
well-known hook-length formula of Frame, et. al. [8].

A general method for constructing shellings of distributive lattices (and other
classes of posets) has been given by A. Bjorner [3], namely by listing the chains in
lexicographic (or reverse lexicographic) order. We need to be even more explicit
and list the T7’s in order to get the Stanley decomposition, and the results of [3]
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yield also that information. The resulting construction is summarized in the
following Theorem.

THEOREM. Let 1,,7,,...,T, be alist of all standard d x (n — d) tableaux on the
symbols {1,2,...,d(n — d)}, given in the order t; before t; if the largest symbol in
which they differ is in an earlier row of t; than t;. The maximal simplex o; of 4,4
which corresponds to 1; is given by o;=B;o, Bii,..., Biin-ay where
Bio =1[1,2,...,d],and B; , is obtained from B, ; _, by increasing the(d + 1 — I)th
entry in the bracket B; ,_ by 1 if k occurs in the I-th row of t;. Define T; to be the
bracket monomial which is the product of the brackets B\ such that k occurs in
a later row of t; than k + 1, that is, such that k is in the descent set of t;. Then (1)
defines a Stanley decomposition of the bracket ring B, ;.
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Figure 1. The distributive lattice Ag, .
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PrOOF. We wish to provide an edge labeling of the (Hasse diagram of the)
distributive lattice A4, , which is an L-labeling in the sens of Bjorner, as follows. If
[j1sdzs---sjad covers [ji,jas. osfi—1sdi — Lji41s---»jad in A, 4, assign the label
(d + 1 — 1, j; — I)to the edge between them. We choose lexicographic total order-
ing on these labels, (1,1)<(1,2)<...<(Ln—-d) <2, 1) <...<(d,n—d).
Note that what we are really doing is giving a compatible linearly ordered
labeling to the underlying poset C; x C,_4, and using it to induce an edge
labeling of the lattice of ideals , 4, 4. This always gives an L-labeling of the
distributive lattice, and by Theorem 2.3 and Lemma 2.6 of Bjorner [3], the

