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ABSTRACT Recently, traffic prediction based on deep learning methods has attracted much attention.

However, there still exist two major challenges, namely, dynamic spatio-temporal dependences among

network-wide links and long-term traffic prediction for the next few hours. To address these two chal-

lenges, this paper proposes a spatio-temporal attentive neural network (STANN) for the network-wide

and long-term traffic prediction. The STANN captures the spatial–temporal dependences based on the

encoder–decoder architecture with the attention mechanisms. In the encoder, the STANN learns the

spatio-temporal dependences from historical traffic series using a recurrent neural network (RNN) with

long short-term memory (LSTM) units, in which a new spatial attention model is developed to consider

the contribution of each link to the network-wide prediction. In the decoder, the STANN exploits another

RNN with LSTM units and a temporal attention model to select the relevant and important historical

spatio-temporal dependences from the encoder for long-term traffic prediction. Finally, we conduct extensive

experiments to evaluate STANN on three real-world traffic datasets. The experimental results show that the

STANN is significantly better than other state-of-the-art models.

INDEX TERMS Spatio-temporal data, deep neural network, attention mechanism, traffic prediction.

I. INTRODUCTION

Reliable traffic prediction models are important for support-

ing dynamical transportation strategies and applications in

intelligent transportation systems. Techniques of traffic pre-

diction used to be studied for decades and can be gener-

ally divided into two groups: knowledge-driven models and

data-driven models. The knowledge-driven models attempt to

simulate a road network and explore the performances and

behaviors of the drivers in the road network [1]. In contrast,

the data-driven models often estimate the future traffic by a

mathematical model based on historical and current traffic

data. In terms of the prediction horizon, it is generally catego-

rized into two scales: short-term prediction (0 - 60 minutes)

and long-term prediction (over 60 minutes).

Most existing works apply the data-driven models to pre-

dict traffic for links in a road network. The early data-driven

models mainly include time series models (e.g., autore-

gressive integrated moving average model (ARIMA) [2])

and machine learning models (e.g., support vector regres-

sion (SVR) [3], and random forest (RF) [4]). With the

development of deep learning techniques, deep neural

networks (DNNs) have been extensively investigated for

traffic prediction. For example, the work [5] uses forward

neural networks to capture the non-linear properties for traffic

prediction. The references [6]–[8] utilize recurrent neural

networks (RNNs) that are inherently suitable for precess-

ing time series data. The literatures [9], [10] explore the

spatio-temporal dependencies of links with convolutional

neural networks (CNNs). The work [11] designs a resid-

ual neural network to capture the spatio-temporal dependen-

cies among links to predict traffic flow at next time step.

The study [12] learns the temporal dependency using the

encoder-decoder neural networks to predict the multi-step

ahead traffic speeds.

This paper focuses on addressing two major open

research challenges for traffic prediction. (1) Dynamic

spatio-temporal dependencies among network-wide links.

Some works focus on making traffic prediction for a single

link, i.e., ignoring the spatio-temporal dependencies among

links [5]–[8]. Other studies consider all links in the network,

but they statically view all links equally important [9]–[12].

Actually, the network traffic is often determined by some
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significant links or patterns which are dynamic over time.

For instance, some busy links play much more significant

influences on the road network and the links with free traffic

have less important influences. Thus, this challenge should

be addressed to achieve accurate network-wide traffic pre-

diction. (2) Long-term traffic prediction. Existing traffic

prediction models are not good for long-term prediction,

i.e., the prediction accuracy significantly reduces with the

increase of the prediction time horizon [10], [12], [13]. How-

ever, in many location-based applications, it is important to

predict long-term traffic conditions for better planning and

scheduling; hence, this challenge should be addressed for

traffic prediction.

To address the two above-mentioned challenges, we pro-

pose a Spatio-Temporal Attentive Neural Network (STANN)

based on the encoder-decoder architecture for the network-

wide and long-term traffic prediction. In the encoder, STANN

enhances the RNN with LSTM units by developing a spatial

attention model that aims to capture the spatial dependency

by considering the contribution of each link to the traffic of

the whole network. In the decoder, STANN applies another

RNN with LSTM units and a temporal attention model to

adaptively discover the important hidden states from the

encoder instead of choosing the last hidden state or simply

taking the average of all hidden states. In summary, our main

contributions can be stated as:
• We developed a new spatial attention model to capture

the dynamic spatial dependency by considering the con-

tribution of each link to network-wide traffic over time

in the encoder.

• We designed a temporal attention model to adaptively

choose important spatio-temporal information from the

encoder for long-term traffic prediction in the decoder.

