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Abstract

S. aureus is a formidable pathogen capable of causing infections in different sites of the body in a 

variety of vertebrate animals, including humans and livestock. A major contribution to the success 

of S. aureus as a pathogen is the plethora of virulence factors that manipulate the host’s innate and 

adaptive immune responses. Many of these immune modulating virulence factors are secreted 

toxins, cofactors for activating host zymogens, and exoenzymes. Secreted toxins, such as pore-

forming toxins and superantigens are highly inflammatory and can cause leukocyte cell death by 

cytolysis and clonal deletion, respectively. Coagulases and staphylokinases are cofactors that 

hijack the host’s coagulation system. Exoenzymes, including nucleases and proteases, cleave and 

inactivate various immune defense and surveillance molecules, such as complement factors, 

antimicrobial peptides, and surface receptors important for leukocyte chemotaxis. Additionally, 

some of these secreted toxins and exoenzymes can cause disruption of endothelial and epithelial 

barriers through cell lysis and cleavage of junction proteins. A unique feature when examining the 

repertoire of S. aureus secreted virulence factors is the apparent functional redundancy exhibited 

by the majority of the toxins and exoenzymes. However, closer examination of each virulence 

factor revealed that each has unique properties that have important functional consequences. This 

chapter will provide a brief overview of the current understanding on the major secreted virulence 

factors critical for S. aureus pathogenesis.

Section I: Exotoxins

Introduction

Staphylococcus aureus is a highly successful pathogen that colonizes ~30% of the 

population asymptomatically, but it is also capable of causing infections ranging from mild 

skin and soft tissue infections to invasive infections, such as sepsis and pneumonia (1). 

When S. aureus infects the host, it produces many different virulence factors that promote 

the manipulation of the host’s immune responses while ensuring bacterial survival. These 

virulence factors include secreted toxins (exotoxins), which represent approximately 10% of 

the total secretome (2). While there are over 40 known exotoxins produced by these bacteria, 

many of them have similar functions and have high structural similarities. Closer 

examination of these seemingly redundant exotoxins revealed that each has unique 

properties. Exotoxins fall into three broad groups based on their known functions: 

cytotoxins, superantigens, and cytotoxic enzymes (Table 1). Cytotoxins act on the host cell 

membranes, resulting in lysis of target cells and inflammation. Superantigens mediate 
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massive cytokine production and trigger T and B cell proliferation. Secreted cytotoxic 

enzymes damage mammalian cells. Collectively, these exotoxins modulate the host immune 

system and are critical for S. aureus infections.

A) Cytotoxins

β-barrel pore-forming toxins

α-toxin, the prototypic pore forming toxin: α-toxin (also known as α-hemolysin or Hla), 

is encoded by the gene hla as part of a monocistronic operon in the core genome of S. 

aureus. Like all conventionally secreted proteins, α-toxin is synthesized with a N-terminal 

signal peptide. Water-soluble, α-toxin monomers form heptameric β-barrel pores in target 

cell membrane, resulting in cell lysis (Figure 1a) (3). The α-toxin heptamer resembles a 

mushroom and has 3 major domains: an extracellular cap domain, a stem domain that forms 

the β-barrel pore, and a rim domain that confers receptor specificity (Figures 2a–c) (4). The 

β-barrel pore is formed from a prepore by a conformational change in a toxin substructure 

known as the amino latch (5). The critical role of the amino latch in the β-barrel pore 

formation is exemplified by a single amino acid mutation at His-35, which disrupts 

interprotomer stabilization, thus preventing pore formation and inactivating the toxin (6–8).

The role of α-toxin in disease has been studied extensively. α-toxin causes lysis of many 

different cell types: erythrocytes, platelets, endothelial cells, epithelial cells, and certain 

leukocytes (9–12). For many years, α-toxin was thought to mediate cytolysis through 

nonspecific binding to the lipid bilayer of cells. However, this model did not explain the 

species specificity exhibited by the toxin (i.e. lysis of rabbit but not human erythrocytes). In 

2010, Wilke et al. identified the protein ADAM-10 (a disintegrin and metalloprotease 10), as 

the cellular receptor for α-toxin receptor, thus providing an explanation for the observed 

species and cell type specificities (Figure 3) (13). Recently, the mammalian junction protein, 

PLEKHA7 (plekstrin-homology domain containing protein A7), was also demonstrated to 

be involved in α-toxin cytotoxicity and is thought to contribute to α-toxin-mediated tissue 

injuries in murine skin infection and pneumonia models (14).

α-toxin is not only lethal, but can also modulate cellular responses at sublytic 

concentrations, including the release of nitric oxide from endothelial and epithelial cells, 

extracellular Ca2+ influx, production of proinflammatory cytokines, and pyroptosis of 

monocytes through the activation of caspase-1 and the production of NLRP3-

inflammasomes (10, 15–19). Additionally, sublytic levels of α-toxin upregulate the 

expression of ADAM10 and activate the ADAM10 protease to cleave the junction protein E-

cadherin, resulting in disruption of the epithelial barrier (11). Nanogram to microgram 

amounts of α-toxin can cause severe dermonecrosis when administered subcutaneously in 

rabbits and mice (20, 21). Moreover, intravenous administration of this toxin also results in 

rapid lethality of the animals (20, 21). S. aureus Δhla strains are severely attenuated in 

several infection models, resulting in enhanced host survival, decreased bacterial burden, 

inflammation, and tissue injuries (22–27).

The bicomponent pore-forming toxins—The bicomponent pore-forming toxins 

(PFTs) are distant relatives to α-toxin (Figure 4), share structural homology with α-toxin, 
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and have a similar pore formation mechanism (Figures 1–2). However, in contrast to α-

toxin, the bicomponent PFTs require two subunits: the fast-eluting subunit, F-subunit, and 

the slow-eluting subunit, S-subunit, named on the basis of their liquid chromatography 

behavior (28, 29). The current model for leukocidin pore formation suggests that the S-

subunit recognizes and binds to a surface receptor on the target cell, then recruits the F-

subunit for dimerization (30–32). This is followed by oligomerization with 3 additional 

dimers to form an octameric pre-pore on the target cell membrane (33). Next, the stem 

domains of the prepore extend in the center of the structure, forming a β-barrel pore that 

inserts into the target cell membrane, resulting in cell lysis (Figure 1b) (33, 34). Similar to 

the α-toxin heptamer, the bicomponent PFT octamer also resembles a mushroom, consisting 

of the cap, the rim, and the stem domains (Figure 2).

The bicomponent PFTs primarily target leukocytes, thus they are also known as leukocidins 

(Luk). Currently, 5 of the leukocidins are known to be associated with human infections: 

LukSF-PV (originally known as Panton-Valentine leukocidin, PVL), γ-hemolysins AB and 

CB (HlgAB, HlgCB), LukED, and LukAB (also known as LukHG) (30–32). Two other 

bicomponent PFTs, LukMF’ and LukPQ, are associated with animal infections (35–37).

All the leukocidins share structural homology and sequence identity, ranging from 40–90% 

within each S-subunit and F-subunit family (Figure 4) (38). The only exception is LukAB, 

which shares only ~30% sequence similarity with the others (38). LukA has a ~33-amino 

acid sequence at the N-terminus and a 10-amino acid C-terminal tail that are absent from 

other S-subunits, contributing to its divergence. Nevertheless, the structure of LukAB 

remains homologous to the other bicomponent PFTs (39).

In additional to mediating cell lysis, many of the leukocidins have sublytic effects, causing 

extracellular Ca2+ influx on host cells (40–42) and production of proinflammatory cytokines 

(40, 43–47). Several of the leukocidins, PVL, HlgAB, and LukAB, stimulate K+ efflux, 

production of the NLRP3-inflammasome, and activation of caspase-1, resulting in a form of 

inflammatory cell death, known as pyroptosis (43, 45–47).

Although the bicomponent PFTs exhibit many similarities, there are subtle differences that 

confer unique properties on each of them, which are briefly summarized below (see 

references (30–32) for in depth summaries).

LukSF-PV (Panton-Valentine leukocidin, PVL):  The pvl locus is encoded within the 

genomes of at least six different prophages (48–51). Although less than 40% of clinical 

isolates from the United States carry a pvl-encoding prophage, over 90% of strains 

associated with severe necrotizing pneumonia and community-acquired infections carry one 

(1, 52). The relationship between pvl-encoding S. aureus and severe infections in humans is 

supported by strong epidemiological data and recent data using animal models of infection 

(53–57).

PVL exhibits species specificity, killing only rabbit and human leukocytes. The species 

specificity is due to the targeting of the human and rabbit G-protein-coupled receptors 

(GPCRs), C5aR1 and C5aR2, but not the murine counterparts (Figure 3) (58, 59). 
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Consequently, regular mice are inappropriate for the study of this toxin; the availability of 

rabbit models and human ex vivo models have provided insight into the complexity of PVL-

mediated pathology. PVL is a critical factor in invasive diseases such as osteomyelitis and 

pneumonia in rabbits. Deletion of pvl results in lower inflammation, reduces tissue injuries 

and bacterial burden, and promotes host survival (57, 60). Remarkably, sublytic levels of 

PVL can enhance phagocytosis and killing of the bacteria by primary human neutrophils 

(61). In contrast, the role of PVL during skin and soft tissue infections is unclear. While one 

study demonstrated that PVL did not contribute to lesion sizes and bacterial burden (62), 

another study showed that infections caused by Δpvl strains have smaller lesions compared 

to the wildtype and complemented controls (63). These studies seem to suggest that the 

pathogenic effect of PVL could be dependent on the site of infection, but more work must be 

done to test this hypothesis.

γ-hemolysin (HlgAB, HlgCB):  The γ-hemolysin locus is part of the core S. aureus 

genome, present in ~99% of sequenced S. aureus genomes (64, 65). This locus is comprised 

of 3 genes: the hlgA gene, transcribed by its own promoter, followed by an operon 

containing hlgC and hlgB, transcribed by a different promoter (66). HlgA and HlgC are S-

subunits that share the same F-subunit, HlgB, to form two leukocidins – HlgAB and HlgCB, 

each possessing its own unique properties.

