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Staphylococcus aureus is a major cause of nosocomial and community-acquired infections
and represents a significant burden on the healthcare system. S. aureus attachment
to medical implants and host tissue, and the establishment of a mature biofilm, play
an important role in the persistence of chronic infections. The formation of a biofilm,
and encasement of cells in a polymer-based matrix, decreases the susceptibility to
antimicrobials and immune defenses, making these infections difficult to eradicate. During
infection, dispersal of cells from the biofilm can result in spread to secondary sites
and worsening of the infection. In this review, we discuss the current understanding
of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and
newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential
applications of dispersal in the treatment of biofilm-mediated infections.
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STAPHYLOCOCCUS AUREUS BIOFILMS AND INFECTION
Staphylococcus aureus is a Gram-positive human commensal that
persistently colonizes the anterior nares of approximately 20–
25% of the healthy adult population, while as many as 60% are
intermittently colonized (Eriksen et al., 1995; Hu et al., 1995;
Kluytmans et al., 1997; Ellis et al., 2014). Studies have linked
S. aureus nasal colonization to an increased risk of infection
(Dall’Antonia et al., 2005; Ellis et al., 2014). As evidence, 65%
of people with S. aureus infections are colonized with the same
strain, whereas the percentage jumps to 80% in nosocomial infec-
tions (Weinstein, 1959; von Eiff et al., 2001; Wertheim et al.,
2004). The infections that result are quite diverse, and can include
acute infections, such as bacteremia and skin abscesses, that are
generally caused by planktonic cells through the production of
secreted toxins and exo-enzymes (Gordon and Lowy, 2008). In
contrast, chronic infections are associated with a biofilm mode
of growth where S. aureus can attach and persist on host tis-
sues, such as bone and heart valves, to cause osteomyelitis and
endocarditis respectively, or on implanted materials, such as
catheters, prosthetic joints, and pace makers (Parsek and Singh,
2003; Kiedrowski and Horswill, 2011; Barrett and Atkins, 2014;
Chatterjee et al., 2014). Implanted materials become coated with
host proteins upon insertion, and the matrix-binding proteins on
the surface of S. aureus facilitate attachment to these proteins and
development of a biofilm (Cheung and Fischetti, 1990; Francois
et al., 1996). In cases of infected medical devices, removal of the
device is often necessary to treat the infection (Darouiche, 2004).

A biofilm is defined as a sessile microbial community in which
cells are attached to a surface or to other cells and embedded in
a protective extracellular polymeric matrix. This mode of growth
exhibits altered physiologies with respect to gene expression and
protein production (Parsek and Singh, 2003; Archer et al., 2011;
Kiedrowski and Horswill, 2011). Biofilm developmental stages

have been defined by many and can be divided into at least
three major events: initial attachment, biofilm maturation, and
dispersal (Figure 1A). During initial attachment, an individual
planktonic cell will reversibly associate with a surface, and if
the cell does not dissociate, it will bind irreversibly to the sur-
face. Attachment is mediated through surface proteins, referred
to as microbial surface components recognizing adhesive matrix
molecules (MSCRAMMs) (Foster et al., 2014). During infection,
these proteins play major roles in attachment to host factors
such as fibrinogen, fibronectin, and collagen. Biofilm matura-
tion occurs through cell division and the production of the
extracellular polymeric matrix. The composition of the biofilm
matrix varies between strains, but in general can contain host
factors, polysaccharide, proteins, and extracellular DNA (eDNA)
(Montanaro et al., 2011; Cue et al., 2012; Foster et al., 2014).
Following biofilm accumulation, cells within the biofilm can reac-
tivate to a planktonic state through dispersal (Boles and Horswill,
2011). The major mechanisms of S. aureus dispersal will be
explored in this review.