• To the best of our knowledge, this is the first study

to utilize the encoder-decoder architecture with the

spatio-temporal attention models for network-wide and

long-term traffic prediction.

• We conducted extensive experiments on three real-world

traffic datasets to evaluate the proposed STANN. Exper-

imental results show that STANN significantly outper-

forms other state-of-the-art models.
The rest of this paper is organized as follows. Section II

reviews related literatures. Section III presents our prob-

lem definition. Section IV presents the proposed STANN

model for traffic prediction. Section V gives the evaluation of

STANN compared with the state-of-the-art models. Finally,

Section VI concludes this paper.

II. RELATED WORK

This section briefly reviews the related work about traffic

prediction and attention mechanism.

A. NON-DEEP LEARNING MODELS

Non-deep learning based models mainly include knowledge-

driven methods, time series models and machine learn-

ing models. Knowledge-driven models usually apply

queuing theory and present the dynamical traffic description

of the road network, e.g., visual interactive system for trans-

port algorithms [14], transportation analysis simulation sys-

tem [15] and tools for operational planning of transportation

networks [16]. Time series models focus on discovering the

patterns of the temporal variation of traffic data for prediction,

e.g., ARIMA [2] and Kalman filter [17], [18]. However, they

only depend on the traffic sequential data and ignore the

dynamic spatial dependency. Machine learning models pre-

dict the traffic based on the similarities between current data

and historical data, e.g., K-nearest neighbors (KNN) [19],

RF [4], and SVR [3], which achieve much better prediction

accuracy. However, they perform badly for long-term predic-

tion, especially on complex networks.

B. DEEP LEARNING BASED MODELS

DNNs are applied to traffic prediction due to their great

abilities of processing non-linear properties. For example,

the work [5] uses forward neural networks for traffic pre-

diction. An object-oriented dynamic neural network model

is designed for short-term traffic conditions prediction [20].

The study [21] proposes a neural network model with a

multi-layer structural optimization strategy for traffic flow

prediction. The theory of conditional probability and Bayes‘

rule are used to integrate the predictions from single neural

networks as the final traffic flow prediction [22].

Especially, RNNs are adopted for traffic prediction because

they are inherently suitable for processing time series

data [23]. However, RNNs suffer from the vanishing gradi-

ent problem that prevents them from learning the long-term

dependency. Some variants of RNNs, such as the RNN with

LSTM units [24] or gated recurrent units (GRU) [13], alle-

viate this problem using a gated mechanism. For example,

the study [6] uses LSTM for traffic speed prediction by

using the speed data from traffic microwave detectors. The

research [7] develops a three-layer LSTM to predict travel

times of highway links. The work [8] optimizes the structure

design and hyperparameter settings of deep learning models

for traffic prediction. Unfortunately, these studies only focus

on a single link and fail to consider the spatial correlations of

links over the road network.

There are also some studies considering the spatio-

temporal dependencies for network-wide traffic prediction.

For instance, the study [25] utilizes a deep belief network

for traffic prediction. A stacked auto-encoder model is pro-

posed to capture spatio-temporal correlations from the traffic

flow data [9]. The work [9] explores the spatial dependency

with CNNs over an image which is converted from the net-

work traffic. A Hetero-ConvLSTM model is developed for

traffic accident prediction on heterogeneous spatio-temporal

data [26]. STGCN [10] utilizes CNNs over graph struc-

tured traffic data to capture the spatio-temporal dependencies.

A residual network is designed to capture spatio-temporal

dependencies for traffic flow prediction [11]. DCRNN [12]

applies bidirectional random walks on the graph to capture

the spatial dependency and the encoder-decoder architecture
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TABLE 1. The important notations used in this paper.

to capture the temporal dependency. However, these stud-

ies equally consider all links in the network and some of

them use CNNs that perform poorly for long-term predic-

tion. To address them, our STANN applies a spatial attention

model to consider the contribution of each link with respect

to the whole network and a temporal attention model to select

the important spatio-temporal states from historical series

data.

C. ATTENTION MECHANISM

The encoder-decoder network is often used for sequence

prediction and consists of an encoder to map inputs to hid-

den states and a decoder to decode the hidden states for

making prediction [13]. Nonetheless, its performance will

degrade rapidly with the increasing length of the inputs [13].

To handle this problem, the attention mechanism has been

proposed for choosing important historical information and

firstly applied in the encoder-decoder network for machine

translation [27]. A few existing studies [12], [28] apply

the encoder-decoder network without the attention mech-

anism for traffic prediction, so their performances greatly

degrade with the increasing length of the inputs. Although

the work [29] considers the attention mechanism, it only

predicts the traffic of hotspots according to map queries.