HlgAB binds to the human receptors CXCR1, CXCR2, CCR2, and the Duffy antigen 

receptor for chemokine (DARC), lysing human erythrocytes, neutrophils, monocytes, and 

macrophages (Figure 3) (44, 67). HlgAB can also target murine monocytes and 

macrophages but cannot target murine neutrophils as it cannot bind to murine CXCR2 (44). 

In contrast, HlgCB is a human specific toxin that targets cells expressing the receptors 

C5aR1 and C5aR2 (the same receptors targeted by PVL) (Figure 3) (44).

γ-hemolysins cause acute tissue injury and inflammation and contribute to S. aureus disease 

in different animal models. Retroorbital administration of microgram amounts of HlgAB is 

lethal to mice (68). Intravitreal injection of γ-hemolysins in rabbits is highly toxic, resulting 

in destruction of the eye and tissue injury in surrounding areas (69). The tissue damage 

could be the result of a combination of toxin-mediated cell lysis and pyroptosis caused by 

sublytic concentration of the toxins (47). The contribution of HlgAB to disease has been 

further demonstrated in several infection models with strains that do not produce HlgAB. 

With such strains, there is reduced neutrophil lysis, less inflammation, reduced bacterial 

burden, and enhanced host survival (44, 70–72).

LukED:  The lukED locus is in the νSaβ gene cluster. The lukED locus is present in ~70% 

of S. aureus isolates and is conserved in a lineage specific manner (64, 65). The two genes 

lukE and lukD in the locus are co-transcribed during the late exponential phase (73).

Early studies on LukED demonstrated the lytic activity of the toxin in rabbit and human 

erythrocytes and neutrophils (74). Subsequently, LukED was demonstrated to also mediate 

lysis of many different human and murine bone-marrow derived cells (75, 76). LukED 

targets the GPCRs – CXCR1, CXCR2, CCR5, and DARC on neutrophils, monocytes, 

macrophages, dendritic cells, NK cells, T-cells and red blood cells, conferring on the toxin 
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broad leukocidal activity (Figure 3) (67, 76, 77). Moreover, the pathogenic effects of LukED 

are receptor-dependent (75–77).

LukED is an important contributor to the virulence of S. aureus. Initial studies on LukED 

demonstrated toxin-induced dermonecrosis of rabbit skin (73). Retroorbital administration 

of microgram amounts of the toxin leads to acute lethality in mice (68). Corroborating the 

intoxication studies, ΔlukED strains are severely attenuated, resulting in lowered 

inflammatory responses, reduced bacterial burden, and enhanced host survival in murine 

systemic infections (75–77).

LukAB (also known as LukHG):  The lukAB locus is part of the core S. aureus genome 

found in 99% of S. aureus. The toxin is found in abundance in the secreted proteome during 

the late exponential growth phase, which led to its discovery (78, 79). The C-terminal region 

of LukA is critical for toxin activity, as its deletion or mutation within this region, (i.e. the 

E323A mutation) renders the toxin inactive (80). Unlike the other leukocidins, which are 

secreted as monomers, LukAB is secreted as heterodimers (80).

LukAB exhibits sharp species specificity – with its greatest potency being for human & 

primate cells, followed by rabbit, and it is ~1000-fold less active in mice (81). The 

selectivity of LukAB was explained when it was discovered that LukAB mediates 

cytotoxicity through targeting the I-domain of the CD11b receptor present on leukocytes, 

including neutrophils, monocytes, macrophages, dendritic cells, and NK cells (Figure 3) (80, 

82).

Since LukAB is only weakly active toward murine leukocytes and mildly active with rabbit 

cells, the role of LukAB during infection remains to be fully elucidated. Although the field 

currently lacks robust in vivo models to directly assess the pathogenicity of the toxin, in 

vitro and ex vivo studies have provided insights into the role of LukAB in disease, revealing 

that lukAB-defective mutants are greatly attenuated for virulence. For example, primary 

human neutrophils infected with ΔlukAB strains exhibit enhanced survival compared to 

wildtype (78). Additionally, LukAB promotes the escape of phagocytosed S. aureus from 

neutrophils and monocytes (46, 83). Anti-LukAB antibodies were observed in the serum of 

patients with invasive S. aureus disease, thus demonstrating production of the toxin during 

infection (84, 85).

LukMF’:  The lukMF’ locus is encoded by temperate phage ΦSa1 (37). While lukMF’ is 

infrequently found among human isolates, it is commonly found among animal isolates (86). 

LukMF’ exhibits high cytolytic activity towards bovine neutrophils and macrophages 

through targeting the surface receptor bovine CCR1, CCR2, and CCR5 (Figure 3) (87). 

LukMF’ can be isolated from bovine mastitis tissue samples, indicating a role of this toxin 

in disease progression (36). However, unlike the other leukocidins, purified LukMF’ does 

not elicit a strong proinflammatory response when incubated with primary bovine 

macrophages (88).

LukPQ:  LukPQ is encoded by the temperate phage ΦSaeq1 (35). Like other bicomponent 

PFTs, LukPQ demonstrates species and cell type specificities. Equine neutrophils are most 
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sensitive to the lytic effect of LukPQ, followed by bovine neutrophils; human neutrophils are 

relatively insensitive to the toxin (Figure 3) (35). LukPQ targets the equine GPCRs, CXCRA 

and CXCR2, to initiate cytolysis (35). At high concentration, the toxin also targets equine 

CCR5. However, toxin binding can be inhibited by cytokines binding to these receptors, 

suggesting LukP and the receptor ligands may be sharing a common binding site (35). 

Uniquely, the F-subunit, LukQ, is responsible for conferring species specificity of LukPQ, 

whereas species specificity is conferred by the S-subunit in the other leukocidins (35).

Other cytotoxins

Phenol Soluble Modulins: Phenol soluble modulins (PSMs) belong to a family of 

amphipathic peptides uniquely found in staphylococci. In S. aureus, PSMs are encoded in 3 

loci in the core genome: 1) the psmα operon, encoding PSMα1–4, 2) the psmβ operon, 

encoding PSMβ1–2, and 3) hld encoding δ-toxin (89, 90). hld is also part of the coding 

sequence of RNAIII, the master regulatory RNA in staphylococci. Additionally, certain 

methicillin resistant staphylococci carry PSM-mec, encoded by psm-mec in the 

staphylococcal cassette chromosome mec (SSCmec) (91). Like hld, psm-mec is encoded 

within a regulatory RNA (92).

Unlike the other cytotoxins described thus far, PSM peptides are often secreted without a 

signal peptide (90). Therefore, most PSM peptides isolated from staphylococci contain a N-

terminal formylmethionine. However, some PSM peptides lack this N-formylmethoinine due 

to the cytoplasmic enzyme N-deformylase (93). PSMs are secreted by the ABC transporter, 

phenol-soluble modulin transporter (Pmt). Absence of Pmt causes accumulation of PSM in 

the cytosol, resulting in cell death (94).

PSMs are classified based on length (95). The α-type PSMs are typically 20–25 amino acids 

long, most having neutral or positive net charge. PSMα and δ-toxin are α-type PSMs, the 

entire protein forming one α-helix (96, 97). In contrast, the β-type PSMs are longer, 

typically 43–45 amino acids in length, most having negative net charge. The structure of the 

β-type PSM – PSMβ2, consists of 3 α-helices that fold to a “v”-like shape (97).

PSMs have multiple roles in S. aureus pathogenesis, including cell lysis, biofilm formation, 

and immune modulation. α-type PSM peptides have high potency in lysing eukaryotic cells 

in a receptor independent manner through targeting the cell membranes (90, 98–100). 

However, lipoproteins present in the serum can inhibit the cytolytic activity of PSMs (101). 

Therefore, the role of PSMs in extracellular cytolysis in vivo is unclear. In contrast, 

phagocytosed S. aureus produces PSMs to lyse neutrophils and osteoblasts intracellularly 

(99, 100). As such, the role of PSMs could be to mediate intracellular escape of S. aureus.

Sublytic concentration of PSMs have immune modulatory effects on host cells. In humans, 

PSMs are detected by the pattern recognition receptor formyl peptide receptor 2 (FPR2) 

(102). FPR2 is a member of the G-protein-coupled receptor family that specializes in 

recognizing pathogen-associated molecular patterns (PAMPs) produced by bacteria. FPR2 is 

predominately expressed on innate immune cell types, including neutrophils, monocytes, 

macrophages, and immature dendritic cells. Upon activation by PSMs, FPR2 induces a 
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series of proinflammatory responses, including cytokine production, neutrophil chemotaxis, 

and leukocyte activation (102).

PSMs can shape biofilms by forming channels needed for nutrient delivery and 

dissemination (103). Additionally, the α-type can cause a leaky S. aureus membrane, 

resulting in the release of cytoplasmic proteins (104).

ε-toxin—Merriman et al. identified ε-toxin in 2015. The gene encoding ε-toxin, cytE, is 

conserved in the core genome of S. aureus (105). Since this is a recently identified toxin, the 

regulation of ε-toxin expression and the mode of action of the toxin are unknown. However, 

ε-toxin lyses rabbit erythrocytes and human keratinocytes. Lytic concentration of ε-toxin in 

keratinocytes promotes the secretion proinflammatory cytokine, IL-8 (105). In contrast, 

sublytic concentration of ε-toxin slows the rate of keratinocyte proliferation, suggesting a 

role for the toxin in impairing normal wound healing (105). Microgram amount of ε-toxin 

can result in neutrophil recruitment to the injection site when administered subcutaneously 

in rabbits (105). Moreover, the same dosage of ε-toxin can cause rabbits to develop fever 

after intravenous administration of the toxin (105). The role of this toxin in S. aureus 

infections remains to be fully elucidated.

B) Staphylococcal superantigens

T cell superantigens—T cell superantigens (SAgs) represent the largest family of 

exotoxins produced by S. aureus. Their molecular weights range from 19–30kDa. SAgs are 

unique because they are resistant to heat, proteolysis, and desiccation (106). Due to their 

extreme stability and high toxicity in humans, some of them are classified as select agents 

for bioterrorism (i.e. SEB).

