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Neutrophils, complement system and skin collectively represent the main elements

of the innate immune system, the first line of defense of the host against many

common microorganisms. Bacterial pathogens have evolved strategies to counteract all

these defense activities. Specifically, Staphylococcus aureus, a major human pathogen,

secretes a variety of immune evasion molecules including proteases, which cleave

components of the innate immune system or disrupt the integrity of extracellular matrix

and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can

activate host zymogens which, in turn, target specific defense components. Secreted

proteins can also inhibit the anti-bacterial function of neutrophils or complement system

proteases, potentiating S. aureus chances of survival. Here, we review the current

understanding of these proteases and modulators of host proteases in the functioning

of innate immunity and describe the importance of these mechanisms in the pathology

of staphylococcal diseases.

Keywords: Staphylococcus aureus, secreted virulence factors, innate immunity, immune evasion molecules,

protease, host protease modulator

INTRODUCTION

Staphylococcus aureus is a human pathogen known for its ability to cause both community-
and nosocomial-acquired diseases ranging from mild skin infections, such as impetigo to
severe diseases, such as endocarditis, pneumonia, sepsis and toxic shock syndrome (David and
Daum, 2010). Treatment of S. aureus infections with antibiotics is often ineffective due to
the development of antibiotic-resistance strains, such as methicillin-resistant S. aureus (MRSA).
Therefore, alternative treatment options and vaccination are now being explored (Bagnoli et al.,
2012; Pozzi et al., 2015). The success of S. aureus as a pathogen depends on the production of
several virulence factors. S. aureus can express up to 24 cell wall-anchored proteins, which promote
adhesion to extracellular matrices, invasion of non-phagocytic cells, biofilm formation (Foster et al.,
2014) and interference with neutralization of the innate immune system (Sjodahl, 1977; Cary et al.,
1999; Kang et al., 2013).

S. aureus also produces a wide variety of peptides that inhibit specific steps of the innate immune
system, which represents the first line of defense of the host (Rooijakkers et al., 2005a; Itoh et al.,
2010; Thammavongsa et al., 2015) (For more details see below).

Potentiation of S. aureus pathogenesis is determined by secretion of proteases that cleave
specific components of the host immune system or disrupt the integrity of extracellular matrix and
intercellular connections, compromising the stability of the host tissues and contributing to the
dissemination of the infection (Koziel and Potempa, 2013). S. aureus also secretes proteins that can
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bind and modulate host protease precursors which, in turn, can
target specific defense components, providing the bacteriumwith
additional tools to establish colonization of the tissues (McAdow
et al., 2012). Lastly, some S. aureus secreted molecules can bind
and inhibit neutrophil serine proteases which are important for
several functions including the regulation of extracellular trap
formation (Hu, 2012; Kolaczkowska et al., 2015). Altogether,
these findings highlight the relevance of these compounds as
important virulence agents of S. aureus infections.

In this review, we focus on recent advances in the
characterization of S. aureus proteases and modulators of host
proteases, and their ability to avoid innate immunity. We also
discuss how understanding the mechanisms of these immune
evasive factors can have an impact in the development of
therapeutics against S. aureus diseases.

THE INNATE IMMUNE SYSTEM

The innate immune system is the collection of tissues, cells and
molecules that protect the body from a variety of pathogenic
microbes and toxins present in our environment. The innate
immune system has numerous functions, including:

1. Action as anatomical barrier to infectious agents,
2. Activation of the complement cascade to identify bacteria,

activate cells, and promote clearance of antibody complexes
or dead cells,

3. Recruitment of innate immune cells that attack foreign cells
to sites of body infection, through the production of chemical
specialized factors or mediators called cytokines.

THE EPITHELIAL SURFACE AS THE FIRST
LINE OF DEFENSE AGAINST S. AUREUS

INFECTION

Intact epithelial surfaces form physical barriers betweenmicrobes
in the external environment and host tissue. The main interfaces
between the environment and the host are the skin and the
mucosal surfaces of the gastrointestinal and respiratory tracts.
Tight junctions between neighboring cells prevent easy entry by
potential pathogens, such as S. aureus. The interior epithelial
surfaces are also covered with a mucus layer that protects these
surfaces against microbial, mechanical, and chemical insults. The
slimy mucus coating, made primarily of secreted mucin and
other glycoproteins, physically helps prevent pathogens from
adhering to the epithelium. Epithelia also produce peptides that
kill or inhibit the growth of pathogens. Those that are most
abundant include antimicrobial peptides called defensins. They
are generally short and positively charged, and have hydrophobic
or amphipathic domains in their folded structure. Defensins
are also the most abundant protein type in neutrophils, which
use them to kill phagocytosed pathogens (Zhao and Lu, 2014).
Besides the defensins, cathelicidins represent another family
of antibacterial peptides in mammals (Boman, 2003; Brogden
et al., 2003). The human cathelicidin hCAP-18, constitutively
expressed by neutrophils and squamous epithelia in response to

inflammatory challenge is processed by proteinase 3 to generate
the active peptide LL-37 (Sørensen et al., 1997) that possesses
considerable anti-staphylococcal activity (Tkalcevic et al., 2000;
Travis et al., 2000). S. aureus uses several mechanisms to
counteract the epithelia defense actions. Adhesion to epithelia
is a multifactorial process that involves the host as well as
bacterial factors. One key factor is the glycopolymer cell wall
teichoic acid of S. aureus, which directly interacts with nasal
epithelial surface through a type F scavenger receptor named
SREC-I (Baur et al., 2014). Another important surface factor
with a role in nasal and possibly skin epithelia colonization is
the cell wall-anchored protein clumping factor B, which binds to
fibrinogen, cytokeratin, the dominant component of the interior
of squamous cells and loricrin, the most abundant protein of the
cornified envelop of squames (Lacey et al., 2016). Iron-regulated
surface determinant A protein also promotes the adhesion
of S. aureus to squames cooperating in binding to cornified
cell envelop loricrin, involucrin, and cytokeratin. Other cell
wall-anchored proteins such serine-aspartate dipeptide repeat
proteins SdrC, SdrD, and SasG promote adhesion to squames but
their ligands are unknown (Foster et al., 2014; Figure 1).

