
STAR: A Transparent Spanning Tree Bridge Protocol with
Alternate Routing ∗

King-Shan Lui
Dept. of Computer Science

University of Illinois at
Urbana-Champaign

kinglui@cs.uiuc.edu

Whay Chiou Lee
Broadband Networks

Research Lab
Motorola Labs

Whay.Lee@motorola.com

Klara Nahrstedt
Dept. of Computer Science

University of Illinois at
Urbana-Champaign

klara@cs.uiuc.edu

ABSTRACT
With increasing demand for multimedia applications, local area
network (LAN) technologies are rapidly being upgraded to pro-
vide support for quality of service (QoS). In a network that con-
sists of an interconnection of multiple LANs via bridges, the QoS
of a flow depends on the length of an end-to-end forwarding path.
In the IEEE 802.1D standard for bridges, a spanning tree is built
among the bridges for loop-free frame forwarding. Albeit simple,
this approach does not support all-pair shortest paths. In this pa-
per, we present a novel bridge protocol, the Spanning Tree Alter-
nate Routing (STAR) Bridge Protocol, that attempts to find and for-
ward frames over alternate paths that are provably shorter than their
corresponding tree paths. Being backward compatible to IEEE
802.1D, our bridge protocol allows cost-effective performance en-
hancement of an existing extended LAN by incrementally replacing
a few bridges in the extended LAN by the new STAR bridges. We
develop a strategy to ascertain bridge locations for maximum per-
formance gain. Our study shows that we can significantly improve
the end-to-end performance when deploying our bridge protocol.

1. INTRODUCTION
Bridges are devices used to interconnect several local area networks
(LANs) to form an extended LAN. Bridges operate on top of the
Medium Access Control (MAC) layer, which is a sublayer of the
data link layer. The data unit in this layer is called frame or MAC
frame. MAC addresses are used to identify hosts. A bridge has
several ports connecting different LANs. A frame sent from one
LAN to another will typically go through one or more bridges.
This bridged LAN environment should be transparent to hosts and
should look like a single LAN to the hosts. The basic function of
bridges is to forward MAC frames from one LAN to another with-
out requiring any modification to the communication software in
the hosts. Bridges do not modify the content or format of the MAC
frames they receive and the operation of bridges should not misor-

∗This work was supported by Motorola Inc. through the Broadband
Networks Research Lab and the Motorola Center for Communica-
tions at the University of Illinois at Urbana-Champaign.

der or duplicate frames. More detail of bridges can be found in [13,
14, 18, 4, 5].

IEEE 802.1D Spanning Tree Bridge Protocol is a widely used stan-
dard for interconnecting the family of IEEE 802 standard LANs
[3]. In this standard, a shortest path spanning tree with its root at a
predetermined bridge, known as a root bridge, is used to intercon-
nect LANs to form an extended LAN. The spanning tree defines a
unique path between each pair of LANs, but this path may not be
a shortest path. Moreover, as only one spanning tree is used, some
bridges and some ports may not be used at all. As the bridge pro-
tocol is now adopted not only in extended LANs, but also in cable
networks [1], home networks [17, 22], and metropolitan area net-
works [2], future bridged networks will span a wide range of sizes
and geographical coverage. Therefore, to support multimedia and
real time applications with stringent quality of service (QoS) re-
quirements in these kinds of networks, the QoS routing capability
of bridges has to be enhanced.

We propose a novel bridge protocol that finds and forwards frames
over alternate paths if possible. This proposed protocol, referred to
as Spanning Tree Alternate Routing (STAR) Bridge Protocol, has
a complexity that is comparable to that of the standard and other
existing protocols. We have required the STAR Bridge Protocol to
be backward compatible with the standard bridge protocol, so that
it is possible to incrementally upgrade standard-based bridges in
an extended LAN to be STAR bridges to take advantage of shorter
alternate paths. We have thus devised a bridge replacement strategy
that aims at maximizing performance gain, subject to a limit on the
number of bridges replaced.

In the rest of this paper, we describe the IEEE 802.1D Spanning
Tree Bridge Protocol in Section 2 and related work in Section 3. We
present the STAR Bridge Protocol in Section 4 and the replacement
strategy in Section 5. We analyze the performance and complexity
of the protocol in Section 6. Finally, we conclude in Section 7.

2. IEEE 802.1D SPANNING TREE BRIDGE
PROTOCOL

Each IEEE 802.1D bridge has three basic functions: (1) frame for-
warding, (2) learning, and (3) spanning tree construction. Func-
tions (1) and (2) are performed with the use of a Forwarding Data-
base (FD) within each bridge. An FD in a bridge specifies which
port of the bridge to forward a data frame to a particular destina-
tion station. If there is no such entry in the FD, the bridge forwards
the frame through all ports except the port through which the frame
came. Whenever a frame from source station s is received at port

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200233

p, the bridge marks in its FD that the forwarding port of s is p.
If there are loops in the bridged LAN, a frame may be forwarded
indefinitely. To avoid this, function (3) is used to make sure the
active topology among the bridges is always a tree so that there is a
unique path between each pair of bridges. We refer to such a path
as a tree path.

A distributed spanning tree algorithm is used to construct a shortest
path tree rooted at a selected bridge known as a root bridge. This
root bridge is selected using bridge identifiers. A path that connects
a bridge and the root bridge over the spanning tree is referred to as
a root path associated with that bridge. Non-tree links are links
that have not been selected by the 802.1D spanning tree algorithm.
By exchanging configuration messages, bridges identify the root
bridge and select which ports to activate. For each LAN, a single
bridge is elected among all bridges connected to the LAN to be the
designated bridge. This designated bridge is the closest bridge to
the root bridge. In order to maintain an up-to-date tree that reflects
the underlying topology, the root bridge broadcasts configuration
messages periodically over the spanning tree to all other bridges.
Whenever a topological change is detected, the bridges will start
building a new tree. Data frames will not be forwarded until the
new tree is built.

a

b

LAN A LAN B

c

s1 s2

LAN C LAN D

(a) Extended LAN

a

b

LAN A LAN B

c

s1 s2

LAN C LAN D

(b) Spanning Tree

Figure 1: Extended LAN with hosts s1 and s2

Figure 1(a) shows a simple extended LAN. a, b, and c are bridges,
while LAN A, LAN B, LAN C, and LAN D are four different
LANs. s1 is a host on LAN C and s2 is a host on LAN D. Let
a be the root bridge. The spanning tree, built according to hop
count, is shown in Figure 1(b). The designated bridge of LAN D is
c and the designated bridge of LAN C is b. Suppose that host s1 on
LAN C wants to send a frame to another host s2 which is on LAN
D. Although both b and c connect to LAN C, only b will process
the frame, since the port where c connects to LAN C is disabled by
the spanning tree algorithm. Therefore, when s1 sends a frame to
s2, the path of the frame is s1 → b → a → c → s2. This tree path
is longer than the shortest path, s1 → c → s2 from LAN C and
LAN D.