The genes encoding SAgs are found in various components of the S. aureus genome. The 

recently discovered selX is part of the core genome (107). The other SAgs are encoded in 

different mobile genetic elements, such as bacteriophages, plasmids, or pathogenicity islands 

(108–111). However, the distribution of SAgs is highly variable in the same mobile genetic 

element found between different strains (112).

SAgs share structural homology to another family of closely related proteins, the 

superantigen-like proteins (SSLs). The ssl are encoded in the gene cluster νSaα (113) This 

family of proteins was originally called SETs for staphylococcal enterotoxin-like proteins 

(113). However, they were renamed by the International Nomenclature Committee for 

Staphylococcal Superantigens in 2004 to reflect their lack of emetic and mitogenic 

properties (114). The primary role of these proteins seems to be immune evasion (See 

reference (111) for a review on the SSLs).

SAgs exhibit tremendous sequence diversity (Figure 5), but their overall structures are 

similar. SAgs have two primary domains: a N-terminal oligosaccharide/oligonucleotide 

binding (O/B) fold that is shaped like a β-barrel and a C-terminal β-grasp domain comprised 

of anti-parallel β-sheets. The two domains are connected by an α-helix (115). Additionally, 

all SAgs have a dodecapeptide binding site, a Vβ T cell receptor (TCR) binding site, and up 

to two major histocompatibility complex (MHC) binding sites (106).
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An SAg exerts its mitogenic property by crosslinking the Vβ TCR on a T cell with the MHC 

class II molecule (MHCII) on an antigen presenting cell (APC), resulting in polyclonal T 

cell proliferation (Figure 6) (116). SAgs are highly effective T cell mitogens that can 

stimulate up to 50% of T cells (106). SAg-induced T cell proliferation is followed by a state 

of T cell anergy, where activated T cells failed to proliferate and/or undergo apoptosis. SAgs 

are one of the many ways S. aureus manipulates the host immune system to prevent the 

generation of functional adaptive immunity.

SAgs can be broadly divided into three groups, staphylococcal enterotoxins (SEs), 

staphylococcal enterotoxin-like (SE-l) superantigens, and toxic shock syndrome toxin-1 

(TSST-1). Each group of SAgs will be briefly summarized below (see reference (106)).

Staphylococcal enterotoxins:  There are 7 distinct SEs, SEA to SEE, and SEG. 

Additionally, several variants of SEB and SEC have been identified. They were originally 

named for their ability to induce emesis, a key characteristic of staphylococcal food 

poisoning (114). Ingestion of SEs causes vomiting and diarrhea. However, the disease is 

usually self-limiting. The emetic activity of SEs is correlated with the presence of a 9–19 

amino acid-long disulfide loop in the protein.

SEs can have up to two MHC-binding sites. SEBs and SECs contain only one MHC-binding 

site, while the other SEs have two MHC-binding sites (106, 117, 118). The low-affinity 

binding site targeting the MHCII α-chain is common to all SAgs. The second site is a Zn2+-

dependent high-affinity binding site that targets the β-chain of MHCII (119). SAgs that have 

two MHC-binding sites are 10–1000-fold more potent compared to SAgs that have only one. 

However, they are produced at a much lower abundance compared to some other SAgs that 

contain 1 MHC-binding site, such as TSST-1 and SEB (106).

Staphylococcal enterotoxin-like superantigens (SE-ls):  The other 15 SAgs are SE-l H to 

SE-l X (106, 114). SE-ls include all newly identified SAgs that are T cell mitogens but have 

unproven emetic activity (114). However, this group also contains SE-ls that lack the emesis-

associated disulfide loop and are proven to not induce emesis (106). SE-ls can have up to 

two MHC binding sites and a 15-amino acid extension for specific TCR interactions (106, 

120).

Toxic shock syndrome toxin-1:  The gene tst is encoded in several pathogenicity islands, 

including SaPI1, SaPI2, and SaPIbov1 (121). TSST-1 has only one low-affinity MHC-

binding site targeting the MHCII α-chain, a Vβ TCR binding site, and a dodecapeptide 

binding site (122). This dodecapeptide binding site is proposed to be important for the 

interaction of TSST-1 with epithelial cells and the immune stimulatory molecules, CD40 and 

CD28 (123–125).

TSST-1 originally was known as SEF. In 1984, it was renamed to reflect the lack of emetic 

activity and its association to toxic shock syndrome (TSS). TSS is an acute systemic illness 

characterized by hypotension, fever, rash, and desquamation 1–2 weeks after onset. As 

defined by the Center for Disease Control, TSS involves at least 3 different organ systems – 

gastrointestinal, muscular, mucous membrane, renal, hepatic, hematologic, or central 
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nervous system (126). TSS can be further classified as menstrual and non-menstrual TSS. 

Menstrual TSS is usually associated with vaginal/cervical mucosae colonization of TSST-1-

producing S. aureus and tampon use (127, 128). Approximately 50% of non-menstrual TSS 

are caused by TSST-1-producing strains and the remaining are caused by strains producing 

SEB or SEC (129).

B cell superantigen—Staphylococcal protein A (SpA) is the only known B cell 

superantigen produced by S. aureus. A majority of clinical isolates contain spa in the core 

genome (130). The SpA precursor has a N-terminal signal peptide that is cleaved prior to the 

secretion of the mature protein. Mature SpA has 4–5 highly conserved Ig-binding domains 

connected by short linkers at the N-terminus (131). This is followed by a hypervariable 

region called Region X, comprised of subregions Xr and Xc (132). The highly variable and 

repetitive octapeptide in Xr is the basis of SpA-typing, a high throughput method of 

grouping S. aureus isolates (130). Region X is followed by the C-terminal LPXTG motif for 

covalent anchoring of the protein to the cell wall (131). However, SpA proteins can be 

released from the cell wall by the cell wall hydrolase, LytM (133).

The Ig-binding domains confer upon SpA the ability to bind Fcγ portion of 

immunoglobulins (Ig) to prevent opsonization (134). These Ig-binding domains also mediate 

SpA binding to B cells by crosslinking VH3-expresssing B cell receptor (BCR), which 

results in B cell activation; however, activation without costimulatory signals results in death 

and subsequent clonal deletion of B cells (135–137).

Conventional antigen recognition by BCR requires antigen recognition at the 

complementarity-determining region (CDR). In contrast, SpA exerts its mitogenic activity 

by binding to the variable region of the heavy chain, away from the CDR, thus bypassing the 

antigen specificity requirement for B cell activation (Figure 6) (138, 139). SpA-mediated 

clonal deletion of VH3-expressing B cells can lead to the impairment of the B cell repertoire 

important for mounting effective antimicrobial defenses against the pathogen (140, 141).

During intravenous infection, SpA prevents opsonophagocytosis of the bacteria by binding 

to immunoglobulins (Ig) and impedes the development of specific anti-S. aureus antibodies 

(142). In contrast, isogenic strains that lack spa or express variants that cannot bind to Ig 

exhibited reduced kidney abscess formation and elicited specific anti-S. aureus antibodies 

(142). Mice immunized with the Ig-binding deficient SpA variant, SpAKKAA, acquired 

protective immunity and could mount a more effective humoral response against S. aureus 

antigens (143).

C) Cytotoxic enzymes

β-toxin (also known as β-hemolysin)—The β-toxin encoding gene, hlb, is part of the 

core S. aureus genome. However, due to the presence of the hlb-converting prophage (i.e. 

ΦSa3, Φ13), which disrupts the gene, only a limited number of human clinical isolates 

produce β-toxin (144, 145). The prophage carries the immune evasion gene cluster encoding 

for immune evasion factors, such as the staphylococcal complement inhibitor proteins 

(SCIN), chemotaxis-inhibitory proteins (CHIPS), and staphylokinase (145). These virulence 

factors are thought to be involved in S. aureus immune evasion and survival in the human 
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host. The hlb-converting prophage is prevalent in strains associated with human infections 

(~90%), but it is less frequently found in animal isolates (~30%) (146). However, chronic 

infections or environmental pressures (i.e. oxidative stress, antibiotics, temperature) can 

promote the excision of the phage and the production of β-toxin (147–150). Thus, the 

contribution of β-toxin during human infection is unclear.

β-toxin is a Mg2+-dependent neutral sphingomyelinase (SMase), a phospholipase that 

specifically cleaves sphingomyelin to produce ceramide and phosphocholine (151). This 

toxin was first identified in 1935 by Glenny and Stevens based on several unique 

observations: hemolysis of erythrocytes in the presence of α-toxin neutralizing serum, lysis 

of sheep but not rabbit erythrocytes, and enhanced hemolysis caused by temperature shifting 

from 37°C to a lower temperature (152). As such, β-toxin is also known as a hot-cold 

hemolysin. This unique phenomenon is the result of ceramide hydrolysis products at 37°C 

being held together by cohesive forces in the membrane. When temperature decreases (i.e. 

4°C), this causes a phase separation that condenses ceramide into pools and collapses the 

lipid bilayer, resulting in the invaginations observed on erythrocyte membranes by electron 

microscopy (153).

Crystal structure of β-toxin reveals structural homology to members of the DNase I 

superfamily (154). β-toxin is a single domain protein consisting of 4 layers: 2 layers of β-

sheets at the center and 2 outer layers comprised of α-helices and β-strands (154). Based on 

the structural homology to the DNase I superfamily, a secondary function for β-toxin was 

hypothesized. Later, β-toxin was shown to enhance biofilm formation through catalyzing the 

formation of nucleoprotein matrix in biofilms, therefore β-toxin is also a biofilm ligase 

(155).

β-toxin exhibits species-dependent hemolytic activity that correlates with the amount of 

sphingomyelin content in erythrocytes: sheep, cow, and goat erythrocytes are highly 

sensitive to the toxin, rabbits and human exhibit intermediate sensitivity, while murine and 

canine erythrocytes are resistant (156). The SMase activity of β-toxin also causes the lysis of 

human keratinocytes, monocytes, T cells, and bovine epithelial cells (154, 157–159). β-toxin 

stimulates the production of proinflammatory cytokines in human monocytes (158), but 

suppresses IL8 production and cell adhesion molecules expressions in human endothelial 

cell, therefore the toxin can prevent leukocyte migration across the endothelium (160).