Although S. aureus is not considered an intracellular
pathogen, it can govern its uptake into non-phagocytic cells.
Bacterial internalization is promoted by fibronectin-binding
proteins A and B. Binding of fibronectin to fibronectin-binding
proteins and its subsequent recognition by integrin a5b1 leads to
internalization of the bacterium into epithelial and endothelial
cells (Foster et al., 2014). Recently, it has been shown that
clumping factor A binds annexin A2, a calcium-regulated
membrane-binding protein, and it has been proposed that this
interaction could also mediate S. aureus invasion into bovine
mammary epithelial cells (Bonora et al., 2015; Figure 1). In lung
epithelial cells S. aureus internalization also involves the efflux
pump Tet38 via interaction with CD36 (Truong-Bolduc et al.,
2015, 2017).

To disturb the defensive barrier function of the airway
epithelium, S. aureus α-hemolysin disrupts cell-matrix adhesion
by activating Fak signaling with the consequent acceleration
of focal contact turnover (Hermann et al., 2015). Additionally,
treatment of airway epithelial cells with recombinant α-
hemolysin results in plasma membrane depolarization, and
increased phosphorylation of paxillin and p38 MAP kinase, a
signal transduction module involved in host defensive actions
(Eiffler et al., 2016). Lastly, staphylococcal EsxA protein interferes
with epithelial cell apoptotic pathways and, together with EsxB,
mediates the release of intracellular staphylococci from the host
cells (Truong-Bolduc et al., 2015).

COMPLEMENT SYSTEM AND ITS IMPACT
WITH S. AUREUS VIRULENCE FACTORS

During colonization and in the infection stage, S. aureus is
faced with the host’s innate immune defense, and one of
the first barriers it encounters is the complement system.
Several complement effector molecules can indeed sense
and opsonize S. aureus cells and promote their phagocytic
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FIGURE 1 | Models of S. aureus adherence to and invasion of epithelial cells. (A) Adherence of S. aureus to epithelial cell surface is mediated by clumping

factor B (ClfB) through high affinity interactions with cytokeratin 10 and loricrin. Iron-regulated surface determinant A (IsdA) protein further contributes to epithelial

adherence by binding to the cornified cell envelope protein loricrin, involucrin and cytokeratin 10. Wall theicoic acid (WTA) glycopolymer has been also proposed to

promote staphylococcal adhesion through an epithelial type F scavenger receptor named SREC-I. (B) Fibronectin-binding proteins A and B bind to the extracellular

matrix fibronectin which interacts with integrin α5β1 on the surface of epithelial cells, thereby triggering invasion of the cells. Recently, it has been suggested that

clumping factor A (ClfA) bind to surface-associated annexin A2, and this interaction could mediate S. aureus internalization into mammary epithelial cells.

killing by neutrophils in blood and macrophages in tissues.
The complement system is a proteolytic cascade of plasma
proteins, which is crucial to the host’s defense against invading
bacteria (Figure 2). Complement fixation by bacteria can occur
through three activation routes, the classic pathway (CP),
the lectin pathway (LP), and the alternative pathway (AP).
Activation of the CP starts after C1q molecules are deposited
on the bacterial surface via direct binding, immunoglobulin
recruitment, or pentraxins bridging and interacting with C1r
and C1s proteases to form the C1 proteolytic complex. Through
the LP pathway, collectins, such as mannose-binding lectin
(MLB), mannan-binding lectin or ficolin, bind to microbial
surface polysaccharides, resulting in activation of mannan-
binding lectin-associated serine protease (MASP). Both CP and
LP proteolytic complexes can split surface-bound C4 into C4a
plus C4b, and C2 into C2b plus C2a protease. C4b and C2a
directly combine and form the C3 convertase C4bC2a, which
cleaves native C3 into C3b and C3a. C3b molecules effectively
opsonize the bacterium and facilitate activation of C3bBb
convertase, the AP convertase that promotes transformation
of new C3 molecules into C3b and C3a, thus amplifying the
number of C3b molecules that opsonize bacteria and promote
phagocytic killing. Surface-tethered C3b also plays a central role
in the formation of the two C5 convertases (C4bC2aC3b and
C3bBbC3b), which cleave C5 into C5a and C5b. C5b initiates
the assembly of the membrane attack complex (MAC), a pore
made up of components C5b, C6, C7, C8, and multiple units of
C9 and ultimately leading to cell lysis. Important host regulators
controlling complement homeostasis are C3b-cleaving factor I,
factor H, a cofactor of factor I and a displacer of Bb from the
AP C3bBb convertase, and C4b-binding protein, which interferes
with the assembly of the CP/LP C4bC2a convertase.

A central role in the innate immune response and protection
against staphylococcal infection is played by the central molecule
of complement C3 but not factor B. In fact, mice with C3
deficiency show susceptibility to S. aureus septic arthritis and
display impaired host clearance, presumably due to reduced
opsonization and phagocytosis of bacteria (Na et al., 2016).

In turn, S. aureus secretes several peptides that interfere
with the deposition of the complement on the bacterial surface.
Indeed, the Staphylococcal binder of immunoglobulin Sbi helps
to protect S. aureus from innate immune defense of the host
and this effect is based on the ability to bind to the Fc region
of IgG and the complement factor C3 in serum, promoting
its futile consumption (Zhang et al., 1999; Burman et al.,
2008). Furthermore, a secreted chemotaxis inhibitory protein of
S. aureus (CHIPS) blocks function of the C5a and formylated
peptide receptors needed for neutrophil chemotaxis (de Haas
et al., 2004; Postma et al., 2004).

CELLS OF HOST INNATE IMMUNITY

If microorganisms cross an epithelial barrier and start to replicate
in the tissues of the host, they are promptly recognized, ingested
and killed by the mononuclear phagocytes or macrophages that
reside in the tissues. Another important family of phagocytes,
neutrophils, are short-lived cells that are abundantly present
in the blood but not in the tissues. Both macrophages and
neutrophils play a key role in innate immunity because they can
efficiently destroy many pathogens without the aid of adaptive
immunity. In particular, neutrophils are a central player in the
interaction between host and S. aureus (Newsom, 2008; Spaan
et al., 2013). During infection, neutrophils leave the blood and
migrate to the focus of infection in a multistep process mediated
through adhesive interactions that are regulated by cytokines and
chemokines (Spaan et al., 2013).