Table 1. Stanley Decomposition of Bg 3

Standard Tableau Corresponding Summand

123.456.789 K[[123}, {124}, [125], [126}, [136], [146], [156), [256], [356], [456]] D
124.356.789 [135) K[[123),[124), [125], [135], [136], [146], [156], [256], [356], [456]] D
134.256.789 [134] K[[123], [124], [134], [135], [136], [146], [156], [256}, [356], [456]] D
125.346.789 [145] K[[123}, {124}, [125], [135), [145), [146], [156), [256], [356], [456]] D
135.246.789 [145][134) K[[123), [124], [134], [135], [145], [146], [156], [256], [356], [456]] D
123.457.689 [246] K[[123], [124], [125], [126], [136], [146], [246), [256], [356], [456])] D
124.357.689 [246][135] K[[123), {124}, [125], [135), [136], [146], [246), [256), [356], [456]] D
134.257.689 [246][134] K[[123), [124], [134], [135], [136], [146], [246], [256], [356], [456])] D
125.347.689 [246][145] K((123], [124], [125], {135}, [145], [146], [246], [256], [356], [456]] D
135.247.689 [246][145][134] K[[123), {124}, [134], [135], [145], [146], [246), [256], [356], [456]] D
123.467.589 [236] K[[123], [124], [125], [126], [136], [236], (246], [256], [356], [456]] D
124.367.589 [236][135] K[[123], [124], [125], {135], [136}, [236], [246], [256}, [356], [456]) D
134.267.589 [236]([134] K[[123], [124}, [134], [135], [136), [236), [246], [256], [356], [456]] D
125.367.489 [235) K[[123], [124], [125], [135], [235], [236], [246], [256], [356], [456]] D
135.267.489 [235][134] K[[123], (1241, [134], {135}, [235), [236], [246], [256}, [356], [456]) D
145.267.389 [234) K[[123], [124], [134], [234], [235), [236), [246], [256], [356], [456]) D
126.347.589 [245) K[[123], [124], [125], [135], [145], [245], [246], [256], [356], [456]] ©
136.247.589 [245][134] K{[1231, (124}, [134], [135], [145), [245], [246], [256], [356}, [456]]) D
126.357.489 [245][235] K[[123], {124}, [125], [135], [235], [245), [246), [256), [356], [456]] D
136.257.489 [245][235][134) K[[123], [124], [134], [135], [235], [245], [246], [256), [356], [456]] D
146.257.389 [245][234] K([[123], [124], [134], [234], [235], [245], [246}, [256], [356], [456]) D
123.458.679 [346] K{[123], [124], [125], [126], [136), [146], [246], [346], [356], [456]] D
124.358.679 [346][135) K[[123], [124], [125], {1351, [136], [146], [246], [346], [356], [456]] D
134.258.679 (346][134] K[[123], [124], [134], [135], [136], [146], [246}, [346], [356], [456]] D
125.348.679 [346][145] K{[123], [124], [125], [135], [145), [146], [246), [346], [356], [456]] D
135.248.679 [346][145][134] K[[123], [124], [134], [135], [145], [146], [246], [346], [356], [456]] ©D
123.468.579 [346][236] K[[123], [124], [125], [126], [136], [236], [246), [346], [356), [456]] ©
124.368.579 [346][236][135) K[[123], [124], [125]),[135), [136], [236], [246), [346], [356], [456]] D
134.268.579 [346][236] [134] K[[123], [124], [134], [135], [136], [236], [246], [346], [356], [456]] ©D
125.368.479 [346][235] K[[1231, {124}, [125], [135], [235], [236], [246], [346), [356], [456]] D
135.268.479 [346)[235][134) K[[123], [124),[134], [135), [235], [236], [246], [346), [356], [456] ®
145.268.379 [346][234] K[[123], [124], [134], [234], [235], [236], [246], [346], [356], [456] <]
126.348.579 [346] [245] K[[123], [124], [125], [135], [145], [245], [246}, [346], [356], [456] ®
136.248.579 [346][245][134] K[[123], [124), [134]), [135], [145], [245), [246], [346], [356], [456] ®
126.358.479 [346][245][235] K[[123], [124], [125], [135], [235], [245], [246], [346], [356], [456] ®
136.258.479 [346] [245](235]) [134] K[[123], [124], [134], [135], [235), [245}, [246], [346], {356}, [456] D
146.258.379 [346)[245]) [234) K[[123], [124), [134], [234], [235), [245], [246], [346], [356], [456] (5>}
127.348.569 [345] K[[123], [124], [125], [135], [145], [245], [345], [346], [356], [456] ®
137.248.569 [345][134] K[[123], [124], [134], [135], [145], [245], [345], [346], [356], [456] ®
127.358.469 [345][235) K[[123], [124), [125], [135], [235], [245), [345], [346], [356], [456] ®
137.258.469 [345][235][134] K[[123], [124], [134], [135], [235], [245], [345], [346], [356], [456] 53]
147.258.369 [345][234] K[[123], {124}, [134}, [234], [235], [245), [345], [346], [356), [456] ®
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lexicographic (with respect to the L-labeling) listing of chains o; of 4, , gives
a shelling of 4, ;. By an easy argument with a reversal of the order of the labels,
reverse lexicographic listing works equally well. Furthermore, #; in either case is
given by the descent set of g; relative to the L-labeling. Now we can check that the
listing of 7,,...,7, given in the statement of the Theorem results in the desired
reverse lexicographic listing of g4, ... 6,, and that n; gives T; as described. The
Theorem then follows from Lemma 1.

A similar theorem could be derived which constructs the lexicographic listing
of the chains. We close by illustrating our construction for the bracket ring B ;.
This is the smallest case not covered by the results in [6]. The labeling of C3 x C;
and the induced L-labeling of A 5 are given in Figure 1, with the labels replaced
by a,b,...,i. Using a LISP program, we computed a (reverse lexicographic)
shelling of the lattice A4 3. In Table 1, we list the standard 3 by 3 tableaux, and the
resulting summands in the Stanley decomposition of the bracket ring B¢, 3. The
tableaux are listed in the format 123.456.789 for the tableau with first row 1 2 3,
etc.
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