Infection with β-toxin producing S. aureus results in larger lesions in the organs without 

affecting the overall bacterial burden in the rabbit endocarditis and pneumonia models (147). 

The presence of β-toxin enhances S. aureus colonization of the skin (159) and induces 

injuries to the scleral epithelial cells during ocular keratitis in mice (27). In an infective 

endocarditis model, rabbits infected with S. aureus producing β-toxin mutants that lack 

SMase activity have enhanced survival and smaller lesions in the heart, but there were no 

differences in bacterial burden when compared to the isogenic β-toxin-producing strain 

(161). Intranasal administration of β-toxin induces the shedding of syndecan-1, a major 

heparan sulfate proteoglycan molecule on lung epithelial cells and causes neutrophil 

infiltration into the lungs in mice (162). The shedding of sydecan-1 is caused by the SMase 
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activity of β-toxin, as intranasal intoxication with SMase mutants have reduced shedding of 

this protein in vivo, resulting in reduced lung pathology (162).

Exfoliative toxins—Exfoliative toxins (ETs) are also known as epidermolytic toxins. 

There are 4 antigenically distinct forms found in S. aureus: ETA, ETB, ETC, and ETD. Each 

ET is encoded on a different mobile genetic element: eta is encoded in the genome of a 

temperate phage that has been shown to convert eta-negative strains to toxin producers (163, 

164). etb is found on the plasmid pETB (165) and etd is encoded as part of a pathogenicity 

island (166). ETC was purified from a S. aureus isolate associated horse infection, however, 

the genetic locus of ETC has not been described (167).

Most of what is currently known about the ETs is based on ETA and ETB. ETs are the 

causative agents for staphylococcal scalded skin syndrome (SSSS), including Ritter’s 

disease, toxic epidermal necrosis, bullous impetigo, and certain erythema cases. SSSS 

predominantly affects neonates, infants, and immunocompromised adult patients (168). 

Symptoms of SSSS are characterized by formation of blisters and superficial desquamation, 

involving only the skin layer (168). Although SSSS was initially described in 1878, its 

association with S. aureus infections was first suggested in 1967 and the contribution of ETs 

to the blistering symptoms was not identified until in the 1970s (163, 169–171). This delay 

was in part contributed by the ETs’ unique mode of action. The lesions characteristic of 

SSSS are often sterile, because the ETs can be distributed through the bloodstream from a 

distant site to cause symptoms (171).

ETs are glutamate-specific serine proteases of the chymotrypsin family. The catalytic triad 

(histidine, aspartate, serine) is conserved in all ETs (168). ETA and ETB are similar in 

structure and share homology with other staphylococcal serine proteases – SspA and the 

serine protease-like proteins (Figure 7) (172–174). The N-terminal α-helical extension is 

required for enzyme activity (172, 174). The crystal structures of both ETA and ETB show 

that the key residues in Loop D occupy the oxyanion hole required for enzymatic activity of 

all serine proteases, thus the crystal structures represent the inactive forms of the enzymes 

(172, 174). These findings suggest that the protease activity of ET may require a specific 

cellular target and occur under specific condition.

In the early 2000’s, ETs were shown to interact with human and mouse desmoglein 1 

(Dsg1), causing blistering of the superficial skin (175, 176). ET recognition of Dsg1 is 

conformational, requiring the presence of Ca2+. Lack of Ca2+ results in the unfolding of 

Dsg1, thus the inability of ETs to cleave the protein (177). Through domain swapping and 

site-mutagenesis studies, it was determined that five amino acids (Q271, Y274, T275, I276, 

E277) belonging to the extracellular domain 3 of Dsg1 are critical for ETA to exert its 

protease activity (178).

With the identification of Dsg1 as the substrate for ETs, the pathophysiology of the 

superficial skin blistering in SSSS was explained. In humans, there are 4 isoforms of 

desmogleins, Dsg1–4 (179). Desmogleins are cadherins required for desmosome cell-to-cell 

adhesion to maintain the integrity of the epidermis. ETs target only Dsg1, which is 

expressed throughout the human epidermis. Cleavage of Dsg1 disrupts the cell-to-cell 
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adhesion of the epidermis, resulting in blistering and desquamation of the superficial skin. 

The other strata of the epidermis are unaffected because of the presence of Dsg2–4, which 

are not targeted by ETs, and thus compensate for the destruction of Dsg1 (175, 180).

Section II: Exoenzymes

Introduction

S. aureus devotes a significant amount of its resources to produce virulence factors to evade 

the host immune system and to acquire necessary nutrients for its own survival. In the 

previous section, the mechanisms of toxin-mediated host immune evasion and their roles in 

S. aureus virulence were discussed. In addition to the toxins, S. aureus also produces a large 

number of virulence factors that have enzymatic properties. They can be broadly categorized 

into two groups: cofactors that activate host zymogens and enzymes for degradation of tissue 

components (Table 2). While these cofactors and secreted enzymes (exoenzymes) have 

different substrates and mechanisms of action, they function to break down bacterial and 

host molecules for nutrient acquisition, bacterial survival, and dissemination.

A) Cofactors for host enzyme activation

Coagulase (Coa), von Willebrand factor binding protein (vWbp), and staphylokinase (Sak) 

are cofactors produced by S. aureus that have no enzymatic activities by themselves, but 

they can activate host zymogens. These three proteins hijack different aspects of the host 

coagulation system, thereby manipulating the host innate defenses to promote bacterial 

survival and dissemination.

Staphylococcal coagulases: Coagulase & von Willebrand factor binding 

protein—The ability to induce coagulation is one of the key criteria used in modern 

medical microbiology for species classification in the genus Staphylococcus – separating 

“coagulase-positive” and “coagulase-negative” species. A majority of staphylococci are 

coagulase-negative, but few are coagulase-positive species, including S. aureus and S. 

intermedius; however, S. schleiferi has both coagulase-positive and coagulase-negative 

subspecies (181).

S. aureus induced coagulation of human plasma was initially documented in 1903 (182). The 

causative agents, coagulase (Coa) and von Willebrand factor binding protein (vWbp), are 

highly active in coagulating human and rabbit plasma (183).

Both coa and vwb are chromosomally encoded. There are 12 different isoforms of coa that 

have been identified thus far; the majority of the variability is attributed to the high sequence 

variability (>50%) of the N-terminus coding region between different strains (184, 185). In 

contrast, vwb, encoding vWbp, is relatively conserved with only 2 different alleles known 

(184). However, a recent report identified several vwb paralogues carried by SaPIs that 

produce vWbps that coagulate ruminant and equine plasma (186).

Coa and vWbp share ~30% protein sequence homology at the N-terminus (187). They both 

have a D1D2 domain for prothrombin binding (188, 189). However, they differ significantly 

at the C-terminus. The C-terminus of Coa has a 188-residue linker region followed by a 
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repeat region comprised of tandem repeats of 27 residues responsible for fibrinogen binding 

(188, 189). In contrast, the C-terminus of vWbp has a von Willebrand factor (vWF) domain 

and a fibrinogen binding domain (188, 190).

Coa or vWbp binds to prothrombin at a ratio of 1:1 to form staphylothrombin. Insertion of 

the N-terminus of Coa into the Ile16 pocket of prothrombin causes a conformational shift 

resulting in the activation of the zymogen (189, 191). Staphylothrombin is highly efficient in 

converting fibrinogen to fibrin (Figure 8).

The activity of staphylothrombin cannot be inhibited by common anti-coagulants (i.e. 

EDTA, heparin) or thrombin inhibitors, such as hirudin and bivalirudin (189, 191–193). 

However, two recently discovered small molecules, argatroband and dabigatran, can inhibit 

the activity of staphylothrombin (194, 195).

ΔcoaΔvwb strain is less virulent compared to its wildtype parent, thus demonstrating a role 

of the coagulases during infection (187, 196, 197). However, coagulases must be present 

concurrently with the infecting strain to promote virulence. Ekstedt et al demostrated that 

while intracerebral co-injection of purified coagulase with coagulase-negative S. aureus 

enhances the virulence of coagulase-negative S. aureus, pre-injection of purified coagulase 

before infection has no effect (198). Additionally, Coa is suggested to have a role in the 

formation of device associated biofilm formation (199).

In an abscess, the coagulases generate a fibrin shield to protect S. aureus from immune cell 

infiltration. Coa is required for the formation of pseudocapsule immediately surrounding the 

abscess and both vWbp and Coa are required for fibrin formation around the pseudocapsule 

(187, 200).

Staphylokinase—Staphylokinase (Sak) is a cofactor that hijacks host plasmin to activate 

plasminogen for the breakdown of fibrin clots and promotes bacterial dissemination (Figure 

8). Sak is produced by lysogenic strains of staphylococci; the prophage encoding Sak 

typically carries other genes encoding virulence factors such as enterotoxin A and 

chemotaxis inhibitory proteins (201, 202). There are three different groups of phages that 

carry the sak gene (203). Serotype B phages (i.e. ΦC) cause positive conversion of Sak 

without disrupting other genes (204, 205). Positive conversion of sak can also be mediated 

by some serotype F phages (i.e. ΦSa3, Φ42D), but the phage integration disrupts the hlb 

gene (144, 202, 206). The phage carrying sak has also been reported to disrupt the coding 

sequences of N-acetylmuramyl-L-alanine amidase and peptidoglycan hydrolase (207, 208).