Cytokines are small proteins (∼25 kDa) that are released by
various cells in the body, in response to an activating stimulus and
that induce responses through binding to specific receptors. They
can act in an autocrine or in paracrine manner. Chemokines are a
class of cytokines that have chemoattractant properties, inducing
cells with the appropriate receptors to migrate toward the
source of the chemokine. Chemokines mainly recruit leukocytes,
in particular monocytes and neutrophils, and other effector
cells from the blood to sites of infection. All the chemokines
are related in amino acid sequence and their receptors are
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FIGURE 2 | Schematic overview of the complement system. The complement cascade is activated by recognition of microbe-bound antibodies or bacterial

sugars by C1 complex (CP, classic pathway) or the MBL and ficolin MASP-2 complex (LP, lectin pathway), respectively. Both C1 and MASP-2 cleave C4 and C2 to

generate a C4b2a complex on the bacterial surface. This complex is a C3 convertase that cleaves C3 into C3a and C3b, which binds covalently to the bacterial

surface. The alternative pathway (AP) C3 convertase C3bBb is generated after binding factor B to surface bound C3b and subsequent cleavage by factor D. C3b

molecules also generate C5 convertases C4bC2aC3b and C3bBbC3b by binding near to C3 convertases. C5 convertases cleave C5 into soluble C5a, which attracts

neutrophils to the site of infection, and C5b which forms a complex with C6-9 proteins to generate the membrane attachment complex.

all integral membrane proteins containing seven membrane-
spanning helices (Allen et al., 2007). Members of the chemokine
family include CXC motif, in which two cysteine residues are
separated by another amino acid. CXC chemokines bind to
at least seven different CXC receptors (CXCR1-7) expressed
on different cell types (Murdoch and Finn, 2000). The CXC
chemokine receptor 2 (CXCR2), highly expressed on neutrophils,
recognizes chemokines produced at the site of infection and
plays an important role in antimicrobial host defenses, such
as neutrophil activation and chemotaxis (Sekido et al., 1993;
Chuntharapai et al., 1994; Eisele et al., 2011).

S. AUREUS EXPRESSES A VARIETY OF
PROTEASES THAT PLAY A ROLE IN
PATHOGENESIS

Staphylococcus aureus secretes a number of proteases, including
two cysteine proteases (staphopain A, ScpA, and staphopain
B, SspB), a serine protease (V8 or SspA), serine protease–
like proteins (Spls) and a metalloproteinase (aureolysin, Aur).
The protease genes are positively regulated by agr (accessory
gene regulator) and negatively regulated by sarA (staphylococcal
accessory regulator) (Shaw et al., 2004) and are organized into
four distinct operons, encoding seven serine proteases (SspA and
SplA-F), two cysteine proteases (ScpA and SspB), and Aur. The

Aur, V8, SspB, and ScpA proteases are produced as zimogen,
while the six Spl enzymes are active upon secretion. The Aur and
ScpA precursors self-activate outside the cell, and SspA and SspB
activation relies on a proteolytic cascade in which Aur processes
V8 (Drapeau, 1978) and V8 cleaves and activates SspB (Massimi
et al., 2002). Proteases of S. aureus were initially thought to play
a role only in nutrient acquisition, however, evidence is emerging
that they are crucially involved in the evasion of host immunity
by interacting with neutrophils, Smagur et al. (2009) plasma
proteins (Prokesová et al., 1992) and antimicrobial peptides
(Sieprawska-Lupa et al., 2004; Table 1).

Staphopains A (ScpA) and B (SspB)
Staphopains, two papain-like proteases of S. aureus, are both
∼20 kDa proteins that have almost identical three-dimensional
structures, despite sharing limited primary sequence identity.
ScpA consists of two domains, refereed as L- and R- domain. The
L-domain is built from the N-terminal part of the sequence and
contains the active site helix that carries a nucleophilic cysteine.
The R domain contributes the catalytic histidine and asparagine
and is built around a size-stranded antiparallel pseudobarrel
(Filipek et al., 2003).

Although there is limited data available on the virulence
potential of staphopains in vivo models, experiments performed
in vitro have demonstrated broad activity by these enzymes,
including destruction of connective tissue, disturbance of clotting
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TABLE 1 | The main S. aureus secreted proteases.

Protease group Function References

Staphopains A (ScpA) Cleavage of neutrophils N-terminal domain of CXCR2 Laarman et al., 2012

Staphopains B (SspB) Neutrophils CD31 cleavage Smagur et al., 2009

V8 protease Human IgG degradation Prokesová et al., 1992

Aureolysin (Aur) α1-protease inhibitor cleavage Potempa et al., 1986

Prothrombin activation Wegrzynowicz et al., 1980

Antimicrobial peptide LL-37 cleavage Sieprawska-Lupa et al., 2004

C3 cleavage Laarman et al., 2011

Serine protease–like protein A (SplA) Degradation of mucin 16 Paharik et al., 2016

Epidermin leader peptide processing serine protease (EpiP) Cleavage of collagen and casein Kuhn et al., 2014

Exfoliative toxins A (ETA) and B (ETB) Degradation of desmoglein-1 Amagai et al., 2000, 2002

and kinin systems and direct interaction with host immune cells
(Kantyka et al., 2011).

Neutrophils treated with ScpA do not respond to activation
by CXCR2 chemokines after specific cleavage of the N-terminal
domain and this effect can be neutralized by specific protease
inhibitors. Moreover, ScpA inhibits neutrophil migration toward
CXCR2 chemokines and tissue recruitment (Laarman et al., 2012;
Figure 3). Despite the importance of these observations, it should
be noted that, due to the complex and redundant meshwork
of cytokine functions, it is difficult to extrapolate these in vitro
findings to the situation in infected tissues.