In other words, it only focuses on the traffic of the links

that are near the query destinations or events. To this end,

in this paper we enhance the encoder-decoder architecture

for traffic prediction, by developing a spatial attention model

over network-wide links to capture spatio-temporal depen-

dencies in the encoder and designing a temporal attention

model to catch the long-term spatio-temporal dependencies

in the decoder.

III. PROBLEM DEFINITION

The key notations used in this paper are described in

TABLE 1. This section presents the preliminaries and the

studied problem.

A. PRELIMINARIES

A road network consists of N links, in which links are con-

nected by intersections. Each link generates a time series of

traffic speeds, represented by a row vector,

xi = (x i1, . . . , x
i
t , . . . , x

i
T
) ∈ R

T, (1)

where x it denotes the traffic speed of link i during time step t ,

and T denotes the current time step. The time series vectors

of all N links are concatenated along the first (i.e., row)

dimension into the speed matrix,

XN

T
= (x1; x2; . . . ; xN)⊤ ∈ R

N×T. (2)

The speed matrix can be also splitted into speed columns,

written as

XN

T
= (x1, . . . , xt , . . . , xT) ∈ R

N×T, (3)

where each column xt ∈ R
N denotes the traffic speeds during

time step t of all N links in the road network.

B. STUDIED PROBLEM

Given the historical speed matrix XN
T
for the whole road net-

work consisting of N links by the current time step T, the goal
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FIGURE 1. The architecture of STANN with two components: the encoder for modeling spatio-temporal dependencies and the decoder for
multi-step traffic prediction. e1, e2, . . . , eT are the output of the spatial attention model, see FIGURE 2; y1, y2, . . . , y

T′ are the outputs of
the temporal attention model, see FIGURE 3; h1, ht , . . . , hT and h′

1
, h′

2
, . . . , h′

T′
are the spatio-temporal hidden states in the encoder and

decoder, respectively; c1, ct , . . . , cT and c′

1
, c′

2
, . . . , c′

T′
are the cell states in the encoder and decoder, respectively.

is to predict the network-wide traffic speeds over the next T′

time steps, denoted as X̂N

T′ = (x̂T+1, . . . , x̂T+t ′ , . . . , x̂T+T′ ) ∈

R
N×T′

, or X̂N

T′ = (x̂1, . . . , x̂t ′ , . . . , x̂T′ ) ∈ R
N×T′

for short,

where x̂t ′ ∈ R
N is the predicted speeds for all links at the

time step T+ t ′, i.e., the t ′-th time step after T.

IV. SPATIAL-TEMPORAL ATTENTIVE NEURAL

NETWORK (STANN)

At first, this section describes the architecture of the proposed

STANNmodel in Section IV-A. Then we present the encoder

for modeling spatio-temporal dependencies and the decoder

for multi-step traffic prediction in Sections IV-B and IV-C,

respectively. Finally, the training procedure of STANN is

given in Section IV-D.

A. ARCHITECTURE OF STANN

Our proposed STANN applies the encoder-decoder architec-

ture, as shown in FIGURE 1. STANN consists of two main

components. (1) Encoder for modeling spatio-temporal

dependencies. The encoder applies a RNN with LSTM units

to capture the spatio-temporal dependencies from historical

traffic time series, as shown in the left part of FIGURE 1.

Compared to the existing works [10], [12], [30], we devise

a spatial attention model for the spatial dependency by con-

sidering the spatial attention weight vectors e1, e2, . . . , eT of

all links to the network-wide traffic. The weight vector et at

time step t is generated by the multilayer perceptron with

the last hidden state ht−1 and cell state ct−1 in the encoder

FIGURE 2. The spatial attention model in the encoder.

LSTM, see FIGURE 2. The spatio-temporal hidden states

(h1,h2, . . . ,hT) at all historical time steps are learned from

the encoder LSTM with the spatial attention weight vectors.

These hidden states serve as the inputs of the decoder com-

ponent for traffic prediction at future time steps. (2) Decoder

for multi-step traffic prediction. The main difference of our

STANN from the previous works [10], [12], [30] is that a

temporal attention model over the historical spatio-temporal

hidden states (h1,h2, . . . ,hT) is embedded into the decoder

that utilizes another RNN with LSTM units, as shown in

the right part of FIGURE 1. The temporal attention model

for long-term prediction provides the temporal context yt ′

which is a weighted combination of the spatio-temporal hid-

den states (h1,h2, . . . ,hT) from the encoder. The temporal
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attention weights are calculated by the multilayer perceptron

with the last hidden state h′
t−1 and cell state c′

t−1 in the

decoder LSTM, see FIGURE 3. In other words, the decoder

learns the future spatio-temporal states (h′
1,h

′
2, . . . ,h

′
T′ ) from

the relevant states (h1,h2, . . . ,hT) to predict the future traffic

X̂N

T′ for future T
′ time steps.