Sak is a single domain protein consisting of a central α-helix, a 5-strand β-sheet and 2 

shorter β-strands (Figure 9) (209). Sak forms a 1:1 complex with plasmin in the serum to 

form Sak-plasmin (210, 211). This complex is highly efficient in converting plasminogen to 

plasmin. Sak can also bind to plasminogen, however, this complex is inactive and must be 

converted to Sak-plasmin to have enzymatic activity (212). In an active Sak-plasmin 

complex, the first 10 residues at the N-terminus of mature Sak are removed to expose the 

charged residue - Lys11 (213). Deletion of Lys11 inactivates Sak (214). The binding of Sak 

to plasmin directs the active site of plasmin to favor cleavage of the activation loop in 
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plasminogen and promotes the conversion of plasminogen to plasmin by enhancing substrate 

presentation to plasmin. (Figure 9) (215).

Circulating Sak-plasmin complexes are sensitive to dissociation by α2-antiplasmin, but 

fibrin-bound complexes are protected from inactivation (216). The fibrin-bound complexes 

cleave IgG and human C3b, thus preventing opsonization of the bacteria by the complement 

system (217). Additionally, Sak-plasmin complexes can activate the matrix metalloprotease 

1 (MMP-1), important for leukocyte migration and activation (218). Importantly, Sak 

neutralizes the bactericidal activities of α-defensins and LL-37, two major human anti-

microbial peptides (AMPs) (219, 220).

Sak is highly species-specific. Sak is active for human, dog, goat, rabbit, and sheep 

plasminogen, but inactive for mouse, pig, cow, and buffalo plasminogen (221). Using 

transgenic mice that produce human plasminogen, studies demonstrated that Sak facilitates 

S. aureus invasion of the skin barrier to generate large and open lesions (222, 223). However, 

plasmin activation is known to promote wound healing and to reduce inflammation. Thus, 

during skin infection, Sak may functions as vanguard to establish the primary infection, but 

after the infection is established, Sak limits the severity of infections to promote 

dissemination (223).

Furthermore, Sak reduces biofilm formation and facilitates the detachment of mature biofilm 

by activating plasminogen (221). Corroborating these observations, high Sak-producing 

strains are often associated with less biofilm formation in vitro and non-invasive infections 

in humans (221, 223).

B) Enzymes that degrade host tissue components

Nucleases—Staphylococcal nuclease, originally known as micrococcal DNase, was 

identified in the culture supernatants of S. aureus by Cunningham et al. in 1956 (224). 

Nuclease requires Ca2+ ions for activity, but not other divalent cations (224, 225). 

Staphylococcal nuclease is also known as thermonuclease, named after its resistance to heat 

inactivation (224, 225). Staphylococcal nuclease functions as both an endo- and exo-

nuclease that break down DNA and RNA substrates through the cleavage of the 5’-

phosphoryl ester bond (224, 225).

With the availability of whole genome sequencing in the late ‘90s, the sequence of S. aureus 

genome became available, which led to the identification of two different staphylococcal 

nuclease genes, nuc (SA0746) and nuc2 (SA1160) (226, 227). The two genes are located at 

disparate regions in the genome, under the control of separate promoters. The two nucleases 

share 34% amino acid similarity overall and 42% similarity within the catalytic domain 

(228). Both nucleases are Ca2+ dependent, heat-resistant, and are able to use DNA & RNA 

as substrates (226, 228). A major difference between Nuc and Nuc2 is their cellular 

localization. Nuc is a secreted enzyme with two different isoforms, NucB and NucA (229, 

230). In contrast, Nuc2 is surface-bound (228).
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Much of what is currently known about nucleases is gathered from studies performed on 

Nuc. During infections, Nuc regulates biofilm formation and mediates bacterial escape from 

neutrophil extracellular traps (NETs).

Nuc disperses biofilm by breaking down extracellular DNA (eDNA). Biofilm formation is 

enhanced in strains that do not produce Nuc (230, 231). Expression of nuc is repressed 

during biofilm formation, providing evidence that S. aureus controls nuclease expression to 

regulate biofilm formation (230, 232). Furthermore, the nuc mutant has decreased fitness 

during intraperitoneal infection in vivo (232).

The second role of Nuc is to mediate bacterial escape from NETs. NET is an innate immune 

defense mechanism by which DNA released from dying neutrophils immobilizes and 

facilitates killing of invading pathogens (233). Nuc degrades NETs to allow S. aureus to 

escape (234).

Moreover, when Nuc degrades DNA in the abscess or NETs, the degradation products, 

monophosphate nucleotides, become substrate for another enzyme, adenosine synthase A 

(AdsA) (235). AdsA converts the degraded DNA to deoxyadenosine, which induces 

caspase-3 activation, leading to apoptosis of macrophages surrounding the abscess or the 

NET, thus promoting S. aureus survival (235).

The contribution of Nuc2 to S. aureus virulence is less clear due to its low expression level 

compared to Nuc (228). Purified Nuc2 has been demonstrated to disperse biofilms in vitro 

(228). A mutant expressing only Nuc2 but not Nuc showed that the nuclease is produced 

during intramuscular infections in mice, albeit at a much lower level (228). The 

identification of Nuc2 in vivo suggests that it may have a role in S. aureus virulence, 

possibly performing similar functions as the secreted Nuc but on the bacterial surface.

Proteases—Staphylococci encode 3 families of secreted proteases: metalloproteases, 

cysteine proteases, and serine proteases. Collectively, these proteases have roles in nutrient 

acquisition, bacterial dissemination, and immune evasion. Currently, S. aureus is known to 

produce 12 different proteases: one metalloprotease (aureolysin/Aur), two cysteine proteases 

(staphopain A (ScpA), staphopain B (SspB)), and nine different serine proteases. These 

serine proteases include V8 protease (SspA), serine protease-like proteins A-F (SplA-F), and 

exfoliative toxins A & B (ETA & ETB). Although Spls, ETA, and ETB are secreted as active 

enzymes, all the other proteases are secreted as zymogens, requiring proteolytic cleavage of 

the pro-peptide for activation (Figure 10). The roles of ETA and ETB in S. aureus virulence 

are described in the Exotoxin section.

In the following sections, we will discuss mode of action of each protease family and its 

proposed role in S. aureus virulence:

Metalloprotease – Aureolysin:  The S. aureus metalloprotease, aureolysin (Aur), also 

known as Protease III, was identified in the culture supernatant of strain V8 by Arvidson et 

al. in 1972 (236, 237). The structure of Aur is comprised of two conserved domains common 

to bacterial metalloproteases of the thermolysin family: the N-terminal β-pleated domain 

and the C-terminal α-helical domain (238). The mechanisms of substrate binding and 
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protein catalysis are also common among the proteases in this family. However, unlike other 

bacterial metalloprotease in the thermolysin family, Aur does not have elastase activity (238, 

239).

Aur self-activates by autoproteolysis through the cleavage of the N-terminal pro-peptide 

(Figure 10) (240). The active enzyme prefers to cleave peptide bonds at the N-terminal side 

of bulky hydrophobic residues, such as alanine, isoleucine, and tyrosine (241). The presence 

of Zn2+ is required for enzyme activity, but Co2+ can act as a substitute and increases 

enzyme activity (242). Additionally, binding to Ca2+ ions stabilize Aur; whereas chelating 

agents, such as EDTA, irreversibly denature the protein (236, 238).

The broad substrate specificity of Aur allows the metalloprotease to target a variety of 

substrates, including other S. aureus proteins that are important for virulence and host 

proteins that are important for immune defense. Aur activates SspA, the second protease in 

the staphylococcal protease activation cascade (Figure 10) (243). Additionally, Aur can 

degrade clumping factor B (ClfB) and the PSMα peptides (244, 245). Collectively, Aur can 

shape the secreted and surface proteome of S. aureus (246).

Aur contributes directly to S. aureus immune evasion and dissemination through the 

cleavage and inactivation of the antimicrobial peptide LL-37, thus promoting S. aureus 

survival (247). Aur can also degrade the human plasma protease inhibitors – α1-proteinase 

inhibitor and α1-antichymotrypsin present in the serum, albeit not as efficiently as SspA 

(248, 249). As such, Aur and SspA are proposed to work synergistically to achieve immune 

evasion.

Aur can affect complement activation by cleaving the complement protein C3 to C3a and 

C3b in serum (250). The anaphylatoxin, C3a, is further degraded by Aur, preventing 

leukocyte activation (250). The soluble C3b fragment is inhibited and degraded by Factor H 

and Factor I in the serum (250, 251). Degradation of C3 by Aur results in the depletion of 

C3 proteins, thus preventing the formation of the membrane attack complex (MAC) on the 

bacteria and promotes bacteria survival. Furthermore, Aur activates pro-thrombin and pro-

urokinases and inactivates plasminogen inhibitors, thereby manipulating the host 

coagulation system (252, 253). The various roles of Aur in modulating S. aureus proteome 

and host innate defense molecules suggest Aur has an important role in promoting survival 

and dissemination of the bacteria in vivo. This is corroborated by the detection of Aur in 

phagocytosed S. aureus, suggesting the protease may have a role during intracellular 

infection (254).

Serine Proteases – SspA:  The serine protease, SspA is also known as the V8 protease or 

GluV8. The gene encoding SspA (sspA) is part of the staphylococcal serine protease operon 

(ssp), consisting of 3 genes, sspA, sspB, and sspC (255). The functions of SspB and SspC 

will be discussed later in this section.

SspA was identified in the culture supernatants of strain V8 by Drapeau et al. in 1972 (256). 

Around the same time, Arvidson et al. identified Protease I that exhibited similar properties 

as the SspA identified by Drapeau et al., however, whether these two reports describe the 
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same enzyme was difficult to decipher because there were differences in molecular weight 

and protease inhibitor sensitivity between the two reports (241, 257). Based on the report by 

Drapeau et al., the enzymatic activity of SspA can be inhibited by the serine protease 

inhibitor disopropyl flurophosphate (DFP) (256).

SspA is a glutamyl endopeptidase, part of a small group of serine proteases that 

preferentially cleaves substrates at the C-terminal side of glutamate and aspartate (256). The 

preference for negatively charged residues as substrates at neutral pH is due to of the 

protein’s positively charged N-terminus (258). Crystal structure of SspA showed the protein 

lacks the disulfide bonds commonly found in other proteins of this family (258). However, 

SspA shares high structural homology to the serine proteases – staphylococcal exfoliative 

toxins and bovine trypsin, despite having limited protein sequence similarity (258). The 

conserved trypsin-like serine protease catalytic triad, consisting of histidine, asparagine, and 

serine, is found in SspA. The C-terminal repeat domain consists of tandem repeats of Pro-

Asp or Asn-Asn that ranges from 9–19 repeats (259–261), however, as this C-terminal repeat 

domain is not required for activity (262), its role in the function of the protein is unclear.