Exposure of phagocytes (neutrophils and monocytes)
to SspB impairs their antibacterial functions by repression
of their chemotactic activity and determines the extensive
clearance of SspB-treated cells by macrophages. SspB also
cleaves on the surface of neutrophils CD31, a member of the
immunoglobulin superfamily involved in the repulsive signaling
pathway that discourages the predatory activity of macrophages.
Consequently, the proteolytic activity of SspB dampens
the functionality of neutrophils and explains the observed
phagocytosis of SspB-treated neutrophils by monocyte-derived
macrophages and the consequent staphylococcal colonization
and spreading (Smagur et al., 2009; Figure 3).

V8 Protease
V8 protease is related to the pancreatic serine proteases (Prasad
et al., 2004). The enzyme cleaves peptide bonds exclusively on
the carboxyl side of glutamate (and aspartate, to a lesser extent)
residues. Unlike the pancreatic serine proteases, V8 protease does
not possess any disulphide bridges. This is a major evolutionary
difference, as all pancreatic proteases have at least two disulphide
bridges. V8 protease shows structural similarity with several
other serine proteases, specifically the epidermolytic toxins A
and B from S. aureus and trypsin, in which the conformation
of the active site is almost identical (Prasad et al., 2004).
V8 protease is also unique in that the positively charged N-
terminus is involved in determining the substrate-specificity of
the enzyme. V8 protease degrades all human immunoglobulin
classes. Cleavage of IgG with V8 is associated with the partial
loss of antigenic determinants and disturbance of the effector
function due to the degradation of the Fc region, suggesting that

V8 protease could uncouple the ability of antibodies to link cell-
surface antigen to immune effector cells and may protect bacteria
against defense mechanisms of the host (Prokesová et al., 1992
Figure 3).

Aureolysin (Aur)
Aur is a zinc-dependent metalloprotease that belongs to
the family of thermolysins. The structure of Aur has been
determined, revealing a polypeptide chain of 301 amino acids
which is folded into a β-pleated N-terminal domain and an α-
helical C-terminal domain, a typical fold for the thermolysin
family of metalloproteinases (Banbula et al., 1998).

In vitro, Aur has been shown to cleave and inactivate
the α1-protease inhibitor, which is an endogenous protease
inhibitor essential for controlling neutrophil serine protease
elastase. Inactivation of α1-proteinase inhibitor results in the
deregulation of the elastase and therefore may be important
in the consumption of some plasma proteins by this enzyme
during septicemia (Potempa et al., 1986). Notably, Aur activates
prothrombin in human plasma and induces staphylocoagulation
thereby suggesting a possible role of this protease in septic
infections (Wegrzynowicz et al., 1980). Aur may also affect the
stimulation of T and B lymphocytes by polyclonal activators and
display inhibitory activity against immunoglobulin production
by lymphocytes (Prokesová et al., 1991). Importantly, Aur
contributes to staphylococcal immune evasion by cleavage of
antimicrobial peptide LL-37 (Sieprawska-Lupa et al., 2004).
Burlak et al have recently shown that Aur and other
staphylococcal proteases can be expressed within the phagocytic
vacuole following bacterial phagocytosis by human neutrophils
(Burlak et al., 2007). This finding, along with information
that isogenic aur mutant appears more efficiently killed by
macrophages upon phagocytosis, indicates that Aur can protect
staphylococci inside the phagocytes probably through resistance
to antimicrobial peptide killing (Kubica et al., 2008). The action
of Aur on complement component C3 has been also analyzed in
detail, showing that Aur cleaves C3 to C3b, and the generated
C3b is then rapidly degraded by the combination of factor H
and factor I present in serum. As a result, bacteria are poorly
opsonized with C3b, and this attenuates phagocytosis and killing
by neutrophils (Laarman et al., 2011). In conclusion, Aur seems
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FIGURE 3 | S. aureus proteases and their enzymatic targets in the host. (1) Staphopain A (ScpA) cleaves the N-terminal domain of CXC receptor 2 (CXCR2)

and impairs binding of CXC chemokines and consequent neutrophil activation and chemotaxis, while (2) Staphopain B (SspB) cleaves CD31, a member of the

immunoglobulin superfamily, and dampens the functionality of neutrophils. (3) The cleaving of immunoglobulin classes by V8 protease leads to the avoidance of an

immunological response and uncouples the ability of antibodies to link cell-surface antigen to immune effector cells. (4a) Aureolysin (Aur) cleaves and inactivates the

α-1 protease inhibitor, resulting in deregulation of host elastase. Aur also (4b) activates prothrombin to thrombin and induces staphylocoagulation and (4c) neutralizes

antibacterial peptide LL-37. Lastly, Aur (4d) can cleave C3, which compromises bacterial opsonization because the cleavage product C3b is promptly degraded by a

complex of factor H and factor I. (5) SplA, a protease belonging to the Spls, is able to degrade mucin 6 on the surface of lung epithelial cells, promoting S. aureus

colonization of subepithelial tissue. (6) Degradation by EpiP of collagens, essential components of the connective tissue, and (7) disruption by exfoliative toxin A (ETA)

and B (ETB) of desmoglein-1, a desmosomal adhesion molecule that mediates intercellular adhesion in the stratum granulosum of the skin, also contributing to the

spreading of S. aureus infection in the host tissues.

to facilitate not only the activation of V8 protease (Drapeau,
1978) but also to act in synergy with regulators of the complement
system (Laarman et al., 2011; Figure 3).