Growth in a biofilm plays an important role during infec-
tion by providing a defense against several clearance mechanisms.
The biofilm matrix can impede the access of certain types of
immune defenses, such as macrophages, which display incom-
plete penetration into the biofilm matrix and “frustrated phago-
cytosis” (Scherr et al., 2014). Additionally, biofilm cells display
increased tolerance to antibiotics (de la Fuente-Nunez et al.,
2013). In contrast to heritable antibiotic resistance mechanisms,
biofilm-associated antibiotic tolerance is a transient state in which
normally susceptible bacteria enter an altered physiology that
decreases sensitivity. When these cells disperse and reenter a
planktonic state, they regain normal antibiotic sensitivity (Singh
et al., 2009). One suggested mechanism for this phenomenon
is that the biofilm matrix blocks access to actively growing
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FIGURE 1 | (A) Model of S. aureus biofilm growth cycle. In summary, upon
coming into contact with a surface, planktonic cells attach through
surface-associated proteins. Following attachment, cells divide and begin
production of the extracellular matrix, which leads to the formation of a
microcolony. As cell division continues, biomass accumulates and a mature
biofilm is formed. Environmental signals within the biofilm trigger the
activation of dispersal mechanisms, and upon dispersal, cells re-enter a
planktonic growth state and can seed new sites for biofilm formation. (B)

Treatment of a S. aureus biofilm. Antibiotic exposure will kill susceptible
planktonic cells and metabolically active cells near the surface of the
biofilm. However, persister cells and metabolically dormant cells within the
biofilm survive and remain protected from immune defenses by the biofilm
matrix. Treatment with dispersal agents increases the effectiveness of
antibiotic penetration and promotes clearance. Antibiotic sensitive cells
within the biofilm are exposed and killed after degradation of the matrix,
and the antibiotic tolerant cells (such as persisters) survive and are
susceptible to the immune system.

cells within the biofilm by decreasing antibiotic diffusion rates.
However, this mechanism is dependent on the type of antibiotic,
as certain antibiotics are capable of penetrating the biofilm (Singh
et al., 2010). An alternative proposal is that antibiotic tolerance is
due to the development of physiologically dormant persister cells
that form stochastically during biofilm growth (Lewis, 2010). Due
to their decreased metabolic activity, they are inherently resistant
to antibiotics. Furthermore, persister cells develop at greater rates
within a biofilm than within actively growing planktonic cultures
(Singh et al., 2009). As such, they are thought to play a large role
in the recalcitrance of biofilm-associated infections.

Beyond offering resistance to clearance mechanisms, biofilms
also play an important role in the progression of chronic diseases.
Following the establishment of a biofilm, individual cells can dis-
perse from the original biofilm and either seed new sights of

infection or mediate an acute infection such as sepsis (Costerton
et al., 1999). The role played by the S. aureus quorum sensing sys-
tem during dispersal supports this model (Boles and Horswill,
2008; Lauderdale et al., 2010). Dispersal has been the focus of
many recent studies due to its importance in chronic infections
and the biofilm model of growth, and an analysis of major disper-
sal mechanisms has led to the development of dispersal-mediated
treatment options for biofilm infections (Kaplan, 2010; Boles
and Horswill, 2011). This review discusses the major mecha-
nisms for S. aureus biofilm dispersal. In addition, it analyzes
the potential for developing dispersal-mediated treatments for
biofilm infections (Figure 1B).

THE STAPHYLOCOCCUS AUREUS BIOFILM MATRIX
The S. aureus biofilm matrix is a complex glue that encases all
of the cells in the mature structure, and it is thought to be com-
posed of host factors, secreted and lysis-derived proteins, polysac-
charide, and eDNA. The contribution of each of these factors
depends heavily on the strain background and on environmen-
tal conditions (Fitzpatrick et al., 2005; Abraham and Jefferson,
2012). Furthermore, the effectiveness of many dispersal mecha-
nisms is dependent on the matrix composition (Chaignon et al.,
2007; Izano et al., 2008). A brief background on the major com-
ponents of the biofilm matrix and factors involved in generating
these components will be provided.

A major constituent of the biofilm matrix is polysaccharide
intercellular adhesin (PIA), also known as polymeric N-acetyl-
glucosamine (PNAG) (O’Gara, 2007). PIA is an important com-
ponent in both S. aureus and S. epidermidis biofilms that is
produced by enzymes encoded in the icaADBC locus. PIA is
composed of β-1,6-linked N-acetylglucosamine polymer, and the
proteins encoded in the ica locus are responsible for the syn-
thesis, export, and modification of PIA. The PIA polymer plays
an important role in the structural integrity of biofilms in vitro
and in vivo, although numerous studies have identified S. aureus
strains capable of forming ica-independent biofilms (Beenken
et al., 2003; Fitzpatrick et al., 2005; Toledo-Arana et al., 2005;
Lauderdale et al., 2009; Brooks and Jefferson, 2014). The matrix
components of these biofilms were later identified as proteins and
eDNA (O’Neill et al., 2007, 2008; Rhode et al., 2007; Boles et al.,
2010), which function as intercellular adhesins in the absence
of PIA.