SspA is secreted by S. aureus as a zymogen. However, pro-SspA can undergo 

autoproteolysis to generate a shorter version of pro-SspA (243). Aur processing is required 

for both forms of pro-SspA to become active enzymes (Figure 10) (243).

SspA contributes to S. aureus immune evasion and dissemination by breaking down self and 

host proteins. SspA cleaves fibrinogen binding factors on S. aureus cell surface, thus reduces 

bacterial adhesion and enhances bacterial dissemination, and ultimately results in the 

breakdown of biofilms (263, 264). SspA can also degrade host proteins such as α1-

proteinase inhibitor (248), the IL-6 cytokine (265), and immunoglobulins (266, 267), thus 

SspA directly modulates immune activation and opsonization. SspA can cleave LL-37, but 

the cleavage does not inactivate the antimicrobial peptide (247).

SspA is produced upon S. aureus phagocytosis by neutrophils, suggesting its role in 

facilitating S. aureus intracellular escape, potentially through activating the cysteine 

protease, Staphopain B (254). SspA can disrupt epithelial barriers, compromising cell 

junction integrity (265, 268). Skin infection models of sspA mutants suggest a slight 

decrease in bacterial fitness in vivo (269). However, since the activity of SspA can be 

inhibited by α2-macrogobulin present in the serum, its role as a soluble virulence factor in 

serum during S. aureus pathogenesis remains unclear (263).

Cysteine proteases – Staphopains:  Staphopain A (ScpA) was the first cysteine protease 

identified in S. aureus by Arvidson et al. (described as Protease II) in 1973 (257). 

Subsequently, Staphopain B (SspB) was identified as ORFX in 1998 by Chan et al. (270). A 

third staphopain, Staphopain C has been described in avian-associated S. aureus isolates 

(271, 272). Most of what is known regarding staphopains is derived from studies on 

staphopains A & B.

The staphylococcal cysteine protease operon (scp), contains the genes scpA and scpB, 

encoding the proteins ScpA and its intracellular inhibitor staphostatin A, respectively (273). 
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The staphylococcal serine protease operon (ssp) contains the genes sspA, sspB, and sspC, 

encoding the V8 protease (SspA), staphopain B (SspB), and its intracellular inhibitor 

staphostatin B (SspC) (255).

ScpA and SspB are secreted as zymogens. Pro-SspB is processed by SspA as the last step of 

the proteolytic cascade that began with Aur (Figure 10) (255, 274). In contrast, processing of 

pro-ScpA is not mediated by Aur, SspA, or SspB (269). Instead, pro-ScpA undergoes rapid 

autoproteolysis, but this process also leads to rapid degradation of the protease (275).

Despite limited primary sequence identity, crystal structures of both staphopains 

demonstrated structural similarity to papain. Classical papain-like proteases contain 2 

domains: the helical L-domain is comprised of the N-terminal part of the protein, containing 

the catalytic cysteine; and the R-domain is constituted by the C-terminal part of the protein, 

which folds into anti-parallel β-sheets forming a β-barrel-like structure, containing the 

catalytic histidine and aspartate (Figure 11) (276–278). The location of the catalytic triad is 

conserved in both staphopains (276, 277).

Although ScpA and SspB share high structural similarity, subtle differences between the 

proteases confer different substrate specificities. ScpA cleaves elastins found in connective 

tissues, pulmonary surfactant protein A in the lungs, and the chemokine receptor CXCR2 on 

leukocytes (239, 279–281). Additionally, ScpA promotes vascular leakage by activating the 

plasma kallikerin/kinin system, resulting in hypotension (281). The activity of ScpA in 

mediating vascular leakage is enhanced by SspB; however, SspB alone does not induce 

vascular leakage, demonstrating substrate specificity of the two proteases (281).

In contrast, SspB degrades antimicrobial peptide, LL-37, thereby promoting bacterial 

survival (282). SspB also cleaves CD11b and CD31, surface proteins important for the 

activation and survival of phagocytes, respectively (283, 284). Thus, SspB prevents S. aureus 

from phagocytosis while diminishing the leukocytes’ abilities to detect pathogens. 

Paradoxically, SspB is also a potent activator of chimerin, a chemoattractant for dendritic 

cells and macrophages (285). S. aureus thrives intracellularly in macrophages and dendritic 

cells (286, 287). Therefore, SspB may function to promote the intracellular lifestyle of S. 

aureus for persistent infections. In fact, S. aureus has been demonstrated to produce SspB, 

SspA, and Aur after neutrophil phagocytosis (254).

Both ScpA and SspB are implicated in modulating biofilm formation (288, 289). The 

expression of both staphopains is repressed during biofilm formation and the production of 

staphopain result in the dispersal of biofilms (289).

In addition to promoting biofilm dispersal, staphopains have a direct effect on the host’s 

connective tissue and coagulation systems. Staphopains inactivate a number of host proteins, 

including α1-proteinase inhibitor, collagen, and fibrinogens; however, SspB has higher 

activity in cleaving fibrinogen and collagen compared to ScpA (248, 290).

The activities of staphopains are inhibited by the cysteine protease inhibitor E-64; heavy 

metals, such as Co2+, Ag2+, Hg+, and Zn2+; and host derived proteins, including α2-

macroglobulin in human plasma, and the epithelial serpin, SCCA1 (239, 257, 291). 
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Additionally, S. aureus produces inhibitors against the enzymes, known as staphostatins. 

Staphostatins are specific reversible inhibitors of staphopains. Staphostatin A can only 

inhibit staphopain A, but not staphopain B (273). Similarly, staphostatin B inhibits only 

staphopain B (273). Both staphostatins are similar in size and structure. These small proteins 

(~13 kDa) are each comprised of 8 β-strands forming a single mixed β-barrel domain (292). 

Staphostatin occupies the same binding site as substrate, thus they are competitive inhibitors 

(Figure 11) (276, 293). Staphostatins lack signal peptides, thus they are proposed to inhibit 

intracellular staphopain activities prior to secretion of the proenzyme (273, 294).

Serine proteases – the serine protease-like proteins:  Serine protease-like proteins A-F 

(SplA-F) are the newest group of secreted staphylococcal serine proteases identified. SplC 

(named ORF-2 in the study) was the first Spl identified from a screen of S. aureus antigens 

reactive to serum antibodies from endocarditis patients (295). Soon after, splC was 

discovered as part of the spl operon, encoding splA-F (296). This operon is located in the 

gene cluster νSaβ, present in over 60% of S. aureus genomes (296, 297).

Spls share 40–60% protein sequence identity; except for SplD and SplF, which have 95% 

sequence similarity with each other (Figure 12) (296). The Spls are similar in size, ranging 

from 21–22 kDa. SplA-D have been characterized, and their structures were determined by 

X-ray crystallography (298–301). Crystal structures of the four Spls showed structural 

homology to the other staphylococcal serine proteases. Spls have a chymotrypsin-like fold, 

consisting of two β-barrel domains (Figure 12) (298–301). The catalytic triad typical of 

serine proteases (His, Asp, Ser) is conserved and is present in the center between the two 

domains (296, 298–301).

Based on the functional studies on the Spls, the precise cleavage of the signal peptide is 

critical for protease activity. An additional 2 amino acids (such as those resulting from a 

thrombin cleavage) in the N-terminus of SplA, SplB, and SplC are enough to render the 

enzymes inactive (296, 298, 299). Therefore, the signal peptides of Spls serve dual 

functions: 1) to direct the protein secretion, and 2) to serve as pro-peptides to prevent 

enzyme activation prior to secretion.

SplA, SplB, and SplD have extremely narrow substrate specificities, requiring the 

recognition of substrate consensus sequences that are 4–5 amino acids in length (Table 3) 

(298–300). Mucin-16, an O-glycosylated transmembrane protein present in the ocular 

epithelia, is a substrate for SplA (302). Additionally, searches based on the substrate 

consensus sequences identified many olfactory receptors as potential Spl substrates, but they 

remain to be verified experimentally (298–300). Nevertheless, these searches suggest Spls 

may be important for nasal colonization. SplD contributes to airway inflammation and 

asthma by promoting IgE production and Th2 responses (303, 304). The role of SplD and 

SplF in asthma is supported by the identification of these proteins in nasal polyp samples 

from asthma patient who are also S. aureus nasal carriers (303).

However, the role of Spls in S. aureus pathogenesis remains unclear. While murine 

pneumonia and intraperitoneal infection models using Δspl mutants had no effect on host 

survival or bacterial burden, the absence of spl limited the dissemination of bacteria in vivo 
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in a pneumonia model (296, 303). Proteomic analysis of wildtype S. aureus and Δspl mutant 

demonstrated significant changes in many virulence factors important for adhesion and 

immune evasion, thus Spls have a role in shaping the S. aureus proteome (302).

Hyaluronidase—Hyaluronic acid (HA) is a linear polysaccharide comprised of repeating 

units of N-acetylglucosamine and glucuronic acid linked by alternating β−1,3 and β−1,4 

glycosidic bonds (305). HA is a critical component of extracellular matrices (ECM) in 

vertebrates, providing homeostasis and structural integrity to cells and tissues; it is also 

important for immune regulation (306, 307). The enzymes that break down HA are 

collectively known as hyaluronate lyase or hyaluronidase.

In nature, hyaluronidases can be found in vertebrates, invertebrates, and bacteria. 

Hyaluronidases found in vertebrates and invertebrates break down HA to tetrasaccharides 

(308). In contrast, bacterial hyaluronidases act as endo-N-aceylhexoaminidases and cleave 

the β−1,4 linkage in a process known as β-elimination, breaking down HA to unsaturated 

disaccharides (308).