Serine Protease–Like Proteins (Spls)
Staphylococcus aureus Spls are extracellular members of a group
of 6 proteases (SplA-SplF) of unknown function expressed in
vivo and encoded in one operon in the S aureus genome. To
date, SplA, SplB, SplC, and SplD are the best-characterized
Spl proteases in terms of biochemical and structural properties
and show significant structural homology to V8 protease and
epidermolytic toxins (Popowicz et al., 2006; Dubin et al., 2008;
Stec-Niemczyk et al., 2009; Zdzalik et al., 2013). By way of
example, SplA shows a chymotripsin-like fold and consists of
two domains, each of which is made up of six antiparallel β

strands folded into a β barrel. The active site of the enzyme
is located at the interface of the two barrels and consists of

the residues His, Asp and Ser conserved in all enzymatically
active chymotrypsin-like proteases (Stec-Niemczyk et al., 2009).
Spls elicit IgE antibody responses in most asthmatic patients. In
healthy S aureus carriers and non-carriers, peripheral blood T
cells elaborated TH2 cytokines after stimulation with Spls, as is
typical for allergens. Thus, Spls can be considered as triggering
allergens released by S. aureus opening prospects for diagnosis
and causal therapy of asthma (Stentzel et al., 2016). Moreover,
Spls are required for S. aureus to cause disseminated lung damage
in a rabbit model of pneumonia. In particular, SplA is able to
cleave mucin 16, a glycosylated cell surface protein from the
human lung cell line CalU-3, suggesting that removal of this
protein might promote S. aureus invasion and spreading of host
tissues. Finally, analysis of the secreted and surface proteins
expressed by S. aureus USA 300 and slp mutant strains revealed
many bacterial proteins altered in abundance, suggesting a role of
these proteases on the modulation of virulence factor production
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(Paharik et al., 2016). It remains to be determined whether Spls,
with their proteolytic potential, have an impact on the activities
of the immune defense mechanisms of the host (Figure 3).

EpiP
A homolog of an S. epidermidis protein annotated as an
epidermin leader peptide processing serine protease (EpiP)
(Geissler et al., 1996) has been identified and characterized in
S. aureus (Kuhn et al., 2014). The S. aureus EpiP is released into
the extracellular milieu and expressed as zymogen that can be
cleaved through an autocatalytical intramolecular mechanism.
The protein acts as a serine protease and is capable of cleaving
both collagen and casein (Kuhn et al., 2014; Figure 3). The epiP
gene contains a peptidase-S8 domain that is present in subtilisin-
like serine proteases and in the Streptococcus pyogenes homolog
SpyCEP protease. It is well established that SpyCEP inactivates
IL-8 catalyzing its C-terminal cleavage (Edwards et al., 2005). As
consequence, SpyCEP impairs the recruitment of neutrophils at
the site of infection and bacterial clearance (Zinkernagel et al.,
2008). Given the essential role of neutrophils in fighting bacterial
infection (Andrews and Sullivan, 2003; Döhrmann et al., 2016)
one can assume that EpiP could display a pathogenic activity
similar to SpyCEP.

Exfoliative Toxins A (ETA) and B (ETB)
Skin is a critical protective barrier against several external agents,
such as bacteria, allergens, ultraviolet radiation and mechanical
insult. S. aureus possesses biochemical tools to penetrate and
injure skin. A direct breakage of the skin involves the secreted
staphylococcal exfoliative toxins A and B (ETA/ETB) which cause
blister formation in staphylococcal scalded skin syndrome (SSSS)
and bullous impetigo. ETA and ETB are serine proteases with a
similar overall structure including the positions of key residues
within the active site (Vath et al., 1999). ETA/ETB specifically
cleave by identical mechanisms desmoglein 1, a desmosomal
adhesion molecule that mediates intercellular adhesion in the
stratum granulosum of the skin, without affecting desmoglein
3 or E-cadherin (Amagai et al., 2000, 2002; Figure 3). In SSSS,
S. aureus is present in distant foci, such as the nose, pharynx or
conjunctiva, and toxin produced by S. aureus can spread through
the bloodstream and cause exfoliation in remote sites, whereas
in bullous impetigo, a localized form of SSSS, it is present only
in the lesions. ETs share both cleavage site on desmoglein 1
and high degree sequence similarity with V8 protease (Dubin,
2002). Therefore, it has been speculated that ETs and V8
might act together to disrupt desmoglein 1 and compromise
the stability and barrier function of the skin (Katayama et al.,
2013).

In a variant of the above strategy, S. aureus cells capture
activated host proteases that directly cleave essential components
of the host defense mechanisms. For example, the cell wall-
anchored protein clumping factor A binds to complement
regulator factor I and increases factor I-driven cleavage of
complement component C3b (Hair et al., 2008).

Likewise, surface protein SdrE enhances recruitment of the
complement regulator factor H (FH). SdrE-bound FH retains
cofactor activity for factor I-mediated cleavage of C3b and

this results in down-regulation of complement effectors and in
increased protection from neutrophil killing (Sharp et al., 2012).

S. AUREUS EXPRESSES SECRETED
PROTEINS THAT MODULATE HOST
PROTEASE ACTIVITY

Staphylococcus aureus is specialized in handling host proteins that
are involved in the complement system, coagulation cascade and
fibrinolysis cascade (Chavakis et al., 2005; Imamura et al., 2005;
Nizet, 2007). Proteins that play a role in these pathways circulate
in biological fluids or are in the extracellular matrix as inactive
zymogen that can be activated upon interaction with specific
secreted staphylococcal proteins. Alternatively, S. aureus secretes
specific proteinaceous inhibitors of host serine proteases that
play key roles in immune defense. In both cases, these proteins
positively affect bacterium pathogenicity in vivo (Stapels et al.,
2014; Table 2).

Staphylococcal Activators of Host
Proteases
Coagulase(Coa) and von Willebrand Factor Binding

Protein (vWbp)
Coagulase (Coa) is an S. aureus protein comprised of the
D1D2 domain in the N-terminal part involved in prothrombin
binding, a linker domain and a repeat domain composed
of tandem repeats of a 27-residue-long-segment in the C-
terminal part that binds to fibrinogen. Coa promotes blood
coagulation by activating prothrombin through insertion of the
Ile1-Val2 N terminus of the Coa D1D2 domain into the Ile16
pocket of prothrombin, inducing a functional active site in the
zymogen through conformational change (Friedrich et al., 2003).
The Coa/prothrombin complex then specifically recognizes
fibrinogen and converts it into fibrin (Panizzi et al., 2006).
Von Willebrand factor-binding protein) (vWbp) is another
secreted S. aureus coagulase which, in addition to binding
vWF, associates with prothrombin to convert fibrinogen to
fibrin (Friedrich et al., 2003; Bjerketorp et al., 2004; Kroh
et al., 2009). vWbp displays sequence homology to the Coa
D1D2 domain, whereas its C-terminal region lacks the linker
segment and repeat domain of Coa, which are replaced by
unique vWF and fibrinogen binding sites (Bjerketorp et al.,
2002; Cheng et al., 2010). When suspended in human or animal
plasma, staphylococci can form large aggregates. Coa, vWbp
and clumping factor A are required for bacterial agglutination:
Coa and vWbp activate prothrombin to cleave fibrinogen,
whereas clumping factor A allows staphylococci to associate
to form fibrin cables (McAdow et al., 2011; Walker et al.,
2013; Figure 4). The formation of fibrin networks protects
the bacterium from neutrophil and phagocytic clearance, and
facilitates the pathogenesis of lethal blood stream infection in
mice (Walker et al., 2013).