Many proteins have been implicated as important compo-
nents in attachment and biofilm matrix development. These
include surface-associated proteins such as protein A, fibrinogen-
binding proteins (FnBPA and FnBPB), S. aureus surface protein
(SasG), biofilm-associated protein (Bap), and clumping factor
B (ClfB) (Cucarella et al., 2001; Corrigan et al., 2007; O’Neill
et al., 2008; Merino et al., 2009; Geoghegan et al., 2010; Abraham
and Jefferson, 2012). Many of these factors play a role both in
attachment and accumulation. In addition, secreted proteins such
as extracellular adherence protein (Eap), and beta toxin (Hlb)
play a role in biofilm maturation (Huseby et al., 2010; Sugimoto
et al., 2013). However, the importance of individual proteins
varies largely between strains (Artini et al., 2013). For example,
Bap-dependent biofilms have not been identified in any human
isolates, and as such it is more likely that Bap plays a role in bovine
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mastitis (where it was originally identified) than in human dis-
eases (Lasa and Penades, 2006). In addition to dedicated matrix
proteins, intracellular proteins have been identified within the
biofilm matrix. These proteins are likely released by cell lysis
and nonspecifically incorporated into the matrix (Foulston et al.,
2014). The relative importance of lysis-derived proteins is not yet
understood.

The most recently identified and appreciated biofilm matrix
component is eDNA. Due to the negative charge of the DNA
polymer, eDNA potentially acts as an electrostatic polymer that
anchors cells to a surface, to host factors, and to each other.
Early biofilms are most sensitive to DNase treatment, suggest-
ing that eDNA may be important during attachment (Mann
et al., 2009). eDNA is produced through the autolysis of a sub-
population of the biofilm cells (Thomas and Hancock, 2009),
and this altruistic suicide is mediated through the activity of
murein hydrolases, encoded by the atl and lytM genes. Murein
hydrolases degrade peptidoglycan and typically play an important
role during cell wall rearrangements and cell division. Increased
expression of these enzymes allows for autolysis in S. aureus.
Autolysis is regulated through the activity of two operons, cidABC
and lrgAB, that function together in a manner similar to bacterio-
phage holin/antiholin systems (Sadykov and Bayles, 2012). CidA,
the holin in this system, oligomerizes in the cell membrane and
results in the formation of a pore that is utilized for the trans-
port of the murein hydrolase. LrgAB functions as the antiholin
and prevents the activity of CidA. Studies have indicated that the
regulation of autolysis is tied to micro-environmental niches that
form within a biofilm, such as the hypoxic conditions found near
the base of the biofilm (Moormeier et al., 2013).

There are some reported examples of interactions between
eDNA and specific proteins within the biofilm. The best charac-
terized example in S. aureus is beta toxin (Huseby et al., 2010),
which is a secreted neutral sphingomyelinase capable of lysing
erythrocytes and lymphocytes. However, it is structurally related
to the DNaseI superfamily of proteins and is able to bind DNA.
Beta toxin forms insoluble oligomers upon binding DNA that
could serve as a bridge to hold the biofilm structure together.
Deletion of the hlb gene correlates with a reduction in biofilm
formation in both in vitro and in vivo models. Additional stud-
ies have implicated that proteins with non-specific DNA-binding
activity may be important matrix components in multiple bac-
terial species, as antibodies against IHF, a common member of
the DNABII family of proteins, are capable of disrupting exist-
ing biofilms in in vitro and in vivo models (Goodman et al., 2011;
Novotny et al., 2013).