3. RELATED WORK
The IEEE 802.1D Spanning Tree Bridge Protocol has previously
been extended and modified in a variety of ways to improve its
routing capability. To the best of our knowledge, our protocol is
the first protocol that can ensure that a non-tree forwarding path is
no worse than the corresponding tree path for any arbitrary additive
metric in an extended LAN where there are standard bridges.

Some prior methods augment the spanning tree by allowing non-
tree links to be additionally used for frame forwarding under ap-

propriate conditions [8, 9, 6]. The method described in [8] and [9]
only ensures that the length associated with a selected non-tree link
for frame forwarding is no greater than the sum of the root path dis-
tances associated with the two bridges at the ends of the selected
non-tree link. Hence, a selected alternate forwarding path may be
longer than its corresponding tree path, as in the case where the two
root paths share a common path segment. This method is extended
in [6] to enable the “speed” of a non-tree link to be compared to that
of its corresponding tree path. The “speed” is determined by having
a bridge on one end of the non-tree link send to the bridge on the
other end of the non-tree link a special message over the non-tree
link or the corresponding tree path. This method cannot guarantee
that a forwarding path is no worse than its corresponding tree path
for any additive metric considered except when the additive metric
is derived from “speed.”

The method described in [15] dynamically creates a shortest path
tree rooted at a given source host from a default spanning tree by
activating some non-tree links and disabling some tree links on de-
mand according to a delay measure. In methods described in [11]
and [20], distance vectors are maintained in bridges showing the
shortest path direction for forwarding frames to a particular LAN,
and not to a station. Mapping tables, which are used to map stations
to LANs, are exchanged by means of flooding. In [16], a bridge ar-
chitecture with IP routing capability is proposed, wherein topology
information is exchanged among bridges to enable a shortest path
to every LAN to be found. The architecture also has a mechanism
to locate end stations. None of the methods described in [15, 11,
20, 16] are backward compatible with the IEEE 802.1D Spanning
Tree Bridge Protocol.

The method described in [7] enables optimal or sub-optimal paths
to end stations to be identified using a distance vector approach.
Although this method is backward compatible with the standard
spanning tree bridge protocol, it is possible for a path determined
by this method to be longer than its corresponding tree path when
there are bridges that do not execute this method in the extended
LAN.

4. SPANNING TREE ALTERNATE ROUT-
ING BRIDGE PROTOCOL

We describe the STAR Bridge Protocol in this section. Bridges
that deploy the proposed protocol are referred to as STAR bridges
and those that execute the standard protocol only are called STD
bridges. There are two main design goals in this protocol: en-
hanced forwarding path performance and backward compatibility.
STAR bridges attempt to forward frames over alternate paths that
are shorter than their corresponding tree paths on the standard span-
ning tree, provided that such alternate paths can be identified with-
out excessive protocol complexity. The metric used may be delay,
cost, or any other additive metric. By appropriate placement of
STAR bridges in an extended LAN, the average forwarding path
length may be reduced even if only a few STAR bridges are used.
As current extended LANs are large [10], it can be costly to replace
all STD bridges by STAR bridges. We will describe a strategy to
find good replacement locations in Section 5. By being backward
compatible with the IEEE 802.1D standard, STAR bridges operate
seamlessly with STD bridges.

In this section, we first give an overview of the STAR bridge proto-
col (see Section 4.1) and describe the model (see Section 4.2). We
then discuss the details of the protocol in Sections 4.3 to 4.5.

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200234

4.1 Overview
In the IEEE 802.1D standard bridge protocol, there is a separate
process responsible for each basic function specified in Section 2.
In our STAR Bridge Protocol, three new processes are further spec-
ified. They are STAR path finding process, STAR learning process,
and STAR forwarding process. The path finding process allows a
STAR bridge to find and estimate the distance of a path from it-
self to another STAR bridge. The STAR forwarding process and
the STAR learning process are modified versions of the forwarding
process and the learning process specified in the standard respec-
tively. All STAR bridges can execute both the standard and the new
processes.

Figure 2 is a state diagram of the STAR bridge protocol. In the stan-
dard, a rooted spanning tree (RST) is built by means of a distributed
algorithm before the forwarding and learning processes start. A
timeout mechanism is used as an indication of the completion of
the RST construction. In our protocol, an RST is found by STD and
STAR bridges together before the execution of the new processes.
After the RST is found, the path finding process is started. Be-
fore the path finding process ends, STAR bridges and STD bridges
execute the standard forwarding process and the standard learning
process to forward data frames on tree paths. When the path find-
ing process ends, each STAR bridge begins to execute the STAR
learning process and the STAR forwarding process instead of the
standard ones to forward data frames on identified enhanced for-
warding paths. We adopt a timeout mechanism to indicate the end
of the path finding process. We use the same timer time as the one
used in the RST construction.

STAR Forwarding Process
STAR Learning Process

vector
change

distance

Spanning Tree Construction

(no frame forwarding)

Path Finding Process
STD Learning and
Forwarding Processes

timeout

timeout

tree change

Figure 2: State Diagram of STAR Bridge Protocol

In the IEEE 802.1D standard, each bridge keeps an FD for the
forwarding process. In STAR bridges, two tables are additionally
used: bridge forwarding table (BF Table) and host location table
(HL Table). A BF Table indicates the forwarding port to each other
STAR bridge in the bridged LAN along the “best” path found. BF
Tables are obtained in the path finding process by a modified dis-
tance vector method as described in Section 4.3. Since the BF Ta-
ble contains forwarding information to STAR bridges only, it is not
sufficient to forward data frames which are destined to hosts, not
bridges. Therefore, an HL Table is used to map a host to a STAR
bridge near it. The STAR learning process is responsible for filling
up this table. We will describe the STAR processes in Section 4.3
through Section 4.5.

4.2 Model
We represent a bridged LAN as an undirected graph G = (B, D,
E), where B is the set of STAR bridges, D is the set of STD
bridges. and E be the set of links connecting the bridges. Each

link (x, y) ∈ E is assumed to have a non-negative cost c(x, y).
For convenience, we let c(x, y) = ∞ if (x, y) �∈ E. If there are
several links between bridge x and bridge y, c(x, y) should be the
minimum among the costs of the links. A path in G is a loop-free
tandem concatenation of links in E. The length of a path is the
sum of the costs of all the links along the path. For example, if the
metric being considered is hop count, c(x, y) for each (x, y) ∈ E
would be 1. Table 1 summarizes the notations used in this section.