B. ENCODER FOR MODELING SPATIO-

TEMPORAL DEPENDENCIES

This study aims to predict the network-wide traffic speeds

for multiple future time steps. A simple method is to make

speed prediction for each link independently [7], [8] or con-

sider all links with equal weights [12]. In fact, these links

play different roles and their roles also change over time.

For example, at a time step some links have static traffic

conditions whereas other links show dynamic traffic condi-

tions, but at another time step these traffic conditions may

vary reversely. Moreover, these links show spatio-temporal

dependencies. For instance, the traffic speeds of upstream

links rely on the traffic conditions of downstream links, and

the downstream links propagate congestions to the upstream

links quickly.

Therefore, we consider the traffic conditions of all links

in the road network as a whole, and enhance the conven-

tional LSTM that is originally designed for learning temporal

dependency, by developing a spatial attention model in order

to simultaneously capture the spatio-temporal dependencies

over time, as depicted in FIGURE 2. Specifically, given the

previous cell state ct−1 ∈ R
M and hidden state ht−1 ∈ R

M of

LSTM for all links, the spatial attention model learns weight

of contribution of link i to the traffic of network-wide links at

t by the multilayer perceptron (MLP):

ait = v⊤
s tanh(Ws[ct−1;ht−1] + Us(x

i)⊤ + bs), (4)

where xi ∈ R
T is the traffic speed row vector of link i,

vs ∈ R
L, bs ∈ R

L, Ws ∈ R
L×2M and Us ∈ R

L×T

are the model parameters, L and M are the dimensions of

the spatial attention model and encoder LSTM, respectively.

The obtained attention ait adaptively catches the importance

of link i to the traffic of the network. The spatial attention

weights of all links are normalized into [0, 1] using a softmax

function tomake the sum of all attention weights equal to one:

αit =
exp(ait )

6N

j=1exp(a
j
t )

. (5)

Then, all spatial attention weights are concatenated as a col-

umn vector:

et = (α1
t , α

2
t , . . . , α

N

t )
⊤, (6)

which implies the spatial dependencies on significant traffic

links at time step t . For example, if there are congestions in

the upstream links or the downstream links, it will pay more

attention to such links since they make large impacts on the

network-wide traffic.

The enhanced LSTM generates next cell state ct ∈ R
M and

hidden state ht ∈ R
M by the following steps [24]:

ft = σ (Wf [ht−1; xt ; et ] + bf ), (7)

it = σ (Wi[ht−1; xt ; et ] + bi), (8)

ot = σ (Wo[ht−1; xt ; et ] + bo), (9)

ĉt = tanh(Wc[ht−1; xt ; et ] + bc), (10)

ct = ft ⊗ ct−1 + it ⊗ ĉt , (11)

ht = ot ⊗ tanh(ct ), (12)

where Wf , Wi, Wo, Wc ∈ R
M×(M+2N) and bf , bi, bo,

bc ∈ R
M are the parameters of the forget gate, input gate,

output gate and memory cell, respectively, σ is the sigmoid

function, tanh is the hyperbolic tangent function, ⊗ denotes

the element-wisemultiplication,M is the dimension of LSTM,

and N is the number of links in the road network.

It is worth emphasizing that: (1) The improved LSTM

still utilizes forget gate, input gate, output gate and memory

cell to control the passing of information at each time step

and catch the long-term temporal dependencies in the traffic

speed time series of all links. (2) The LSTM also exploits

the spatial attention model to capture the spatial dependen-

cies at the same time. (3) The LSTM outputs a sequence

of hidden states (h1, . . . ,ht , . . . ,hT) that have encoded the

spatio-temporal dependencies at different time steps and

are used for multi-step traffic prediction, as presented in

Section IV-C.

C. DECODER FOR MULTI-STEP TRAFFIC PREDICTION

To predict the traffic speeds of multiple future time steps,

the traditional decoder with LSTM [13] can be used to

decode the hidden state sequence (h1, . . . ,ht , . . . ,hT) into a

fixed-length target sequence. Unfortunately, its performance

will degrade rapidly with the increasing length of the inputs.