BIOFILM DISPERSAL MECHANISMS
The primary biofilm dispersal strategy utilized by S. aureus is the
production of various exo-enzymes and surfactants to degrade
the extracellular polymeric matrix. The effectiveness of individ-
ual mechanisms is highly dependent on the matrix composi-
tion of the S. aureus strain in question (Chaignon et al., 2007;
Kiedrowski et al., 2011). In general, mechanisms utilizing the
enzymatic self-destruction of either protein and/or eDNA in the
matrix are less effective at dispersing polysaccharide-dependent
biofilms. In contrast, the mechanisms specifically targeting PIA

are ineffective against polysaccharide-independent biofilms. In
this review, the dispersal mechanisms targeting each matrix com-
ponent will be discussed, with an emphasis on self-targeting
enzymatic mechanisms (Table 1), and two recently described fun-
damental processes with biofilm dispersing activity will also be
covered. Non-specific mechanisms, such as the surfactant activ-
ity of phenol-soluble modulins (PSMs), are effective against most
S. aureus biofilms and are reviewed elsewhere (Peschel and Otto,
2013).

ENZYMATIC DISPERSAL MECHANISMS
Protease-mediated dispersal
S. aureus produces 10 secreted proteases, including seven ser-
ine proteases (SspA and SplA-F), two cysteine proteases (SspB
and ScpA), and one metalloprotease (Aur) (Shaw et al., 2004).
The role of proteases in biofilm dispersal was initially charac-
terized during the analysis of S. aureus strains deficient in the
global regulators sarA and sigB (Bronner et al., 2004) that were
unable to form biofilm (Beenken et al., 2003; Trotonda et al.,
2005; O’Neill et al., 2008). Characterization of these mutants
revealed that the observed biofilm phenotypes resulted from ele-
vated protease activity levels (Tsang et al., 2008; Lauderdale et al.,
2009; Marti et al., 2010; Zielinska et al., 2012; Mootz et al., 2013).
The high protease activity results in the degradation of impor-
tant matrix proteins and destabilization of the biofilm (Zielinska
et al., 2012). This phenotype could be reversed by the deletion
of multiple protease genes or the addition of protease inhibitors
(McGavin et al., 1997; Tsang et al., 2008; Mootz et al., 2013).
The ability of the V8 serine protease (SspA), the staphopains
(SspB and ScpA), and aureolysin (Aur) to disrupt biofilms have
been demonstrated (Table 1), with the relative importance of each
varying between strains and conditions. The V8 serine protease
can degrade FnBPs and Bap (McGavin et al., 1997; O’Neill et al.,
2008; Marti et al., 2010), and aureolysin can degrade ClfB and Bap
to mediate biofilm disruption (Marti et al., 2010; Abraham and
Jefferson, 2012). While the staphopains can disrupt the biofilm
matrix, no target proteins have yet been characterized (Mootz
et al., 2013). Additional targets such as Atl, Spa, and SasG have
been proposed, but have not been linked to individual proteases
(Lauderdale et al., 2009; Kolar et al., 2013). Despite the identifi-
cation of some specific matrix proteins as targets for degradation,
the large number of proteases and potential matrix protein targets
will require proteomic analysis to dissect the complex mechanism
behind protease-mediated dispersal.

The production of proteases is positively regulated through the
S. aureus quorum sensing system, agr (Thoendel et al., 2011).
The agr system is activated upon detection of an autoinducing
peptide (AIP) that is encoded and produced by the agr operon.
The AIP is detected by a two-component system that regulates
virulence through the production of a regulatory RNA, RNAIII.
The agr system regulates the virulence state of the cell by acti-
vating the production of secreted toxins and enzymes and the
down-regulation of surface factors. The agr system induces the
expression of both proteases and PSMs, which act as surfactants
to disperse biofilms (Peschel and Otto, 2013). Thus, activation
of the agr system can result in a shift from a biofilm state to a
planktonic state of growth. This has been demonstrated through
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Table 1 | Biofilm dispersal mechanisms.

Dispersal agent Mechanism References Specific factor

Proteases Degradation of proteinaceous matrix
components

McGavin et al., 1997; O’Neill et al.,
2008

V8 protease (SspA)

Mootz et al., 2013 Staphopains (Cysteine Proteases)
Abraham and Jefferson, 2012 Aureolysin (Aur)
Marti et al., 2010 Aur, SspA
Lauderdale et al., 2010; Shukla and
Rao, 2013

Proteinase K

Beenken et al., 2003; Trotonda et al.,
2005; Tsang et al., 2008; Zielinska
et al., 2012

sarA regulation

Lauderdale et al., 2009 sigB, agr regulation

agr activation by AIP Expression of agr regulated factors
(proteases and PSMs)