Notation Meaning

G bridged LAN graph
B set of STAR bridges in G
D set of STD bridges in G
V set of all bridges in G, V = B ∪ D
E set of links in G

(x, y) a link from bridge x to bridge y
c(x, y) cost of (x, y)

T a tree subgraph of G representing a RST
ET set of links in T
GB STAR bridge graph of G
EB set of edges in GB

nca(x, y) nearest common ancestor of x and y
dT (x, y, G) tree path distance between x and y in G

dr(x) tree path distance between x and the root
bridge r

Table 1: Notations

Bridge x is a direct neighbor of bridge y, and vice versa, if (x, y) ∈
E. Let V = B ∪ D. T = (V, ET) is a tree subgraph of G
representing a RST, wherein (x, y) ∈ ET if and only if (x, y) is
an activated link in the RST. We refer to the links in ET as tree
links and the links in E − ET as non-tree links. If (x, y) ∈ ET ,
x and y are tree neighbors. A path in T is a tree path. A tree
path originating at bridge s and terminating at bridge t is denoted
treepath(s, t). The length of this tree path is denoted dT (s, t).
Note that dT (x, y) = c(x, y) if x and y are tree neighbors. The
tree path distance between x and the root bridge r is denoted dr(x).
We refer to treepath(s, t) as an STD bridge tree path if it has at
least one intermediate bridge (i.e., one other than the source and
destination bridges) and every intermediate bridge on the path is
an STD bridge. If s and t are STAR bridges, and there is an STD
bridge tree path between them, then s is a distant STAR neighbor
of t, and vice versa.

The nearest common ancestor of x and y is the highest-level bridge
on a tree path between x and y. If x is an ancestor of y, then x is
necessarily the nearest common ancestor of x and y. Let the nearest
common ancestor of x and y be denoted nca(x, y). We say x and
y are on different branches if nca(x, y) �= x and nca(x, y) �= y.
We call (x, y) ∈ E − ET a crosslink if x and y are on differ-
ent branches. In this case, x and y are called crosslink neighbors.
Figure 3 is an example of an undirected graph of a bridged LAN.
Node r is the root. The white nodes are STD bridges and black
nodes are STAR bridges. The solid lines are tree links and the
dotted lines are non-tree links. Link (w, z) is a non-tree link but
not a crosslink, while (x, a), (y, u) and (v, q) are all crosslinks.
Therefore, w and z are direct neighbors but neither tree neighbors
nor crosslink neighbors. They are distant STAR neighbors though
since the path w → a → z is an STD bridge tree path. Table 2
summarizes the definitions of different kinds of neighbors.

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200235

Neighbor Type Formal Definition Examples

Direct neighbors x, y ∈ V, (x, y) ∈ E r and p, v and q, w and z
Tree neighbors x, y ∈ V, (x, y) ∈ ET r and p, x and y, w and a

Crosslink neighbors x, y ∈ V, (x, y) ∈ E − ET and nca(x, y) �= x and nca(x, y) �= y x and a, v and q, y and u
Direct STAR neighbors x, y ∈ B, (x, y) ∈ E v and q, x and y, w and z
Distant STAR neighbors x, y ∈ B, treepath(x,y) is an STD bridge tree path w and z, x and v, w and p

Table 2: Neighbor Types

u

r

a

b

w

x

y z

v
q

Eligible
Crosslink

Ineligible
Crosslink

Eligible

Crosslink

p

Figure 3: Example of a
Bridged LAN Graph

w

x

y z

u v
q

p

Figure 4: STAR Bridge
Graph

Since an STD bridge disables the port associated with a non-tree
link, a non-tree link may be used to construct alternate paths only
if it connects two STAR bridges. We call a non-tree link that is
obviously not used by the STAR protocol, as just described, for
supporting any shortest path an ineligible link. We call a non-tree
link eligible otherwise. In Figure 3, (x, a) is an ineligible link while
(y, u) and (v, q) are eligible links.

To facilitate the discussion of the STAR path finding process (see
next section), which tries to find shorter alternate paths among
STAR bridges, we define an overlay graph of a bridged LAN graph.
This overlay graph is called the STAR bridge graph and it consists
of STAR bridges only. We denote the STAR bridge graph of a
bridged LAN graph G = (B, D, E) as GB . There is an edge
between two STAR bridges in the STAR bridge graph only when
the two STAR bridges are neighbors, either direct or distant, in G.
Definition 1 is the formal definition of the STAR bridge graph of a
bridged LAN graph. The STAR bridge graph of Figure 3 is shown
in Figure 4.

DEFINITION 1. A STAR bridge graph GB is defined to be (B,
EB), where (x, y) ∈ EB if and only if x and y are STAR neighbors,
either direct or distant. c′(x, y), the cost of link (x, y), depends
what kind of STAR neighbors that x and y are:

STAR Neighbor Type Value of c′(x, y)

direct but not distant c(x, y)
both direct and distant min(dT (x, y), c(x, y))
distant but not direct dT (x, y)

4.3 STAR Path Finding Process
The goal of this process is to compute the Bridge Forwarding (BF)
Table. In the best case, the BF Table has next hop and forward-

ing port information associated with a shortest path to a STAR
bridge. The STAR bridge graph contains all tree paths among
STAR bridges and all eligible non-tree links in the original bridged
LAN. Therefore, the shortest path in GB between a pair of STAR
bridges x and y would be the best path we can achieve in the
bridged LAN after pruning ineligible links. Ideally, if we can com-
pute every c′(x, y) correctly, each STAR bridge can compute its
own BF Table based on distance vectors.

In a conventional distance vector protocol, each node initializes its
distance vector with distances to all its neighbors. It then sends the
distance vector to all its neighbors. When a neighbor receives the
distance vector, the neighbor updates its own distance vector if any
shorter path is found. This neighbor then sends its update to all its
own neighbors. The procedure keeps going on until the algorithm
converges. Once the algorithm converges, there is no loop in the
paths. Interested readers can refer to [19] for the details of the
distance vector protocol.

When there are STD and STAR bridges in the bridged LAN, the
conventional distance vector update protocol cannot be applied di-
rectly. The first issue is to discover neighbors and to find out the
distances to all neighbors. In the bridged LAN graph, some neigh-
bors are not direct neighbors but are distant STAR neighbors. For
example, x and v in Figure 4 are neighbors but they are not di-
rect neighbors in Figure 3. x and v do not know dT (x, v) since
they only know the cost to a direct neighbor. Moreover, x does not
know the existence of v and vice versa. Therefore, as a first step
of the STAR path finding process, each STAR bridge has to dis-
cover every bridge y that is a distant STAR neighbor and determine
dT (x, y). Unfortunately, due to the limitation of STD bridges,
STAR bridges may not be able to determine every distance cor-
rectly. For those distances that STAR bridges cannot determine
correctly, overestimates are obtained as described in Section 4.3.1.

We call the step of discovering neighbors and estimating the dis-
tances to neighbors the Distance Vector Estimation procedure. The
procedure that follows Distance Vector Estimation is the Distance
Vector Enhancement procedure. The Distance Vector Enhancement
procedure exchanges distance vector information to discover other
non-neighbor STAR bridges and to find the shortest paths to them
as in the conventional distance vector protocol.