Therefore, this paper improves the decoder with a temporal

attention model, as depicted FIGURE 3. It can adaptively dis-

cover the important hidden states throughout all previous time

steps instead of choosing the last hidden state or simply taking

the average of all hidden states. In other words, the attention

model learns the weights of all hidden states and retrieves

FIGURE 3. The temporal attention model in the decoder.
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their weighted sum to capture the dynamical temporal corre-

lations between future and historical time steps.

Specifically, given the previous cell state c′
t ′−1 ∈ R

P

and hidden state h′
t ′−1 ∈ R

P of the LSTM in the decoder,

the traffic correlation between the t ′-th future time step and

the t-th historical hidden state ht ∈ R
M is measured by

multilayer perceptron,

dt ′,t = v⊤
d tanh(Wd [c

′
t ′−1;h

′
t ′−1] + Udht + bd ), (13)

where vd ∈ R
Q, bd ∈ R

Q, Wd ∈ R
Q×2P, and Ud ∈ R

Q×M

are the model parameters, P and Q are the dimensions of

the LSTM decoder and the temporal attention model, respec-

tively. Similarly, the attention weights of all historical hidden

states are normalized into [0, 1] using a soft-max function to

make all weights sum to one:

βt ′,t =
exp(dt ′,t )

∑

T

t ′′=1 exp(dt ′,t ′′ )
. (14)

Then the temporal context vector yt ′ is calculated by the

weighted sum of all historical hidden states, given by

yt ′ =

T
∑

t=1

βt ′,tht . (15)

With the temporal attention model, we get the temporal

context vector yt ′ at the future time step t ′. yt ′ is fur-

ther concatenated with the last output of the decoder x̂t ′−1

to update the hidden state h′
t ′ of the decoder, concisely

written as:

h′
t ′ = LSTMdecoder (h

′
t ′−1, [x̂t ′−1; yt ′ ]). (16)

Note that the update steps are similar to Equations (7) to (12).

Finally, the context vector yt ′ ∈ R
M and hidden state h′

t ′ ∈ R
P

are concatenated to predict the traffic speeds x̂t ′ ∈ R
N of all

links at the future time step t ′, based on a fully connected

layer (FCL), given by,

x̂t ′ = ReLu(Wx[yt ′;h
′
t ′ ] + bx), (17)

where ReLu is the activation function [31], Wx ∈ R
N×(M+P)

and bx ∈ R
N are the model parameters.

D. TRAINING

We here present the training procedure of the proposed

STANN. The pseudo-code of STANN is presented in

Algorithm 1. The model is trained end to end. We utilize the

Adam optimization algorithm [32] to minimize the loss func-

tion of Mean Square Error (MSE) for the predicted sequence

X̂N

T′ = (x̂T+1, . . . , x̂T+t ′ , . . . , x̂T+T′ ) ∈ R
N×T′

and the true

sequence XN

T′ = (xT+1, . . . , xT+t ′ , . . . , xT+T′ ) ∈ R
N×T′

,

on the road network.

Loss(2) =
1

NT′
‖X̂N

T′ − XN

T′‖
2, (18)

where 2 represents the set of model parameters to be learned

in the training procedure, including all parameters in LSTM,

vs ∈ R
L, bs ∈ R

L, Ws ∈ R
L×2M and Us ∈ R

L×T in the

Algorithm 1 Pseudo-Code for Training Procedure of

STANN

Input: Training data including historical data XN
T
and

future ground truth XN

T′ , all hyperparameters;

Output: Learned STANN model;

Initialization: All training parameters 2 in STANN;

for each epoch do

Shuffle training data;

for each batch of XN
T
in training data do

// Encoder for modeling spatio-temporal

dependencies from historical data;

for t = 0 to T do
Spatial attention model → et in

Equation (6);

Encoder LSTM units with xt and et → ht ,

ct ;

end

// Decoder for multi-step traffic prediction;

Initial decoder hidden state: h′
0 = cT;

for t ′ = 0 to T′ do
Temporal attention model → yt ′ in

Equation (15);

Decoder LSTM units with xt ′−1 and yt ′ →

h′
t ′ ;

A FCL with h′
t ′ and yt ′ → x̂t′ ;

end

Optimize 2 by minimizing Equation (18);

end

end

spatial attention model (Equation (4)), vd ∈ R
Q, bd ∈ R

Q,

Wd ∈ R
Q×2P, and Ud ∈ R

Q×M in the temporal attention

model (Equation (13)) and Wx ∈ R
N×(M+P) and bx ∈ R

N in

the fully connected layer (Equation (17)) for final prediction.

V. EXPERIMENTS

We first describe the experimental settings in Section V-A

and the models compared with STANN in Section V-B.