S. aureus and S. hyicus are the only staphylococci known to produce hyaluronidase (309, 

310). The activity of staphylococcal hyaluronidase was initially reported by Duran-Reynals 

in 1933 as a “spreading factor” that increased lesion sizes in a rabbit skin infection model 

(311). Subsequently, this “spreading factor” was identified by Chain and Duthie in 1940 as 

hyaluronidase (312). However, it would be in 1995, when the gene encoding for 

staphylococcal hyaluronidase, hysA, was eventually cloned and the corresponding protein 

purified (313).

As a “spreading factor”, hyaluronidase is implicated in the dissemination of bacteria through 

breaking down HA in ECMs and biofilms. The skin and the lungs are two locations where 

ECMs are abundant. Deletion of hysA resulted in reduced skin and lung pathology and 

lowered bacterial burden in skin and lung infection models, respectively (314, 315). Deletion 

of hysA was also demonstrated to cause increased biofilm formation and reduced bacterial 

dissemination (316).

Lipases

Phospholipases.: S. aureus can produce two different phospholipases: β-toxin and 

phosphatidylinositol-specific phospholipase C (PI-PLC). β-toxin is a neutral 

sphingomylinase with hemolytic and cytolytic activities, previously discussed in the 

Exotoxin section of this chapter. The other staphylococcal phospholipase, PI-PLC was 

discovered in 1960s in S. aureus culture supernatants where PI-PLC hydrolyzed 

phosphatidyl inositol (PI) to diglyceride and inositol phosphate (317, 318). Today, S. aureus 

remain the only staphylococci known to produce PI-PLC (319). S. aureus membrane does 

not contain PI, thus S. aureus is thought to have acquired PI-PLC to adapt to the host 

environment (320).

Like other bacterial PI-PLCs, the staphylococcal PI-PLC has an imperfect (βα)8-barrel 

structure (also known as the TIM barrel) (321). The active site of PI-PLC is conserved and is 

located at the C-terminal end of the β-strands that form the β-barrel (321). The elucidation 
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of the staphylococcal PI-PLC crystal structure provided explanations for many of PI-PLC’s 

biochemical properties (321). PI-PLC is reported to have an optimum pH between 5.5–6.0 

(319). This property can be explained by the unrestricted substrate access to the active site 

under acidic conditions. In contrast, accessibility of the substrate is restricted under basic 

conditions (321). PI-PLC is inactivated by NaCl, HgCl2, and Cu2SO4 (319). Salt sensitivity 

of PI-PLC can be explained by the high electropositivity of the barrel rim region and the 

active site (321). The presence of phosphocholine (PC) enhances the activity of PI-PLC 

(321). Structural analysis of PI-PLC suggests the presence of PC enables transient 

dimerization of two PI-PLC monomers, resulting in the enhancement of enzyme activity 

(322).

Bacterial PI-PLC hydrolyses phosphatidylinositol (PI) in two steps: first, PI is hydrolyzed to 

diacylglycerol (DAG) and the intermediate product myo-inositol 1,2-cyclic phosphate (cIP). 

This is followed by a second slower hydrolysis of cIP to myo-inositol 1-phosphate (IP) (323, 

324). DAG is an important secondary messenger for activating intracellular pathways in 

mammalian cells for growth and survival (325). PI-PLC can also release glycosyl-

phosphatidylinositol (GPI)-anchored proteins on cell membrane (319). Two such proteins 

are C8 binding protein and the decay-accelerating factor (DAF) (326, 327). Both proteins are 

complement regulators normally present on host cells to restrict complement activation on 

self (328, 329). Recently, PI-PLC has been demonstrated to promote survival of S. aureus in 

human blood and neutrophils (330).

Glycerol ester hydrolases (lipases).: S. aureus has two lipases, they are S. aureus lipase 1 

and 2 (SAL1 & SAL2). SAL1- and SAL2-encoding genes are sometimes annotated as gehA 

and gehB, respectively, for glycerol ester hydrolase (331–333). SAL1 has also been 

annotated as lip1 in the literature (331). The two genes are encoded in disparate regions in 

the S. aureus genome, however, they share protein sequence similarity with each other and 

with other lipases found in other staphylococcal species (332, 333).

The lipases are produced as pre-pro-enzymes (334). The pre-pro-enzyme is processed by 

signal peptidase I, which cleaves the signal peptide for secretion. The secreted pro-enzyme 

is cleaved by aureolysin to yield the mature lipase (331). However, cleavage of the pro-

peptide is not required and has no effect on the enzymatic activity (331, 335). Utilizing 

chimeric lipases of S. hyicus expressed in S. carnosus, the lipase pro-peptides were found to 

be important for the translocation of the lipases to the extracellular milieu and for stabilizing 

the proteins to prevent degradation (336, 337).

Enzymatic activities of the lipases are conferred by the conserved catalytic triad, formed by 

serine, aspartate, and histidine (331, 332). Although sharing a similar catalytic mechanism, 

SAL1 and SAL2 differ biochemically and have different substrate preferences. SAL1 

functions optimally at pH 6.0 and is stable under acidic conditions, but it is inactivated when 

pH is above 10 (338). Biochemical and molecular analyses showed that Ca2+ stabilizes the 

structure of SAL1 and increases its activity (334, 338). Accordingly, chelators, such as 

EDTA or EGTA, inhibit SAL1 activity (338). SAL1 has a strong preference for short chain 

triglycerides, but cannot hydrolyze long chain triglycerides (338).
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In contrast, SAL2 functions optimally around pH 8.0 and is inactive under acidic conditions 

(339). The presence of Ca2+ does not enhance the activity of SAL2 (339). As such, chelators 

have minimal effects on activity. SAL2 prefers long chain triglycerides as substrates (331). 

However, SAL2 has also been shown to hydrolyze short chain triglycerides, mono- and di-

glycerides with lower efficiency and with no apparent positional specificity (331).

The conservation of lipases in staphylococcal species implies their evolutionary importance. 

However, the contribution of lipases during disease is unclear. S. aureus clinical isolates 

from deep tissue infections produce more lipases than isolates from superficial infections 

(340). Purified lipases cause aggregation of granulocytes and decrease phagocytosis at high 

concentration (341, 342). During infection, SAL2 was shown to be important for biofilm 

formation and contributed to the virulence of S. aureus strain RN4220 in a murine 

intraperitoneal infection model (343). These observations suggest lipases are involved in the 

overall virulence of S. aureus and promote bacterial survival in biofilms and abscesses. 

Paradoxically, lipase-mediated triglyceride hydrolysis liberates bactericidal free fatty acids, 

which can interfere with pathogenicity (344). For most lipase-producing strains, these 

bactericidal fatty acids can be detoxified by fatty acid-modifying enzymes.

Fatty acid modifying enzyme.: Fatty acid modifying enzyme (FAME) was first described 

in 1992 by Mortensen et al. who observed S. aureus culture filtrates inhibited the 

bactericidal activities of host lipids in abscesses (345). Since the initial discovery, FAME 

activity is well-documented in many staphylococcal species (346, 347). Approximately 80% 

of S. aureus and S. epidermidis produce this enzyme (347, 348). Despite its prevalence, the 

corresponding gene for FAME is not known and the protein has not yet been identified.

FAME promotes staphylococci survival by esterifying the bactericidal free lipids with an 

alcohol substrate to form alcohol esters. Although FAME can esterify free lipids with 

methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol, it prefers cholesterol, which is 

highly abundant in abscesses (345). Saturated and unsaturated fatty acids with 15–19 

carbons are efficiently esterified by FAME; however, esterification is also observed for fatty 

acid chains between 11–24 carbons (349). The optimal pH of the enzyme ranges between 

5.0 to 5.5 and has an optimal temperature of about 40°C (345). Enzyme activity is inhibited 

by di- and tri-glycerides with unsaturated fatty acid side chains (349).

In abscesses, lipases and FAME are thought to complement each other to enhance 

staphylococci survival (350). While lipases break down triglycerides that inhibit FAME 

activities, FAME processes the free fatty acids liberated by lipases to protect the 

staphylococci. This hypothesis is corroborated by the observations that most S. aureus 

strains that carry genes encoding lipases have FAME activities and they are correlated with 

the invasiveness of the bacteria in vivo (345, 348).

Conclusion

S. aureus devotes a significant amount of energy in the production of virulence factors to 

protect the bacteria from host immune surveillances and to promote bacterial survival in 

hostile environments. The importance of these virulence factors during infection has been 
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demonstrated extensively in different ex vivo and in vivo infection models. Pathogenic S. 

aureus is usually present in hostile host environments with limited resources, thus it follows 

that the production of many different virulence factors that serve the same purpose can be a 

waste of limited resources and be disadvantageous for survival. In contrast, this redundancy 

can ensure protection of the bacteria in case one of the virulence factors is rendered 

ineffective. Alternatively, the bacteria may have acquired these seemingly redundant 

virulence factors during its evolution to better adapt to different types of infections or 

colonization sites.