4.3.1 Distance Vector Estimation
Each STAR bridge maintains a distance vector (DV) to keep the in-
formation of other STAR bridges. When an unknown STAR bridge
is newly discovered, a new entry is created. Each entry in the dis-
tance vector consists of a tuple of six fields. Table 3 provides a sum-
mary. We denote the entry about the information of STAR bridge
k in the distance vector of STAR bridge n as DV T (n, k). The
information in DV T (n, k) consists of:

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200236

Field Definition

d(n, k) Estimated distance between n and k
F (n, k) Forwarding port for k

next(n, k) ID of the next hop STAR bridge neighbor on the path from n to k
FG A(n, k) Distance accuracy flag with a value True if d(n, k) is accurate, and False otherwise
FG T (n, k) Tree path flag with a value Tree if the path from n to k is a tree path, NonTree otherwise
FG R(n, k) Relation flag with a value Anc if k is an ancestor of n, Dec if k is a descendant of n, and Null otherwise

Table 3: Fields in DV T (n, k) for a path from n to k

(1) an estimated distance between n and k

(2) forwarding port of k

(3) next hop STAR bridge neighbor on the path to k

(4) a flag indicating whether the estimated distance is accurate

(5) a flag indicating whether the path is a tree path

(6) a flag indicating the relation between n and k

As mentioned earlier, this procedure has to discover distant STAR
neighbors and estimate their distances. To do this, distant STAR
neighbors exchange messages among them. These messages are
encapsulated as data frames to bypass intermediate STD bridges
between two communicating STAR neighbors. There are two kinds
of bridge frames serving for this purpose - DVMyInfo and DV-OurInfo
frames. DVMyInfo frames are used for a STAR bridge to inform
other STAR bridges of its own topology information. DVOurInfo
frames carry information related to both the source and the desti-
nation STAR bridges. Let’s denote the parent of n as parent(n).
The content of the DVMyInfo frame sent from n, is < n, dr(n),
parent(n), c(n, parent(n))>,denoted DVMyInfo(n). The con-
tent of the DVOurInfo frame sent from n to k, denoted DVOurInfo(n, k),
is < n, k, d(n, k) >.

After the RST is built, every bridge k knows its tree links, as well
as the root bridge and the root path distance, dr(k), where bridge r
is the root bridge. Each STAR bridge k then sends a DVMyInfo(k)
frame on its root link if its parent is an STD bridge. This frame is
encapsulated as a normal data frame using a multicast address that
belongs to the group of STAR bridges as the destination address,
the parent STD bridge will forward the frame over all its tree links,
except the incoming one.

If there is any STAR bridge along the root path of k, the one that
is nearest to k, say n, will receive the DVMyInfo(k) frame from
a child link (Figure 5(a)). Note that n and k are distant STAR
neighbors. Bridge n can determine the tree path distance between
k and n by subtracting dr(k) from dr(n). That is, dT (n, k) =
dT (k, n) = dr(n) − dr(k). Then, n informs k of the distance
between them by a DVOurInfo(n, k) frame and stops forwarding
the DVMyInfo(k) frame. This is the case where n and k are on the
same branch and n is an ancestor of k.

If the STAR bridges are on different branches, like v and v′ in Fig-
ure 5(b), and there is no STAR bridge on the tree path between
them, then, v′ will receive the DVMyInfo(v) frame of v and vice
versa. However, there is no way for them to calculate the real
tree path distance between them using root path distance alone. In
the case of v and v′, if they know that they have the same parent,

they can determine the accurate tree path distance. Therefore, the
DVMyInfo(v) frame also contains the information of the parent of
v. When v and v′ receive each other’s DVMyInfo frame through a
root link and find out that they are siblings, they may calculate the
distance between them correctly by adding c(v, parent(v)) and
c(v′, parent(v′)). Unfortunately, there are still situations where
a pair of STAR bridges cannot determine their tree path distance
correctly. Figure 5(c) shows an example of such scenarios. In that
example scenario, n can get an overestimate of dT (n, j) by calcu-
lating dr(n)+dr(j), or dr(n)+dr(j)−2∗dr(k) after discovering
k.

After discovering all distant STAR neighbors, each STAR bridge n
then fills out DV T (n, k) (Table 3) if k is a direct STAR neighbor
of n. If k is a tree neighbor, d(n, k) can be accurately determined to
be c(n, k). If k is a distant STAR neighbor, the current DV T (n, k)
should contain the information of the tree path between n and k.
That is, dT (n, k) has been obtained, although it may be only an es-
timate. In order to use the shortest path between n and k, we should
assign d(n, k) to be the value min{dT (n, k), c(n, k)}. Unfortu-
nately, dT (n, k) may be incorrect. To avoid selecting a link with a
larger distance than its corresponding tree path, we do not replace
DV T (n, k) even though c(n, k) < dT (n, k).

k

n

(a)

v v’

(b)

n j

k

m

(c)

Figure 5: Tree Path Computation Examples

4.3.2 Distance Vector Enhancement
The DV Enhancement procedure is similar to the distance vector
exchange procedure in the traditional approach except that we can
replace an existing path in the distance vector only when the ex-
isting path in the DV is not a tree path, or it is a tree path with
its distance accurately obtained. That is, we never replace a tree
path which distance is not accurately determined. On the other
hand, if a tree path is discovered and we cannot determine its dis-
tance correctly, we put this path in the distance vector no matter
whether the estimated tree path distance is smaller than the exist-
ing path or not. Then, we can ensure that we never use a path
which is longer than the tree path. After the DV Estimation proce-
dure, STAR bridge n only knows the tree distance, either correct or

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200237

estimate, to its tree STAR neighbors and distant STAR neighbors.
In order to let a STAR bridge identify whether a path to a formerly
unknown bridge is a tree path and whether the tree path distance is
correct, we have to put the accuracy flag and the tree path flag in
the DVRecord frames. The content of the DVRecord frame sent
from n that contains the information of a path from n to k, denoted
DVRecord(n, k), is < n, k, d(n, k), FG A(n, k), FG T (n, k),
FG R(n, k) >.