Activation of prothrombin by coagulases also induces direct
cleavage of complement component C3, as well as its activation
fragments. Moreover, thrombin can cleave C5 into C5a, which
occurs independently of C3 and therefore represents a bypass of
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TABLE 2 | The main S. aureus modulators of host proteases.

Modulator Function References

ACTIVATOR

Coagulase(Coa) and von Willebrand factor-binding protein (vWbp) Prothrombin activation Friedrich et al., 2003; Bjerketorp et al., 2004;

Kroh et al., 2009

Staphylokinase (SAK) Plasminogen activation Bokarewa et al., 2006

α-toxin ADAM10 activation Wilke and Bubeck Wardenburg, 2010;

Inoshima et al., 2011

INHIBITOR

Extracellular adherence protein (Eap) CP/LP C3 proconvertase inhibition Woehl et al., 2014

Superantigen-like proteins 1 (SSL1) and 5 (SSL5) Inhibition of metalloproteases Bestebroer et al., 2007; Chung et al., 2007

S. aureus collagen adhesin (Cna) Inhibition of C1 complex formation Kang et al., 2013

Staphylococcal Complement Inhibitor (SCIN) Inhibition of AP C3 convertase Rooijakkers et al., 2005a

Extracellular fibrinogen binding protein (Efb) Inhibition of AP C3 convertase Chen et al., 2010

Serine aspartate glycosyltransferases A (SdgA) and B (SdgB) Inhibition of human neutrophil-derived catepsin G Hazenbos et al., 2013

the three traditional complement-activation pathways (Rittirsch
et al., 2008).

Staphylokinase (SAK)
Staphylokinase (SAK), is a 136 aa long bacteriophage-encoded
protein expressed by lysogenic strains of S. aureus (Peetermans
et al., 2016). SAK is both present in the cell culture environment
and associated with the cell surface of staphylococci. Present
understanding of the role of SAK during bacterial infection
is based on its interaction with the host proteins. Binding
of SAK to human antibacterial peptides α defensins and LL-
37 abolishes their bactericidal properties, which makes SAK a
useful tool for staphylococcal resistance to host innate immunity
(Jin et al., 2004; Braff et al., 2007). The main SAK activity
is related to its ability to bind and convert plasminogen
(PLG) to active, broad spectrum proteolytic enzyme plasmin
(Bokarewa et al., 2006). Unlike direct human PLG activators,
such as tissue plasminogen activator (t-PA) (Lijnen and Collen,
1988) and urokinase (UK) (Vassalli et al., 1985; Blasi et al.,
1986), SAK does not have any proteolytic activity of its
own but acts by forming a 1:1 stoichiometric complex with
plasmin and changing its substrate specificity to activate PLG
(Peetermans et al., 2016). The activation of PLG by SAK
is facilitated by the ability of staphylococci to capture PLG
at the bacterial surface through surface-expressed proteins,
such as FnBPA and FnBPB (Pietrocola et al., 2016). By
activating human PLG into plasmin at bacterial surface, SAK
creates bacterium-bound serine protease activity that induces
fibrin specific thrombolysis in human plasma (Collen and
Lijnen, 2005) and leads to the degradation of two major
opsonins, human immunoglobulin G (IgG) and human C3b
(Rooijakkers et al., 2005b; Figure 4). The finding that SAK-
induced PLG activation prevents S. aureus biofilm formation
and/or detachment of existing biofilm through cleavage of the
major biofilm component fibrin strongly suggests a crucial role
of this protein in controlling biofilm formation (Kwiecinski
et al., 2016). Staphylococcal bound plasmin has been also shown
to cleave the 55kDa pro-matrix metalloprotease 1 into the

mature 42 kDa active matrix metalloprotease 1, one of the
major interstitial collagenase (Santala et al., 1999). This effect
possibly provides a direct cue for leukocyte migration and
activation.

The findings that clinical isolates of skin and mucosal origin
expressing high levels of SAK show a more efficient invasion
of internal organs than strains expressing a low level of SAK,
and the finding that in animal sepsis wild type strains show an
increased bacterial load compared to the sak isogenic mutants
(Bokarewa et al., 2006) supports evidence that SAK is an
important staphylococcal virulence factor. Although SAK is
present in the vast majority of S. aureus strains causing human
infections, the frequency of staphylococcal expression varies
between 4 and 100% in different collections of S. aureus isolates
(Declerck et al., 1994; Jin et al., 2003). Furthermore, a study
on the course of haemogenous staphylococcal sepsis induced by
the SAK-producing strain revealed no difference in mortality
or weight loss compared to the isogenic strain incapable of
producing SAK (Kwieciński et al., 2010). These observations
make the role of SAK as a “critical” virulence factor in S. aureus
diseases questionable.