Many of the exotoxins and secreted enzymes discussed in this chapter share structural and 

functional similarities. However, closer examinations of these proteins reveal subtle 

differences that have functional significance. Minor differences in the PFTs lead to the 

cytolysis of various cell types that are critical for immune defense. Each of the SAgs target 

different Vβ TCRs resulting in a broad suppression of the T cell repertoire. Proteases, such 

as the serine proteases, which have structural homology have disparate substrate 

specificities. Other exotoxins and enzymes have similar functions but differ in when and 

where they are produced during growth and pathogenesis, suggesting that the complex and 

seemingly redundant virulence factor repertoire is critical for the success of S. aureus as a 

versatile pathogen. With the rise in antibiotic resistance in microbes, including S. aureus, 

there is an urgent need to develop novel therapeutics and vaccines to combat this deadly 

pathogen. Understanding the roles these important virulence factors have during diseases 

can provide the knowledge necessary for designing better therapeutics and identifying 

vaccine targets.
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Figure 1: 

Current models for PFT pore formation for A) α-toxin and B) the bicomponent PFTs. A) α-

toxin is secreted as monomer. Upon binding to the host receptor, ADAM-10, the toxin 

monomers oligomerize to form a heptameric prepore on the target cell surface. The prestem 

domains of the prepore then extend to form a β-barrel pore that punctures the target cell 

membrane. B) The bicomponent PFTs are also secreted as monomers, (except LukAB, 

which is secreted as dimers). The S-subunit recognizes the target cell by binding to cell 

surface receptors (LukPQ is an exception, the F-subunit LukQ is the receptor recognition 

subunit). These receptors are typically GPCRs (except for LukAB, which binds to the 

integrin, CD11b). Upon receptor binding, the S-subunit dimerizes with the F-subunit, 

followed by oligomerization of 3 additional leukocidin dimers, resulting in an octameric 

prepore. Similar to the α-toxin pore formation model, the prestem domains of the prepore 

extend to form a β-barrel pore, thus disrupting the target cell membrane.
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Figure 2: 

Structures of (A-C) α-toxin and (D-G) the bicomponent PFT, HlgAB. A) The α-toxin 

monomer (PDB:4U6V) (351). The amino latch is colored in blue, cap domain in red, rim 

domain in pink, and prestem domain in green. B-C) The α-toxin heptamer (7AHL) (4), each 

α-toxin is colored in a different shade of pink to denote individual protomer. The amino 

latches are highlighted in blue and the β-barrel pore is in green. The monomers of D) HlgA 

(2QK7) (352) and E) HlgB (1LKF) (353). The amino latch of HlgB is colored in blue; the 

cap domain for HlgA is in cyan and HlgB is in beige; the rim domains are in yellow for 

HlgA and pink for HlgB; and the prestem domains are in green. F-G) The HlgAB octamer 

(3B07) (33). The HlgA protomers are in cyan, the HlgB protomers are in beige, and the β-

barrel pore is in green.

Tam and Torres Page 45

Microbiol Spectr. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 

S. aureus PFTs and their receptor, species, and cell type specificity. A) Currently, S. aureus 

is known to produce 8 different β-barrel PFTs. Each of these PFTs target different cell 

surface receptors. While some PFTs share the same receptors, they can differ in their species 

specificity. Collectively, the PFTs exert their sublytic and lytic effects on a variety of cells, 

including erythrocytes, endothelial cells, epithelial cells, neutrophils, monocytes, 

macrophages, dendritic cells, and T cells.
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Figure 4: 

Phylogenic tree of S. aureus PFTs. The tree is constructed based on the mature protein 

sequences using the DNASTAR MegAlign ClustalW method for multiple sequence 

alignment.
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Figure 5: 

Phylogenic tree of S. aureus SAgs. The tree is constructed based on the mature protein 

sequences using the DNASTAR MegAlign ClustalW method for multiple sequence 

alignment.
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Figure 6: 

Crystal structures of S. aureus superantigens in complex with their cellular targets. A) The T 

cell SAg, SEB in complex with TCR and MHC class II molecule (4C56) (116). SEB (blue) 

crosslinks the α-chain of MHC (dark green) to the Vβ TCR (orange) to induce T cell 

proliferation that results in T cell anergy and/or apoptosis. B) B cell SAg, SpA (teal) in 

complex with the Fab fragment (pink/magenta) (1DEE) (138). Conventional antigens bind to 

BCR at the CDR (blue), a hypervariable region that confer antigen specificities. SpA binds 

at a constant region of the receptor to activate B cells for supraclonal expansion, which leads 

to clonal deletion of SpA-activated B cells.
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Figure 7: 

Overlaid of the crystal structures of ETA and ETB. ETA (1EXF, green) (174) and ETB 

(1QTF, blue) (173) share high structural identity. ETs cause SSSS by cleaving Dsg1 at the 

epithelial cell junctions. Both ETs are serine proteases. Loop D and the catalytic triad are 

highlighted in pink for ETA and red for ETB.
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Figure 8: 

S. aureus produces cofactors that hijack the host’s coagulation system. Coa and vWbp bind 

to prothrombin and alter the confirmation of the protein to form the complex, 

staphylothrombin. This complex is highly active and cleaves fibrinogens to fibrins, 

promoting the formation of fibrinous clots. Sak binds to plasmin to form the Sak-plasmin 

complex. Sak stabilizes plasmin to enhance enzymatic activity. Sak-plasmin cleaves 

plasminogen to form plasmin, which breaks down fibrin clots.
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Figure 9: 

Crystal structure of Sak in complex with 2 plasminogen molecules (1BUI) (215). While Sak 

binding to plasminogen does not have enzymatic activity, the trimeric complex captures how 

Sak may be binding to plasmin to cleave plasminogen. Sak (orange) is in complex with 

plasminogen (blue), exposing the catalytic site (red). Sak facilitates the docking of the 

substrate plasminogen (pink) to promote cleavage by plasmin.
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Figure 10: 

Staphylococcal protease cascade. The metalloprotease, Aur is activated by autoproteolysis 

after protein secretion. Aur is required to activated the serine protease, SspA. SspA 

processes one of staphopains, SspB from zymogen to active enzyme. The other staphopain, 

ScpA is activated by autoproteolysis. Both staphopains are inhibited by staphostatins prior to 

secretion. SspB is inhibited by SspC and ScpA is inhibited by ScpB.
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Figure 11: 

Staphopain-staphostatin complex (1PXV) (293). Staphopain, SspB (blue) has 2 domains: the 

L-domain is helical and the R-domain consists of β-strands that fold into a β-barrel-like 

structure. The catalytic site of SspB is highlighted in red. Staphopain, SspC (beige) is a 

single domain protein comprised of 8 β-strands forming a single mixed β-barrel domain. 

SspC is a competitive inhibitor of SspB, directly blocking substrate access to the active site.
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Figure 12: 

A) Phylogenic tree of S. aureus Spls. The tree is constructed based on the mature protein 

sequences using the DNASTAR MegAlign ClustalW method for multiple sequence 

alignment. B) Crystal structure of SplA (2W7S) (299). SplA has 2 domains connected by a 

linker (cyan). Domain 1 (light purple) consists of α-helices and β-strands and Domain 2 

(blue) is comprised of β-strands. Both domains fold into a β-barrel structure. The catalytic 

triad (red) is located at the center between the two domains.
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Figure 13: 

S. aureus secretes many different toxins and enzymes. Superantigens are proteins that have 

high mitogenic properties, causing T and B cells expansions that result in clonal deletion and 

massive cytokine production. Cytotoxins, such as α-toxin and the leukocidins, cause 

cytokine production, hemolysis, and leukocyte cell deaths through targeting specific cell 

surface receptors. The amphiphilic PSM peptides mediate cytolysis by inserting into the 

lipid bilayer of cell membranes. Enzymes, such as β-toxin and the ETs, cause cytotoxicity 

on mammalian cells, resulting in cell death, inflammation, and tissue barrier disruptions. 

Other enzymes, including various proteases and nucleases, mediate host protein 

degradations, thwarting many important host immune surveillance and defense molecules. 

These enzymes can also act on self-proteins to degrade biofilms for bacterial dissemination. 

Lipases and FAME work synergistically to degrade lipids in the environment for nutrients. 

Cofactors, including Coa, vWbp, and Sak, bind and activate host zymogens in the 

coagulation system to mediate clot formation and dissolution. Altogether, these toxins and 

enzyme provide critical nutrients (i.e. iron and carbon) that are important for the growth and 

survival of the bacteria. Importantly, they target various aspects of host immune defenses, 

thus contributing to the overall virulence of S. aureus during infections.
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Table 1:

Major exotoxins produced by S. aureus.

Exotoxin(s) Gene(s) Function(s)

α-toxin hla pore-forming toxin

PVL (LukSF-PV) lukS, lukF pore-forming toxin

HlgAB hlgA, hlgB pore-forming toxin

HlgCB hlgC, hlgB pore-forming toxin

LukED lukE, lukD pore-forming toxin

LukAB/HG lukA/H, lukB/G pore-forming toxin

LukMF’ lukM, lukF’ pore-forming toxin

LukPQ lukP, lukQ pore-forming toxin

PSMα1 to PSMα4 psmα1 to psmα 4 phenol soluble modulins

PSMβ1, PSMβ2 psmβ1, psmβ2 phenol soluble modulins

δ-toxin hld phenol soluble modulins

PSM-mec psm-mec phenol soluble modulins

ε-toxin cytE cytotoxin

SEA to SEE, SEG sea to see, seg enterotoxins, T cell superantigens

SE-l H to SE-l X selh to selX T cell superantigens

TSST-1 tst T cell superantigens

SpA spa B cell superantigen

β-toxin hlb sphingomyelinase, biofilm ligase

Exfoliative toxin A eta serine protease

Exfoliative toxin B etb serine protease
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Table 2:

Major secreted cofactors and enzymes produced by S. aureus.

Cofactor/Enzyme Gene Function(s)

Coagulase coa cofactor, activates prothrombin

vWbp vwb cofactor, activates prothrombin

Staphylokinase sak cofactor, activates plasminogen

Nuc (thermonuclease) nuc nuclease

Aureolysin aur metalloprotease

ScpA (V8 protease) sspA serine protease

SplA splA serine protease

SplB splB serine protease

SplC splC serine protease

SplD splD serine protease

SplE splE serine protease

SplF splF serine protease

Exfoliative toxin A eta serine protease

Exfoliative toxin B etb serine protease

Staphopain A scpA cysteine protease

Staphopain B sspB cysteine protease

Hyaluronidase hysA lyase

β-toxin hlb sphingomyelinase, biofilm ligase

PI-PLC plc phospholipase

SAL1 lip1 lipase

SAL2 geh lipase

FAME unknown detoxify free fatty acids
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Table 3:

Consensus cleavage sequence of Spls.

Spl Consensus Cleavage Sequence

SplA Trp/Tyr – Leu – Tyr – Tyr – Ser

SplB Trp – Glu – Leu – Gln

SplC To be determined

SplD Arg – Trp/Tyr – Pro/Leu – The/Leu/Ile/Val

SplE To be determined

SplF To be determined
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