Yarwood et al., 2004; Boles and
Horswill, 2008; Lauderdale et al., 2010

AIP

Phenol-soluble modulins Surfactant-mediated dispersal Peschel and Otto, 2013 PSMs

S. epidermidis Esp Degradation of proteinaceous matrix
components; inhibition of autolysis
through Atl degradation

Iwase et al., 2010; Chen et al., 2013;
Sugimoto et al., 2013

Esp

Nucleases Degradation of eDNA Kiedrowski et al., 2011 Nuc
Kiedrowski et al., 2014 Nuc2

Dispersin B Degradation of polysaccharide matrix
components

Kaplan et al., 2004; Donelli et al., 2007 DisB

D-amino acids Protein synthesis inhibition in B. subtilis,
unknown in S. aureus

Kolodkin-Gal et al., 2010; Hochbaum
et al., 2011; Leiman et al., 2013;
Sanchez et al., 2013

D-amino acids

Stringent response inhibition Unknown de la Fuente-Nunez et al., 2014;
Reffuveille et al., 2014

Peptide 1018

the addition of AIP to existing biofilms, which results in complete
dispersal (Boles and Horswill, 2008; Lauderdale et al., 2010), and
through the use of fluorescent reporters, which demonstrated that
cells detach from the biofilm after agr activation (Yarwood et al.,
2004).

In addition to native S. aureus proteases, recent studies have
indicated that the production of non-native proteases may impact
S. aureus biofilm growth in bacterial communities. The serine
protease Esp produced by S. epidermidis has been shown to dis-
perse S. aureus biofilms (Sugimoto et al., 2013). This was first
identified when it was observed that S. aureus colonization rates
of the human nares negatively correlate with colonization rates
of esp positive S. epidermidis (Iwase et al., 2010). Following this
discovery, it was shown that Esp is able to cleave an array of
S. aureus proteins, including Eap, FnBPA, and Atl (Chen et al.,
2013; Sugimoto et al., 2013). The mechanism of Esp-mediated
dispersal is thus two-fold: Esp degrades matrix proteins impor-
tant for intercellular adhesion and prevents the release of eDNA
by degrading murein hydrolase.

Nuclease-mediated dispersal
S. aureus produces two extracellular nucleases, referred to here
as nuclease (Nuc) and nuclease2 (Nuc2) (Tang et al., 2008).

The production of the major secreted Staphylococcal nuclease,
also known as micrococcal nuclease or thermonuclease, is con-
served across most clinical isolates and is produced in vivo. A
recent study utilized this fact and developed a nuclease-specific
probe for imaging S. aureus infections (Hernandez et al., 2014).
Nuclease is regulated by the global regulator sigB and the SaeRS
two-component system (Kiedrowski et al., 2011; Olson et al.,
2013), and the expression of nuc is greatly reduced during biofilm
growth conditions, suggesting that Nuc may play a role in the
biofilm growth cycle (Olson et al., 2013).

Two major roles have been proposed for Nuc during infection,
the disruption of neutrophil extracellular traps (NETs) and mod-
ulating biofilm development. It has been shown that the expres-
sion of nuclease results in reduced biofilm formation in vitro,
while a nuc mutant displays enhanced biofilm formation (Mann
et al., 2009; Kiedrowski et al., 2011). These phenotypes corre-
late with levels of eDNA accumulation during biofilm growth,
where lack of nuclease results in the preservation of high molec-
ular weight eDNA (Mann et al., 2009; Kiedrowski et al., 2011).
This agrees with an earlier study that found a minimum size of
11 kb fragments was necessary for biofilm integrity (Izano et al.,
2008). The second role proposed for nuclease during infection
is the evasion of NETs. NETs are a newly discovered killing
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mechanism utilized by neutrophils against bacterial infections.
Activated neutrophils secrete nuclear DNA at the site of infection
to entrap bacteria and enhance bacterial killing. Nuclease is able
to degrade NETs and promote resistance against killing by neu-
trophils (Berends et al., 2010; Thammavongsa et al., 2013). The
relative importance of each activity during infection has not yet
been explored. Overall, in vivo studies indicate that nuc mutants
are attenuated during infection (Berends et al., 2010; Olson et al.,
2013). However, it is unclear whether this attenuation results from
a reduced ability to disperse from a biofilm and disseminate to
new sites, an increased susceptibility to killing by neutrophils, or
the inability to scavenge nucleotides in the host. It is possible that
all these functions of nuclease are important during infection.