α-toxin
Exposure to S. aureus pore-forming α-toxin, also known as
α-hemolysin, can cause cellular death by necrosis, apoptosis,
or pyroptosis, through activation of different cellular pathways
(Essmann et al., 2003; Craven et al., 2009). α-toxin also
binds to the receptor ADAM10 in alveolar epithelial cells.
Binding of α-toxin to ADAM10 results in upregulation of
ADAM10 metalloprotease activity, with the consequent cleavage
of E-cadherin, a protein engaged in homotypic intercellular
interactions in adherens junctions. Cleavage is associated with
disruption of epithelial barrier function, increased staphylococcal
invasion and a lethal acute lung injury of mice (Inoshima et al.,
2011); (Wilke and Bubeck Wardenburg, 2010; Figure 4). These
studies demonstrate that α-toxin disrupts barriers not only by
lysing cells but also by the more subtle mechanism of activating a
host protease.
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FIGURE 4 | S. aureus modulators of host proteases. (A) Activators. (1) Coa and vWbp activate prothrombin to cleave fibrinogen, whereas clumping factor A

allows staphylococci to associate to form fibrin cables. (2) The plasminogen (PLG) binding protein staphylokinase (SAK) activates the zymogen to the active protease

plasmin, which can degrade complement opsonin C3b and the immunoglobulin Fc domain. (3) α-toxin binds to the ADAM10 receptor to disrupt the physiological

barrier functions of tissues such skin. (B) Inhibitors. (1a) Extracellular adherence protein (Eap) disrupts formation of the CP/LP C3 proconvertase (C4bC2) by

preventing C4b from binding to C2, inhibiting formation and deposition of C3b on the surface of S. aureus cells. (1b) Eap specifically inhibits neutrophil serine

proteases elastase, proteinase 3 and cathepsin G, by blocking processing and activation of cellular receptors and chemokines and cleavage of bacterial virulence

factors. (2) Superantigen-like protein 1 (SSL1) and 5 (SSL5) prevent matrix metalloprotease (MMP)-induced cleavage of IL-8, a chemokine produced by macrophages

and other cell types that induces neutrophil chemotaxis, and inhibit the remodeling of extracellular matrix and the consequent migration of neutrophils through

collagen. (3) Collagen adhesin (Cna) blocks the association of C1q bound to immunoglobulin with complement component C1r and inhibits the classic pathway

formation. (4) The secreted peptide Staphylococcal Complement Inhibitor (SCIN) stabilizes C3bBb convertase of the alternative pathway in an inactive form,

preventing the production of C3a, C3b, and C5a. (5) The extracellular fibrinogen binding protein (Efb) induces a conformational change in C3b in a way that impairs its

interaction with complement factor B and formation of the active C3 convertase of the alternative pathway.

Staphylococcal Factors that Interfere with
Host Protease Activities
Among the anti-bacterial functions, neutrophils produce serine
proteases including proteinase 3, cathepsin G and elastase.
Neutrophils also secrete matrix metalloproteases that regulate
the degradation of extracellular matrix components (Nagase
et al., 2006) and turnover of non-matrix substrates including
cytokines, chemokines, growth factors and receptors (Parks
et al., 2004; Rodríguez et al., 2010). Furthermore, it is well
known that the complement system is a proteolytic cascade
where serine proteases activate each other through limited
proteolysis in a strictly ordered manner. Therefore, bacterial
mechanisms that interfere with such protease activities may
be potentially important to safeguard efficient host tissue
colonization.

Extracellular Adherence Protein (Eap)

Staphylococcus aureus secretes a multifunctional protein named
extracellular adherence protein (Eap). Mature Eap molecule is
∼50–70 kDa and comprises four to six tandem repeats of ∼97
residue domain joined by short, 9–12 residue linker region
(Jönsson et al., 1995; Geisbrecht et al., 2005). Eap shows a unique
ability to form protein–protein interactions with an array of
ligands, including a bacterial cell surface-retained phosphatase
(Flock and Flock, 2001), host extracellular matrix molecules,
such as collagen, fibronectin, and laminin (Bodén and Flock,
1992; McGavin et al., 1993; Palma et al., 1999), and the pro-
inflammatory mammalian surface adhesin ICAM-1 (Chavakis
et al., 2002). Notably, Eap disrupts formation of the CP/LP
C3 proconvertase (C4bC2) by preventing C2 from binding to
C4b (Figure 4). Hence, Eap inhibits deposition of C3b on the
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surface of S. aureus cells and significantly diminishes the extent
of S. aureus opsonophagocytosis and killing by neutrophils
(Woehl et al., 2014). Eap also inhibits the activity of elastase,
proteinase 3 and cathepsin G, a class of neutrophil serine
proteases (NSPs) stored within the azurophilic granules (Pham,
2006). Crystallographic studies by Stapels et al. demonstrated that
Eap behaves as a protease inhibitor which occludes the catalytic
cleft of neutrophil serine proteases and inhibits their activity
(Stapels et al., 2014).

Notably, upon neutrophil activation, neutrophil serine
proteases either enter the nucleus to regulate extracellular trap
formation (Papayannopoulos et al., 2010) or are released into
the extracellular milieu to cleave bacterial virulence factors
(Weinrauch et al., 2002) and/or chemokines and receptors
(Korkmaz et al., 2010). Therefore, Eap can effectively counteract
crucial antibacterial activity associated to neutrophil proteases.

Superantigen-Like Proteins 1 (SSL1) and 5 (SSL5)
Matrix metalloproteases constitute a large family of structurally
related, zinc-dependent proteases. They facilitate immune cell
migration as a consequence of breakdown of extracellular
matrix components and potentiate the activity of chemokines,
enhancing inflammation and aiding bacterial clearance. Matrix
metalloprotease 8 (neutrophil collagenase) and 9 (neutrophil
gelatinase B) are highly expressed and produced by neutrophils,
stored in secondary and tertiary granules and secreted upon cell
activation (Parks et al., 2004).

To counteract the activity of these proteases, S. aureus secretes
superantigen-like proteins 1 (SSL1) and 5 (SSL5), which are
members of the SSL family. The number of SSL members
expressed in the staphylococcal cells varies from 7 to 11,
depending on the strain of S. aureus (Fitzgerald et al., 2003).
SSL proteins are characterized by the presence of an N-terminal-
barrel globular domain linked to the C-terminal-grasp domain,
which is a structural feature common to TSST-1 (toxic shock
syndrome tovin-1) and enterotoxins (Williams et al., 2000).

SSL1 and SSL5 prevent matrix metalloprotease-induced
cleavage and potentiation of IL-8, a chemokine produced by
macrophages and other cell types that induces neutrophil
chemotaxis, and inhibit the remodeling of extracellular matrix
and migration of neutrophils through collagen (Bestebroer
et al., 2007; Chung et al., 2007; Figure 4). Therefore, through
matrix metalloprotease-inhibition, SSL1 and SSL5 limit
neutrophil activation, chemotaxis, and migration, all critical
neutrophil functions in bacterial clearance (Koymans et al.,
2016).