Experimental results are presented and analyzed in

Sections V-C, V-D, V-E, and V-F.

A. EXPERIMENTAL SETTINGS

1) DATASETS

In this study, we conduct experiments over three traffic

datasets (HK-KL, ST, TM) in Hong Kong to evaluate the

performance of STANN. Hong Kong consists of three main

regions, Hong Kong Island (HK), Kowloon Peninsula (KL),

and New Territories (NT), as shown in FIGURE 4. We col-

lected the traffic data from the Traffic Speed Map sys-

tem (TSM) supported by the transportation department of

Hong Kong.1 TSM provides the traffic speeds of major routes

and urban roads in the three regions. There are 605 spe-

cific links with real-time traffic speeds, in which there are

1http://resource.data.one.gov.hk/td/speedmap.xml
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FIGURE 4. The three main regions (i.e., Hong Kong Island, Kowloon
Peninsula, and New Territories) in Hong Kong.

440 links (speed limit larger than 50 kilometer per hour) and

165 links (speed limit less than 50 kilometers per hour). The

traffic speed is calculated by an on-line estimator using three

types real-time data (auto-toll tag data, GPS data, video image

processing data) and an off-line estimator using annual statis-

tical traffic data [33], [34]. The traffic speed of each link is

updated every two minutes. Since the traffic speeds are from

urban areas, the complex traffic environment would have a

great impact on the traffic speed, which may make the traffic

speed varies a lot. To make the traffic speed predictable,

we sample the traffic speed per 10 minutes using the average

speed for each link.

FIGURE 5. Road networks of three datasets in Hong Kong.

The dataset HK-KL contains the traffic data in HK and KL.

As Sha Tin (ST) and Tuen Mun (TM) are located in NT,

datasets ST and TM denote the traffic data in ST and TM,

respectively. Note that we consider them as three datasets

because there are no available traffic speed information on the

links connecting them, as depicted in FIGURE 5. The dataset

details are shown in TABLE 2. Each dataset is segmented

into three parts based on the timestamp: the first 70% for

training, the next 20% for validation, and the remaining 10%

for testing.

TABLE 2. Details of datasets.

2) EVALUATION METRICS

To evaluate the performance of traffic prediction, we use

three standard metrics including Root Mean Squared

Error (RMSE), Mean Absolute Error (MAE), and Mean

Absolute Percentage Error (MAPE). Their definitions are as

follows:

MAE =
1

N

N
∑

i=1

‖x̂i − xi‖1, (19)

RMSE =

√

√

√

√

1

N

N
∑

i=1

(x̂i − xi)2, (20)

MAPE =
1

N

N
∑

i=1

|
x̂i − xi

xi
| × 100, (21)

where N is the size of the testing set, xi and x̂i are the ground

truth and the predicted value, respectively. For these three

metrics, smaller values indicate better performance.

3) HYPERPARAMETER SETTINGS

We set the length of window T to 12 steps (i.e., T = 12),

namely, the traffic conditions of past 120 minutes are used

to predict the traffic conditions in the next 30, 60, 90 and

120 minutes (T′ = 3, 6, 9, 12). To capture the spatio-temporal

dependencies of the whole road network, we set the size

of hidden states to the number of links for each dataset as

shown in TABLE 2, i.e., M = N. The number of LSTM

layers in both the encoder and decoder is set to 2, where

we also set P = N and L = Q = T. We train the model

using the Adam optimization algorithm [32], in which we set

the learning rate to 0.001, dropout rate to 0.1, batch size to

128 and epoch to 100.

B. COMPARED MODELS

We compare STANN with the following models, and tuned

the parameters for them.

• SVR [3]: SVR is a well-known machine learning

method. We use Radial Basis Function kernel for train-

ing, in which the kernel coefficient is set to 0.1.

• RF [4]: RF is an ensemble learning method. We use

it for regression to predict the future traffic. In the RF

model, 10 trees without maximum depth are built. The

minimum number of samples required to split an internal

node is 128 and random state is 2.
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TABLE 3. Performance comparison of different models on dataset ST.

TABLE 4. Performance comparison of different models on dataset TM.

TABLE 5. Performance comparison of different models on dataset HK-KL.

• Seq2seq [30]: SeqSeq is also an encoder-decoder net-

work which uses a RNN as the encoder to map the input

sequences into hidden states and another RNN as the

decoder to decode the hidden states for prediction. Both

the encoder and decoder are two LSTM layers in the

experiments; in each LSTM layer, the number of the

neural units is the number of links in the road network,

the learning rate is 0.0001, and epoch is 70.