When n receives DVRecord(j, k), it discovers a path from n to k
that passes through j. This is a newly discovered path from n to
k. This newly discovered path is a tree path if the path from n to j
and the path from j to k are both tree paths. If this newly discov-
ered path is treepath(n, k) and dT (n, k) is an estimate, it replaces
the existing DV T (n, k). If dT (n, k) is accurate, it replaces the
existing DV T (n, k) when dT (n, k) is the same or smaller than
d(n, k). If the newly discovered path is a non-tree path and the
existing d(n, k) is accurate, the existing DV T (n, k) is replaced
if the newly discovered non-tree path is shorter. If the existing
DV T (n, k) is a tree path and dT (n, k) is an estimate, no replace-
ment can occur. The following is the pseudocode when n receives
DVRecord(j, k) = < j, k, d, FG A, FG T , FG R >.

if FG_T(n, j) = Tree and FG_T = Tree
/* the new path is a tree path */

if FG_A(n, j) = False or FG_T = False
/* tree path distance is an estimate */
replace DVT(n, k) by the new tree path

else
if d(n, j) + d <= d(n, k)

replace DVT(n, k) by the new tree path
endif

endif

else
/* the new path is not a tree path */

if FG_A(n, k) = True or FG_T(n, k) = NonTree
/* current path in DV can be replaced */

if d(n, j) + d < d(n, k)
replace DVT(n, k) by the new path

endif

endif

endif

Suppose that d(n, j) = 2, FG A(n, j) = True, and FG T (n, j) =
Tree, while d(n, k) = 6, FG A(n, k) = True, and FG T (n, k)
= Tree. Assume that n receives a DVRecord(j, k) = < j, k,
3, False, NonTree, Null >. The newly discovered path from
n to k is a non-tree path with estimate distance of 2+3 = 5. As
the distance of the existing path from n to k, d(n, k) is accurately
known (FG A(n, k) = True), and 5 < d(n, k), we can replace
DV T (n, k) by the newly discovered path. Although the accurate
distance of the newly discovered path is not known, as we obtain
overestimates only according the discussion of the previous section,
the actual distance is less than 5, which is less the dT (n, k). That
is, the newly discovered path is shorter than the tree path.

Subsequently, when the distance vector becomes stable, d(n, k) ≤
dT (n, k) for all n, k ∈ B such that n �= k. This stable distance
vector is the Bridge Forwarding (BF) Table for forwarding purpose.
We refer to a path in the BF Table between a pair of STAR bridges
as a STAR forwarding path. Note that a STAR forwarding path may
be a standard tree path or an enhanced forwarding path when it can

be identified.

4.4 STAR Learning Process
The BF Table contains the forwarding information to STAR bri-
dges. However, as the destination address in a data frame is the
address of a host, not a STAR bridge, the BF Table alone is not
sufficient for frame forwarding. In order to forward a data frame
using the BF Table, a STAR bridge has to know which STAR bridge
the frame should be sent to. Intuitively, the STAR bridge that is
“closest” to the destination host should be the destination STAR
bridge. We call this “closest” bridge the agent bridge of a host.
The STAR learning process is responsible to learn which STAR
bridge is the agent bridge to a host, and keeps the information in
the Host Location (HL) Table.

4.4.1 Designated Bridge and Agent Bridge
According to the standard, each LAN has a designated bridge and
this bridge is also the designated bridge of all hosts attached to
that LAN. A designated bridge may be an STD bridge or a STAR
bridge. The designated bridge is the closest bridge to a host and it
is a suitable candidate to be an agent bridge. However, as an agent
bridge must be a STAR bridge, when the designated bridge is an
STD bridge, another bridge has to be found as the agent bridge. In
this case, we select the nearest STAR ancestor of the STD desig-
nated bridge to be the agent bridge.

To see why we select agent bridge in this manner, we first observe
that the tree path from a host s to a downstream host t is the short-
est path already according to the standard spanning tree algorithm.
Therefore, an enhanced forwarding path is useful only when s and
t are on different branches. The corresponding tree path from s
to t in this case goes upstream and then downstream on the tree.
To use an enhanced forwarding path, one of the bridges along this
tree path must be a STAR bridge so that when the frame passes
through that STAR bridge, the STAR bridge can forward it over an
enhanced forwarding path. Intuitively, the closer this STAR bridge
is to s, the more forwarding path enhancement is achieved. More-
over, this STAR bridge must be on the upstream path from s to
t because a downstream tree path is always a shortest path. As a
result, we select the nearest STAR ancestor as the agent bridge. Re-
ferring to Figure 3, suppose that the designated bridge of host s is
STD bridge b. Then the agent bridge of s would be STAR bridge x.
There are situations that no agent bridge is identified. For example,
if the designated bridge is the root that is an STD bridge, then all
STAR bridges will be on downstream and so no bridge will be the
agent bridge.

4.4.2 Host Location Table
Each entry in the HL Table of STAR bridge n is a tuple (s, ab(s)),
where s is a host and ab(s) is the agent bridge of s. Each entry in
the Forwarding Database (FD) provided by the standard protocol
indicates a forwarding port for a host s. A host s is referred to as
a known host with respect to n if either the HL Table or the FD or
both have an entry for s. In addition to filling out the HL Table and
FD, n should be able to identify whether it is the agent bridge of a
host s when a normal data frame from s is received.

When STAR bridge n receives from a child port a data frame that
is originated from an unknown host s, it declares itself as the agent
bridge of s by broadcasting a HostLoc frame to all other STAR
bridges and making a new entry in its HL table. It also makes a
new entry in its FD. It sends the HostLoc frame before forward-
ing the data frame. Therefore, all other STAR bridges will receive

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200238

the HostLoc frame of s before the data frame. When a STAR
bridge receives the HostLoc frame of s, it updates the location of
s. Since n sends the HostLoc frame before the data frame, by
the time another STAR bridge receives the data frame, the ancestor
STAR bridge has already have the location of s and will not declare
itself as the agent bridge of s.

In the standard, the entries in the FD time out periodically so that a
host can move to a different LAN without changing its address. The
entries in a HL Table time out as the entries in an FD do. Therefore,
the size of the HL Table is at most the same size as the FD.

4.5 STAR Forwarding Process
STAR bridges execute the STAR forwarding process after the STAR
learning process when a data frame is received. Having received a
data frame destined for a host t, a STAR bridge n first checks its HL
Table to determine if it knows ab(t), the agent bridge of t. If ab(t)
is found, n will then find out from its BF Table the forwarding port
of ab(t) and forward the frame accordingly. If n itself is ab(t), it
forwards the frame according to the FD. If ab(t) is unknown, n will
proceed to check its FD. If host t is unknown, STAR bridge n will
forward the data frame on all tree ports except the incoming one,
just as the IEEE 802.1D standard.

In the IEEE 802.1D standard, although a bridge may forward the
same frame to more than one port, only one port leads to the des-
tination since there is a unique path from any source to any des-
tination on a spanning tree. Therefore, an STD bridge can never
receive the same data frame more than once. As the STAR bridge
graph may not be a tree, two STAR bridges may receive the same
data frame and try to forward it to the destination using different
paths. For example, suppose that the designated bridge of the des-
tination host is y and the designated bridge of the source host is b
in Figure 3. If b forwarded one copy of the data frame to x and
one to u, y would receive two copies of the same data frame, one
from x and one from u. The STAR Bridge Protocol avoids this by
allowing only x, the agent bridge of s, to forward the frame using,
in this case, an enhanced forwarding path. Since the agent bridge
is unique, at most one copy of the frame may be sent to the desti-
nation.