Staphylococcus aureus Collagen Adhesion (Cna) and

Staphylococcal Complement Inhibitor (SCIN)
The early event of the CP activation involves binding of C1q to
two molecules each of the proenzymes C1r and C1s, forming the
C1 complex C1q:C1r2C1s2. Once activated, the serine protease
C1s cleaves C4 and then C2 to generate two large fragments
which combine together to form the C3 convertase of the CP. The
S. aureus collagen adhesin (Cna) interacts also with C1q resulting
in the inhibition of its interaction with C1r. Consequently,
C1r2C1s2 is displaced from C1q and activation of the CP is

not allowed (Kang et al., 2013; Figure 4). Along this line the
secreted peptide Staphylococcal Complement Inhibitor) (SCIN)
associates with and stabilizes C3bBb convertase of the alternative
pathway in an inactive form, thereby preventing the production
of C3a, C3b, and C5a (Rooijakkers et al., 2005a; Figure 4). Cna
and SCIN may be important components of a more general
evasion strategy of this remarkable pathogen.

Extracellular Fibrinogen Binding Protein (Efb)
The extracellular fibrinogen binding protein Efb is another
innate immune evasion molecule secreted by S. aureus, which
is reported to block platelet aggregation (Shannon and Flock,
2004; Shannon et al., 2005), delay wound healing in a rat wound
infection model (Palma et al., 1996) and inhibit neutrophil
adherence to immobilized fibrinogen (Ko et al., 2011). Efb
protein has a disordered N-terminal fibrinogen-binding region
and a folded C3-binding domain in the C-terminal region
(Hammel et al., 2007). Efb acts as an allosteric inhibitor by
inducing conformational changes in factor C3b that propagate
across several domains and influence functional regions far
removed from the Efb binding site. Consequently it impairs the
interaction of C3b with complement factor B and the formation
of active C3 convertase (Chen et al., 2010; Figure 4).

Serine Aspartate Glycosyltransferases A (SdgA) and

B (SdgB)
Crucial for staphylococcal adherence and colonization of host
tissues is a family of staphylococcal cell wall-anchored proteins
containing several repeats of serine-aspartate (SD) residues
located between the N-terminal ligand-binding A domain and
a C-terminal LPXTG motif (Foster et al., 2014). The prototype
members of this family are clumping factor A and B, which
are important virulence factors mediating the attachment of
S.aureus to several extracellular matrix components (Foster et al.,
2014). Two recently identified S. aureus glycosylases, SdgA and
SdgB, are responsible for direct concerted glycosylation of the
SD moieties of these proteins. Although the precise role of SD
repeat glycosylation is still to be defined, it has been suggested
that this event could render bacterial proteins invulnerable to
proteolysis by human neutrophil-derived catepsin G, prevent
their degradation and preserve the structural and functional
integrity of these important virulence factors (Hazenbos et al.,
2013).

DISCUSSION AND PERSPECTIVES

The fact that proteases and regulators of host proteases are
secreted abundantly by almost all the strains of S. aureus,
and the observation that mutants lacking proteases show a
decrease in abscess formation and impairment during organ
invasion, indicate that they play a crucial role as virulence
factors (Kolar et al., 2013). Important progress has been made
over recent decades in the identification and understanding of
the functional role of S. aureus proteases and secreted factors
that regulate host proteolytic activities. Specific advancements
include the assessment of the multiple roles of these factors in
the modulation of the complement system and prevention of
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phagocytosis. It has been proven that S. aureus proteases cleave
tissue adhesion molecules allowing transition from adhesive
to invasive phenotype and the consequent dissemination and
spreading of bacterial infection. Furthermore, incubation of
human serum with a combination of Aur, protease V8 and
cysteine proteases staphopain A and B causes complete inhibition
of all complement pathways. This results in a drastic decrease
in the haemolytic activity of the serum and suggests that the
concerted action of the four proteases is important for pathogen-
mediated evasion of the human complement system (Jusko et al.,
2014).

Despite the acquisition of these important insights, many
structural and functional aspects of these factors remain
unknown. For example, the expression and structural analysis
by X-ray crystallography of many of these factors, alone or in
combination with specific targets, are still lacking. Similarly, we
have just begun to explore the role of these proteins in high
quality animal studies and how each factor relates to the complex
sequence of events in the initiation and progression of infection.
Finally, new advances in the antigenic properties of these factors
represent an important basis for the development of promising
approaches for managing staphylococcal disease. The acquisition
of this wealth of information in the short term would provide
opportunities to develop specific synthetic drugs targeting one
or more proteases or inhibiting the activity of staphylococcal
modulators of host proteases. On this matter, it has been
suggested that Eap “might serve as a template for developing a
new class of synthetic inhibitors of neutrophil serine proteases” to
treat inflammatory disorders like cystic fibrosis and emphysema,
where neutrophil serine proteases play a significant role (Stapels
et al., 2014). Although in a different contest, this example
illustrates how the understanding of staphylococcal virulence
factors might contribute to the development of therapeutics in
medicine.

Moreover, the consistency between the positive regulation of
S. aureus proteases by the accessory gene regulator agr (Shaw
et al., 2004; Novick and Geisinger, 2008) and the observation that
selective chemical inhibition of agr quorum sensing promotes
and strengthens the host defense immunological system (Sully
et al., 2014; Tsuchikama et al., 2017) paves the way for the
development of new therapeutic strategies against S. aureus
diseases.

Prospectively, antibodies against such S. aureus factors
targeting elements of the immune system could restore host
defense mechanisms and have clinical utility as adjunctive
agents enhancing antibiotic efficacy in severe invasive diseases.
Approaches to S. aureus vaccine development have so far
been unsuccessful (Pozzi et al., 2015). This failure can be
partly explained by the broad spectrum of the bacterium’s
immunevasive attributes that neutralize phagocytic killing of
bacteria. Therefore, development of an effective S. aureus vaccine
should consider the important role of virulence factors produced
by this pathogen.
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