• STGCN [10]: A deep learning framework for traf-

fic prediction with spatio-temporal graph convolutional

neural networks. The channels of the three layers in

ST-Conv block are 64, 16, and 64. The kernel size in

both the graph convolution and temporal convolution

is set to 3. STGCN is trained by minimizing the MSE

using RMSprop optimizer for 50 epochs with batch size

as 50. The initial learning rate is 0.001 with a decay rate

of 0.7 after every 5 epochs.

• DCRNN [12]: A deep learning framework for traffic

prediction with diffusion convolutional recurrent neural

network. DCRNN is trained by minimizing the MAE

with Adam optimizer. In both the encoder and decoder,

there are two LSTM layers, each with 64 units. The

initial learning rate is 0.01, and then it is reduced to 10%

every 10 epochs starting at the 20th epoch. The size of

convolution kernel is set to 3. The batch size is set to 64.

The maximum epoch is 100 and the early stop is applied

by monitoring the validation error.
We use Scikit-Learn library2 to implement SVR and RF in

Python. Since SVR and RF can only predict the traffic speed

for a single link we train a model for each link and report

their average performances on all links. Besides, all compared

deep learning models are implemented by TensorFlow which

is an open source library.3

C. OVERALL COMPARISON

TABLE 3, 4, and 5 present the results of all evaluated mod-

els for predicting the traffic speeds of next 30, 60, 90, and

120 minutes on the three datasets. In general, deep learning

2https://scikit-learn.org
3https://www.tensorflow.org
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TABLE 6. Comparison for STANN, SANN and TANN on dataset HK-KL.

based models, including Seq2seq, DCRNN, and STGCN out-

perform traditional machine learning models, including SVR

and RF, which emphasizes the role of temporal dependency.

More importantly, STANN achieves the best performance in

terms of all the metrics for all prediction horizons, in all three

datasets, especially for long-term prediction. This implies the

effectiveness of our STANN with the spatial and temporal

attention mechanisms.

Following, we analyze the results in details: (1) On dataset

ST in TABLE 3, for 30-minute ahead prediction, although

DCRNN and STGCN are very close to our STANN according

to MAE, STANN improves the performance by 10.2% in

terms of RMSE and MAPE. For long-term horizon 120 min-

utes, STANN records the improvement of at least 17.86%

on MAE and 22.94% on RMSE compared to other evalu-

ated models. (2) On dataset TM in TABLE 4, at 30 min-

utes, STGCN achieves a very close MAE to STANN but

its performance is worse than our STANN. At 120 minutes,

the improvements of STANN are about 14.86% on MAE

and 24.81% on RMSE in comparison with all other models.

(3) Compared to ST and TM, HK-KL is much more chal-

lenging due to its complex environments (HK and KL are

located in the urban center which have complicated traffic

conditions). Specifically, on dataset HK-KL in TABLE 5,

for 30-minute ahead prediction, STANN makes 6.11% and

17.32% improvements against the second best STGCN on

MAE and RMSE, respectively; for 120-minute ahead predic-

tion, there are 11.26% improvements on MAE and 25.48%

on RMSE over DCRNN. (4) The advantage of STANN

becomesmore clearer with the increase of the prediction hori-

zon, which verifies the advantage of STANN with attention

mechanisms.

Note that traffic prediction is more challenging on dataset

HK-KL than datasets ST and TM; therefore, HK-KL is the

default dataset for following experiments.

D. COMPARISON OF VARIANTS

To evaluate the effects of spatial attention and temporal

attention in STANN, we compare it with its two variants as

follows:

• TANN: There is no the spatial attentionmechanism from

STANN.

• SANN: There is no the temporal attention mechanism

from STANN.

TABLE 6 shows the comparison in terms of RMSE,

MAE and MAPE of the three models for different

FIGURE 6. Comparisons of MAEs on dataset HK-KL during rush hours.

prediction horizons. We can see that STANN outperforms its

variants in all metrics for all horizons, which indicates the

important roles of the spatial and temporal attention mech-

anisms. Specifically, compared to SANN without temporal

attention, STANN reduces RMSE and MAE at the horizon

of 30-minute by 6.1% and 5.75%, respectively. Moreover,

STANN records over 10% improvement on RMSE and MAE

at 60, 90, and 120-minute ahead prediction, which means

that its temporal attentionmechanism capturing the important

hidden temporal states from historical inputs improves the

performance for long-term traffic prediction. On the other

hand, TANN is slightly better than SANN and much worser

than STANN at all horizons, since TANN ignores the spatial

dependencies of network-wide links while SANN does not

consider the temporal attention among historical time steps

for long-term traffic prediction. Therefore, the two attention

mechanisms are important for network-wide and long-term

traffic prediction.