To let an intermediate STAR bridge know whether a frame is in-
tended to be forwarded over an enhanced forwarding path or a
tree path, the agent bridge encapsulates the frame if it is sending
it over an enhanced forwarding path. The destination address of
the encapsulated data frame is the next hop STAR bridge on the
enhanced forwarding path. The mechanism in [21] can be used for
STAR bridges to identify encapsulated data frames from normal
ones. The encapsulation also avoids a frame to be dropped by in-
termediate STD bridges and redundant traversal of the frame. We
refer interested readers to [12] for further details.

The following is the pseudocode of the STAR forwarding process
when receiving a data frame sent from host s to host t:

if data frame is encapsulated

if data frame is meant for this bridge

if this bridge is ab(t)
forward using FD

else
forward using BF Table

else

drop the frame

endif

else

if this bridge is ab(s)

if ab(t) is known and is on another branch
forward using BF Table

else
forward using FD

endif

else

forward using FD

endif

endif

5. STD BRIDGE REPLACEMENT STRAT-
EGY

Due to the limitation of STD bridges, routing performance may
not be improved significantly when STD bridges are replaced by
STAR bridges arbitrarily in an extended LAN. On the other hand,
it is not necessary to replace all STD bridges for any performance
gain. For example, after placing the six STAR bridges in Figure
6(a), all crosslink links become eligible and can be used to support
shorter alternate paths among STAR bridges. On the contrary, in
Figure 6(b), even though there are eight STAR bridges, no crosslink
becomes eligible and all data frames still have to go through tree
paths.

r

a

b

w

x

y z

u v
q

Eligible
Crosslink

Crosslink

Eligible

Crosslink

p

Eligible

r

a

b

w

x

y z

u v
q

Crosslink

Crosslink

Crosslink

p

Ineligible

Ineligible

Ineligible

(a) Good Replacement Loca-
tions

(b) Bad Replacement Loca-
tions

Figure 6: Replacement Examples

We describe in this section a centralized heuristic algorithm that
allows an administrator to determine which STD bridges in an ex-
tended LAN should be replaced by STAR bridges subject to a limit
on the number of STD bridges replaced. We assume that the RST
and eligible crosslinks (or possibly added crosslinks) are known
before applying the algorithm. The algorithm iteratively solves a
local optimization problem to determine a set of STD bridges or
a single STD bridge to be replaced by STAR bridges, such that a
selected crosslink can be utilized for maximum performance gain.
The algorithm stops when further replacement of STD bridges will
exceed the limit on the number of STD bridges replaced, or addi-

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200239

tional performance gain is not worthwhile with further STD bridge
upgrade.

Our problem of bridge replacement is the selection of a subset of
STD bridges in an extended LAN so that their upgrade to STAR
bridges would result in maximum improvement in forwarding path
distances in the extended LAN. In this section, we formulate this
optimization problem in terms of an optimization objective and a
constraint on the number of STD bridges that may be replaced.
This optimization problem is difficult to solve when the size of
the problem is large, as the number of subsets of a given size in
a large set of bridges is exponentially large. Moreover, if a subset
is large, it is very difficult to evaluate the performance gain with
respective to the optimization objective. We propose to address the
problem iteratively by solving in each iteration a local optimization
problem, wherein the extended LAN may have one or some STD
bridges, or none, already replaced by STAR bridges, and the num-
ber of additional STD bridges that may be upgraded is limited to
a predetermined small number. In the local optimization, we iden-
tify a small number of STD bridge subsets as candidate bridge sets
and evaluate the performance gain for each subset in terms of the
reduction in the average pair-wise distance of all bridges in G.

The candidate bridge set that offers the maximum performance gain
is the best candidate set. We then replace the STD bridges that are
in the best candidate set by STAR bridges. If further replacement
is allowed, we again identify the best candidate set on the existing
extended LAN configuration and replace the STD bridges in that
set.

5.1 Candidate Bridge Sets
We propose to identify a candidate bridge set with respect to a
crosslink, since crosslinks are used to form enhanced forwarding
paths. We consider two criteria for defining candidate bridge sets.
First, the total number of candidate bridge sets must be polynomi-
ally bounded. Second, the calculation of the performance gain of a
candidate bridge set must be simple.

We consider a bridge to be related to a crosslink if it is necessary
for that bridge to be a STAR bridge in order to use that crosslink.
Two bridges are considered related bridges if they are both related
to the same crosslink. In order to use a crosslink (x, y), bridges
x and y have to be STAR bridges, and the tree path distance be-
tween them has to be correctly calculated by the STAR bridge pro-
tocol. This requires the nearest common ancestor of bridges x and
y, nca(x, y), to be a STAR bridge too. Hence, bridges x, y, and
nca(x, y) are related bridges and they all are related to crosslink
(x, y). In this case, there is a candidate bridge set specified by
R(x,y) = {x, y, nca(x, y)}.

In general, at most three bridges may be related to a crosslink.
When there are no STAR bridges in an extended LAN, activating
a crosslink requires replacing all the STD bridges related to the
crosslink. After some STD bridges have been replaced, it may not
be necessary to replace all STD bridges related to a crosslink to ac-
tivate it since one or more bridges that are related to the crosslink
may have already been upgraded to be STAR bridges. Denoting a
candidate bridge set associated with an inactive crosslink (x, y) by
K(x,y), we have K(x,y) = R(x,y) ∩ D, where D represents the
set of STD bridges. We refer to such a candidate bridge set as a
crosslink activation candidate bridge set.

When there are one or more activated crosslinks in an extended

LAN, we may not need to activate new crosslinks in order to sup-
port a new enhanced forwarding path. For example, suppose that
crosslink (x, y) with cost c(x, y) has been activated and p is an
STD bridge on the tree path from nca(x, y) to y as shown in Fig-
ure 7. Let’s further assume that dT (p, y) + c(x, y) < dT (p, x).
Then, if we replace p by a STAR bridge, the path between p and
x will be enhanced. Such a candidate bridge set, which contains a
single STD bridge p, is referred to as a path enhancement candi-
date bridge set and simply denoted K, wherein K = {p}. Note
that a path enhancement candidate bridge set may be a subset of a
crosslink activation set. For example, the path enhancement can-
didate bridge set {p} is a proper subset of the crosslink activation
candidate bridge set K(p,q) = {p, q}. In this case, the performance
gain of {p} must be smaller than the performance gain of {p, q}
and we can exclude it from replacement consideration.