In contrast to nuclease, the function of Nuc2 is still relatively
unknown. This is in part due to the difficulty in studying Nuc2
in wild type backgrounds, as its activity is masked by Nuc. A
recent study has shown that Nuc2 is a membrane-bound nuclease
with an extracellular catalytic domain. Nuc2 activity is detectable
in a nuc mutant, but the activity is very low (Kiedrowski et al.,
2014). This is likely due to low expression levels, as mechanistic
studies demonstrated that the Nuc2 catalytic domain is func-
tional. Addition of purified Nuc2 was able to partially disperse
existing biofilms, suggesting that Nuc2 could play a role in local-
ized dispersal during infection. This localized dispersal could
result in the formation of channels within the biofilm or sup-
plement Nuc activity in high flow environments (such as those
seen during endocarditis) where Nuc would be unable to accu-
mulate. However, further studies will be necessary to determine
the function of Nuc2 in vivo.

Dispersin B-mediated dispersal
The enzyme dispersin B isolated from Actinobacillus actino-
mycetemcomitans is able to disperse polysaccharide-dependent
Staphylococcus epidermidis and S. aureus biofilms (Kaplan et al.,
2004). Dispersin B disrupts the biofilm by hydrolyzing the gly-
cosidic linkages of PIA. No homolog of dispersin B has been
identified in the S. aureus genome so it is unlikely the organ-
ism utilizes this mechanism for dispersal during biofilm growth.
However, treatment of biofilms with dispersin B does result in
increased susceptibility to antimicrobials (Donelli et al., 2007).
Thus, dispersin B could be developed as a potential anti-biofilm
treatment.

BROAD-SPECTRUM DISPERSAL MECHANISMS
D-amino acids
It has been reported that D-amino acids produced during late
stationary phase induce biofilm dispersal in multiple bacteria,
including S. aureus (Kolodkin-Gal et al., 2010). The role of
D-amino acids in dispersal was initially discovered in Bacillus
subtilis. The proposed mechanism behind this dispersal was the
incorporation of D-amino acids into the peptidoglycan, resulting
in a failure to attach the major matrix protein, TasA, to the cell
wall. Subsequently, this resulted in decreased intercellular adhe-
sion via the detachment of existing TasA fibers. This dispersal
mechanism was tested in additional bacterial species, including
S. aureus and P. aeruginosa, where a similar phenotype were
observed (Hochbaum et al., 2011).

However, a recent study has found that the effect of D-amino
acids observed in B. subtilis was due to a strain specific mutation
in the dtd gene (Leiman et al., 2013). dtd encodes a D-tyrosyl-
tRNA deacylase and is responsible for preventing the misincorpo-
ration of D-amino acids into protein. As such, the D-amino acid
biofilm dispersal effect observed in the dtd mutant was due to a
growth defect caused by interference with protein synthesis. The
impact of D-amino acids on S. aureus biofilm is therefore unclear
and requires further investigation. However, D-amino acids may
still offer clinical applications for the prevention of biofilm infec-
tions. It has been shown that pre-treatment of polymeric surfaces
with D-amino acids reduces S. aureus biofilm formation in vitro
(Hochbaum et al., 2011; Sanchez et al., 2013).

Stringent response
The stringent response is a general bacterial system triggered by
nutrient starvation that allows cells to adapt to stressful condi-
tions, such as those seen during infection (Srivatsan and Wang,
2008). During nutrient starvation, the alarmone ppGpp is pro-
duced by RelA/SpoT homologs and elicits regulatory changes
that switch the cell to a metabolically inactive state. Studies have
linked the stringent response to virulence and biofilm formation
in multiple bacterial species (Lemos et al., 2004; Nguyen et al.,
2011; Vogt et al., 2011; Chavez de Paz et al., 2012; He et al.,
2012; Wexselblatt et al., 2012; Sugisaki et al., 2013). In S. aureus,
evidence suggests the stringent response plays a role during infec-
tion (Geiger et al., 2010), but its impact on biofilm has not been
extensively studied.