E. COMPUTING PERFORMANCE

We compare the training time and testing time of the proposed

STANNwith that of the three compared deep learningmodels

(i.e., Seq2seq, DCRNN and STGCN) and its two variants

(i.e., SANN and TANN) on the three datasets. To achieve

fair comparison, we fix the same batch size as 128 for the

all five models. The training time and testing time are pre-

sented in TABLE 7 and 8. Seq2Seq has the best computing

performance for both training and testing since it is simply
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FIGURE 7. Traffic speed curves of ground truth and predictions during a whole day. (The link is located in
Canal Road Flyover, Hong Kong Island).

FIGURE 8. Traffic speed curves of ground truth and predictions during a whole day. (The link is located in
Kai Tak Tunnel, Kowloon Peninsula).

TABLE 7. Training time consumption (minutes).

composed of RNNs. It is clear that both the training time

and testing time of DCRNN are much higher than the rest

four compared models over all the three datasets. STGCN

takes the second large training time and testing time among

these five models for each dataset. Compared to computing

performances of STGCN and DCRNN, STANN has clearly

superior. On the other hand, STANN is slightly slower than

its two variants and Seq2seq as it contains more information

for training; the differences of testing time consumption are

not clarified among these four models.

TABLE 8. Testing time consumption (seconds).

F. COMPARISON DURING RUSH HOURS

As traffic prediction during rush hours is much more

challenging than other hours, we consider the performances

during the morning rush hours and evening rush hours,

i.e., 7am - 10am and 4pm - 7pm. Due to similar results,

we only present the performance on MAE and omit that on

RMSE and MAPE.

FIGURE 6 shows the comparisons of STANNwith the two

state-of-the-art models (i.e., DCRNN and STGCN) and its

two variants (i.e., SANN and TANN) in terms of MAE for
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different prediction horizons during the rush hours. From the

observations in FIGURE 6, at first, it indicates that STGCN

and DCRNN achieve best on MAE among all the five evalu-

ated models at 30-minute horizon. However, they are slightly

better than the proposed STANN. Then, we observe the sim-

ilar result: the advantage of STANN is more significant with

the increase of horizon, which further proves the superiority

of STANN during rush hours. On the other hand, we can

observe that the performances of its two variants TANN and

SANN are better than that of STGCN whereas worser than

that of STANN during rush hours at 60, 90, and 120-minute

horizons; and MAE of DCRNN is slightly better than that

of SANN and TANN but worser than that of STANN. Mean-

while, the margins between SANN or TANN and STANN are

much clearer especially at 90 and 120-minute horizons, which

further demonstrates the effectiveness of the two attention

mechanisms. STGCN has the worst performances at 60, 90,

and 120-minute horizons among all the evaluatedmodels, due

to its weakness of capturing temporal dependency. For exam-

ple, FIGURE 7 and 8 show curves of 2-hour ahead prediction

of two links on Canal Road Flyover and Kai Tak Tunnel in

HongKong onMay 8, 2018, respectively. It is obvious that the

curves at non-rush hours are relatively consistent. However,

during rush hours, it suggests that STANN can better catch

the start point and end point of rush hours and has the smaller

error than other state-of-the-art models. Therefore, the experi-

mental results further emphasize the importance of the spatial

and temporal attention mechanisms in STANN during rush

hours.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed the Spatio-Temporal Attentive

Neural Network (STANN) based on the encoder-decoder

architecture for the network-wide and long-term traffic pre-

diction. We first developed the spatial attention model to

enhance the encoder for learning the spatio-temporal depen-

dencies among network-wide links. Then we designed the

temporal attention model to adaptively select important

spatio-temporal hidden states throughout historical time steps

in the decoder for multi-step and long-term traffic prediction.

We evaluated STANN on the three real-world traffic datasets.

Experimental results show it outperforms other state-of-the-

art models, especially for long-term prediction, even during

rush hours.

As we predict the network-wide network traffic, one lim-

itation is the dimension of the spatial attention vector will

be large as the network size is large. One intuitive solu-

tion is to segment the network into multiple sub-networks.

We have two future research directions. First, the external

factors (e.g., geographical features, point of interests, and

weather) which have impacts on the traffic condition will be

embedded into the new model for higher prediction accuracy.

Second, we will consider the predicted traffic in real world

applications. For instance, leveraging the predicted traffic

condition in logistics system can reduce the cost for logistics

companies.
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