In summary, a candidate bridge set is either a set that contains only
one STD bridge, or two or three related STD bridges. Note that
the number of candidate bridge sets is a bridged LAN graph G =
(B, D, E) is at most |D| + number of inactive crosslinks in E,
where B is the set of STAR bridges, D is the set of STD bridges,
and E is the set of links connecting the bridges. As the number
of inactive crosslinks is at most |E|, the total number of candidate
bridge sets is O(|E|).

a

x y

p

crosslink

Figure 7: Example

5.2 Agent Bridge for STD Bridges
An enhanced forwarding path from host s to host t must traverse
the agent bridge of s and the agent bridge of t. As illustrated in
the proof of Theorem 1, the enhancement of the path from db(s) to
db(t) depends on the enhancement of the path from ab(s) to ab(t).
In this section, we define the agent bridge of an STD bridge for the
evaluation of performance gain.

Let ab(a,G) denote the agent bridge of an STD bridge a in G.
ab(a,G) is defined to be the STAR bridge that is the agent bridge
of any end station whose designated bridge is the STD bridge a. We
denote the designated bridge of a host s in G as db(s,G). Note that
the designated bridge of a host does not change no matter where
STAR bridges are located. Then, ab(a,G) = ab(s,G) if s is a host
and db(s, G) = a. In other words, the agent bridge of STD bridge a
is the nearest ancestor STAR bridge of a. If a does not have a STAR
ancestor, ab(a,G) is undefined and denoted as ab(a,G) = φab.
For simplicity, we define B′ = B ∪ {φab}, and the agent bridge of
a STAR bridge x in G to be itself, i.e., ab(x,G) = x.

Define A(x,G) to be the set of bridges whose agent bridge is x,
i.e., A(x,G) = {a|ab(a, G) = x, a ∈ G, x ∈ B′}. By definition,
x ∈ A(x,G) for every x ∈ B, and A(φab, G) is the set of bridges
with undefined agent bridge.

Consider the bridged LAN graph in Figure 8, where dark nodes are
STAR bridges and white nodes are STD bridges. In this example,
we have ab(r,G) = ab(b, G) = ab(d,G) = φab. A(φab, G) =
{b, d, r}, A(x,G) = {a, f, x}, A(y,G) = {j, y}, and A(z, G) =
{g, h, z}.

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200240

x

r

y za

b

d

g hf j

Figure 8: Agent Bridge Example

r

y

a

x

u v

z

b

d

(a) G

r

y

a

x

u v

z

b

d

(b) GK

Figure 9: Lemma Example

Let GK represent a bridged LAN graph after replacing STD bridges
in K by STAR bridges. Formally, GK = (B∪K, D−K, E). The
following lemmas capture a few properties of agent bridges. These
lemmas are provided without proof, as they can be verified in a
straight forward manner.

LEMMA 1. If the agent bridge of a is not defined after up-
grading STD bridges in K to be STAR bridges, then the agent
bridge of a is also not defined before the upgrades. Formally,
ab(a, GK) = φab ⇒ ab(a,G) = φab.

When ab(a,GK) is undefined, it implies that a must be a STD
bridge. This lemma also implies that upgrading STD bridges in
K to be STAR bridges cannot remove any existing agent bridge
(ab(a,G) �= φab ⇒ ab(a,GK) �= φab). An existing agent bridge
of an STD bridge a in D − K may however be substituted by one
of the bridges in K to be the new agent bridge of a.

LEMMA 2. If the agent bridge of b is a bridge d after the up-
grades, then the agent bridge of b and the agent bridge of d before
the upgrades are the same. Formally, ab(b, GK) = d �= φab ⇒
ab(b, G) = ab(d, G).

Suppose that upgrading STD bridges in K to be STAR bridges ac-
tivates one of them, d, as illustrated in Figure 9 to become an agent
bridge of an STD bridge b in D − K. If b has an agent bridge
ab(b, G) to begin with, then the new agent bridge d must be lo-
cated along the tree path between b and its original agent bridge
ab(b, G) (z in Figure 9). Otherwise, the original agent bridge of
b cannot be substituted by the new agent bridge. If b has no agent
bridge to begin with, then its new agent bridge d will have no agent

bridge itself in the original bridged LAN graph because there is no
STAR bridge upstream of d in the original bridged LAN graph G.

LEMMA 3. Let the agent bridges of u and v after the upgrades
be x and y respectively. If x and y are on different branches, then
the nearest common ancestor of u and v is the same as the nearest
common ancestor of x and y.

The agent bridge of u is x implies that u is on the downstream of x.
Similarly, v is on the downstream of y. As x and y are on different
branches, the tree path from u to v must go through x and y as
shown in Figure 9. It follows that nca(u, v) = nca(x, y).

5.3 Performance Gain
We define the performance gain due to a candidate bridge set K in
a bridged LAN graph G = (B, D, E) in terms of the difference
between the average pair-wise distances of bridges in G with and
without replacement of bridges in K by STAR bridges.

Given d(x, y,G), the length of the STAR forwarding path between
bridges x and y for each pair of bridges x and y in G, the average
pair-wise distance in G is

davg(G) =
1

|V | ∗ (|V | − 1)

∑
x,y∈V,x �=y

d(x, y, G) (1)

where V = B ∪ D.

P (K), the performance gain of a candidate bridge set K, is defined
as follows.

P (K) = {|V | ∗ (|V | − 1)} ∗ {davg(G) − davg(G
K)} (2)

A STAR forwarding path from a bridge x to another bridge y is the
forwarding path for a data frame that is sent from an end station s
whose designated bridge is x to an end station t whose designated
bridge is y. We assume that d(x, y,G) = d(y, x, G).

If both x and y are STAR bridges, then d(x, y, G) = d(x, y,GB),
where GB represents the STAR bridge graph of G.

LEMMA 4. If bridges x and y are on the same branch, then
upgrading bridges in K to be STAR bridges offers no improvement
to the length of the forwarding path between x and y. Furthermore,
d(x, y, G) = dT (x, y, G) = dT (x, y, GK) = d(x, y, GK).

Lemma 4 comes from the fact that a tree path between two bridges
on the same branch is always a shortest forwarding path. If bridges
x and y are on different branches, then d(x, y,G) depends on whe-
ther the agent bridges of x and y exist as well as the relationship
between the agent bridges. If both agent bridges exist and are on
the same branch, the tree path is the shortest path that is available
between them and there is no enhanced forwarding path. If both
agent bridges exist and are on different branches, then the STAR
forwarding path consists of a tree path from x to ab(x,G), a STAR
forwarding path from ab(x,G) to ab(y,G), and a tree path from
ab(y,G) to y. Otherwise, the STAR forwarding path is simply a
tree path.

In general, if bridges x and y are on different branches, we have

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200241

d(x, y,G) =




dT (x, ab(x,G), G) ab(x,G) �= φab and
+d(ab(x,G), ab(y,G), G) ab(y,G) �= φab and
+dT (ab(y,G), y, G), FG R(ab(x,G), ab(y,G)) =

Null

dT (x,nca(x, y),G)
+dT (nca(x, y), y,G) otherwise.