A recent study identified a synthetic cationic peptide capable of
dispersing biofilms in a large number of clinically relevant bacte-
rial pathogens, including S. aureus, without inhibiting planktonic
growth (de la Fuente-Nunez et al., 2014). The peptide affected
both Gram-negative and Gram-positive organisms, implicating
that the peptide was targeting a general bacterial process. Further
investigation determined that the peptide was inhibiting the strin-
gent response through a direct interaction with ppGpp that
resulted in the degradation of the alarmone. This result indicates
that the metabolic state of the cell plays some role in disper-
sal. Additional research will be necessary to explore the role of
stringent response in S. aureus biofilm dispersal.

IMPLICATIONS FOR CLINICAL TREATMENT OF BIOFILM
INFECTIONS
Biofilm dispersal has drawn interest as a potential means of treat-
ing persistent S. aureus infections. The intentional dispersal of
a biofilm coupled with antibiotic therapy would expose and kill
metabolically active cells and render any remaining persister cells
vulnerable to the immune system (Figure 1B). Increased antibi-
otic susceptibility has been observed with most dispersal agents,
including many industrially produced enzymes such as dispersin
B, proteinase K, and DNaseI (Lauderdale et al., 2010; Kaplan et al.,
2012b; Shukla and Rao, 2013; Reffuveille et al., 2014). The efficacy
of dispersal-mediated treatments could potentially be improved
by the inclusion of a drug targeting persister cells (Conlon et al.,
2013). In addition to the treatment of existing infections, disper-
sal mechanisms could be utilized in the prevention of biofilm
formation associated with implanted medical devices. Several
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studies have found that pretreatment of polymeric surfaces with
dispersing agents can reduce biofilm formation in vivo (Donelli
et al., 2007; Sanchez et al., 2013). The slow release of dispersal
agents from the implanted device should prevent biofilm accu-
mulation and facilitate clearance of the bacteria by the immune
system. While these approaches sound promising, there are sev-
eral concerns that have not yet been thoroughly addressed. First,
induced dispersal could result in acute infections if the antibiotic
fails to eradicate the released cells. Sub-inhibitory concentra-
tions of certain antibiotics have been linked to enhanced agr
activation (Joo et al., 2010), which could accelerate an acute
response. Sub-inhibitory concentrations of β-lactams have also
been linked to the induction of eDNA release and biofilm for-
mation (Kaplan et al., 2012a), which could be counter-productive
when coupled with a dispersal agent. Embolisms resulting from
the release of cell clumps embedded in matrix components
represent another major concern. Studies will need to address
these challenges before dispersal agents are tested in a clinical
setting.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES
The ability to form a biofilm is an important virulence determi-
nant for the persistence of S. aureus chronic infections. In this
review, we focused on the strategies utilized by S. aureus to escape
from a biofilm through dispersal and disseminate to other body
sites. Ongoing research continues to improve our understand-
ing of the exo-enzymes and surfactants that degrade the biofilm
matrix and release cells into the surrounding environment. The
enzymes that have drawn the most attention are the secreted
cysteine proteases (staphopains), V8 serine protease (SspA), and
nuclease (Nuc). The relative importance of each enzyme will
depend on the strain-specific composition of the biofilm matrix.
The proteases and surfactant molecules are under agr quorum-
sensing control, and activation of this regulatory system is a
known dispersing mechanism.

Going forward, additional studies are necessary to fill spe-
cific knowledge gaps. The targets of the major proteases (V8,
Aur, staphopains) are still not fully described, although some
candidate surface proteins, like the FnBPs and ClfB, have been
identified. The function of Nuc in biofilm dispersal has not
been examined in detail. It is likely other exo-enzymes, such
as hyaluronidase and lipases, are also important in dispersal
mechanisms, but have not been fully investigated in biofilm
studies (Rosenthal et al., 2014). In addition to the matrix-
degrading mechanisms, it is possible that D-amino acids and
the stringent response may play a role in dispersal, but fur-
ther work is needed to better characterize these mechanisms.
Perhaps the area of greatest need is confirming dispersal mech-
anisms in relevant animal models of infection and testing
the efficacy of dispersal agents in treating biofilm infections.
Additionally, coupling these agents with antibiotic therapy to
facilitate clearance of a recalcitrant infection has received little
attention. Overall our knowledge of enzymatic dispersal mech-
anisms has expanded in recent years, but many details still
remain unclear. Further work on the topic will allow for the
development of better treatment options for biofilm-mediated
diseases.
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