(3)
where the value of the relation flag FG R being Null means that
ab(x,G) and ab(y,G) are on different branches.

LEMMA 5. If bridges x and y are on different branches, and at
least one of their agent bridges is not defined in GK , then d(x, y,
G) = d(x, y, GK).

Since at least one of the agent bridges of x and y is not defined
in GK , Lemma 1 implies that the corresponding agent bridge is
not defined in G either. In this case, we have d(x, y, G) = dT (x,
nca(x, y), G) + dT (nca(x, y), y,G) = dT (x,nca(x, y), GK) +
dT (nca(x, y), y, GK) = d(x, y,GK), wherein the first step is due
to (3) and the second step is due to Lemma 4.

LEMMA 6. Suppose that bridges u and v are on different bran-
ches of the spanning tree. If ab(u, GK) = x, ab(v,GK) = y,
such that x and y are different STAR bridges, then d(u, v, G) −
d(u, v, GK) = d(x, y,G) − d(x, y,GK).

PROOF: By Lemma 2, ab(u, G) = ab(x,G) and ab(v,G) =
ab(y,G). In addition, d(u, v, GK) = dT (u, x,GK) + d(x, y,GK)
+ d(y, v, GK). Therefore, d(u, v, GK) - d(x, y,GK) = dT (u, x,
GK) + dT (y, v, GK) since u is on the downstream of x and v is
on the downstream of y.

Case I: ab(x,G) = α �= φab and ab(y,G) = β �= φab and
FG R(α, β) = Null

By (3), d(x, y,G) = dT (x,α, G) + d(α, β, G) + dT (β, y, G). Sim-
ilarly, d(u, v, G) = dT (u, ab(u, G), G) + d(ab(u,G), ab(v, G), G)
+ dT (ab(v, G), v, G) = dT (u, α, G) + d(α, β, G) + dT (β, v, G).
Then, d(u, v, G) - d(x, y, G) = dT (u, α, G) - dT (x,α, G) +
dT (v, α, G) - dT (y, α, G) = dT (u, x, G) + dT (y, v, G). As the
tree path distances are the same before and after upgrades, we can
conclude that d(u, v, G) - d(x, y,G) = d(u, v, GK) - d(x, y,GK),
implying d(u, v, G) - d(u, v, GK) = d(x, y,G) - d(x, y, GK).

Case II: when Case I does not hold
By Lemma 3, nca(u, v) = nca(x, y), say α. By (3), d(x, y, G)
= dT (x,α, G) + dT (α, y,G). Then, d(u, v, G) - d(x, y, G) =
dT (u, α, G) - dT (x, α, G) + dT (α, v, G) - dT (α, y, G) = dT (u,
x, G) + dT (y, v, G) = d(u, v, GK) - d(x, y,GK). �

We now derive a formula for P (K). In general, d(u, v, G) −
d(u, v, GK) = 0 if u and v are on the same branch of the span-
ning tree. By Lemma 5, the same is true if u and v are on different
branches but at least one of their agent bridges is not defined, or
their agent bridges are on the same branch in GK . For all other
cases, Lemma 6 applies. Therefore, each non-zero term in P (K),
corresponding to the improvement of the length of a forwarding
path from a bridge u to another bridge v, must be due to an im-
provement in the length of a forwarding path from ab(u, GK) to

ab(v, GK). It follows that P (K) =
∑

x,y∈B∪K

|A(x,GK)| ∗ |A(y,GK)| ∗ (d(x, y, G) − d(x, y, GK)).

(4)

5.4 Algorithms
In order to evaluate P (K), we need to find |A(x, G)| and d(x, y,
G) - d(x, y, GK). We now describe how to find |A(x,G)| and
d(x, y, G) - d(x, y, GK) in an efficient way and then present the
complete bridge replacement strategy pseudocode.

5.4.1 Size of Agent Bridge Set
|A(x, G)| is at most the size of the subtree rooted at x. If a de-
scendant of x is a STAR bridge, x cannot be the agent bridge of the
bridges which are on the subtree rooted at that descendant. Refer
to Figure 8, j is on the subtree rooted at x but j �∈ A(x,G) even
if x ∈ B. Generally speaking, |A(x,G)| = 1 + |{ y | y �∈ B, y
is a descendant and dT (x, y) is an STD bridge path}|. All agent
bridge set sizes can be found by a postorder traversal of the tree
started at the root. That is, in order to find |A(x, G)|, |A(y, G)|,
and |A(z, G)| in Figure 8, we need to traverse the tree once starting
at r. The time needed for the traversal is O(|V |).

5.4.2 Distance Between Bridges
Suppose that we know d(x, y, G) before any replacement, find-
ing d(x, y, GK) will be sufficient to calculate d(x, y, G) - d(x,
y, GK). A straight forward approach to find d(x, y, GK) is to
run all-pair shortest path algorithm on GK

B . If this is too expen-
sive, a more efficient way to find d(x, y, GK) is by identifying
whether the STAR forwarding path from x to y in GK traverses
any newly added crosslink or newly replaced bridge. Note that if
d(x, y, GK

B) < d(x, y,G), the STAR forwarding path from x to y
on GK

B must pass through a bridge in K. Therefore, d(x, y, GK
B) =

min{d(x, y, G), min{d(x, p,GK
B) + d(p, y, GK

B)|p ∈ K}}.

5.4.3 Complete Algorithm
We now present the complete bridge replacement algorithm. The
algorithm is locally optimal with respect to the selection of a sin-
gle candidate bridge set. It is useful when the number of avail-
able STAR bridges is significantly smaller than the total number of
bridges in the extended LAN. In each iteration of the algorithm, the
candidate bridge set that can achieve maximum performance gain
is identified and replaced. The algorithm terminates when there is
no more STAR bridge to be replaced due to insufficiency of STAR
bridge available or the performance gain is not worthwhile. In each
iteration, the following steps are done:

1. identify proper candidate bridge sets

2. for each proper candidate bridge set, K

(a) find out activated crosslink(s) if any

(b) construct GK
B

(c) find out |A(x,GK)| for every STAR bridge x in B∪K

(d) find out d(x, y, GK
B) for every STAR bridge pair x and

y

(e) find out P (K)

3. find the best candidate set

4. update G, and GB

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200242

5. update d(x, y, G) for any x, y ∈ V

Step 1 finds out all proper candidate bridge sets in the bridged LAN
graph. A proper candidate bridge set is a candidate bridge set that
satisfies two requirements: (1) the size of the set must be at most
the number of available STAR bridges; (2) it is not a proper subset
of another proper candidate bridge set. As we assume that there
is a limit on the total number of STAR bridges available, require-
ment (1) is used to prune infeasible candidate bridge sets that re-
quire more STAR bridges than that are available. Requirement (2)
prunes the candidate bridge sets that can never be better than an-
other proper candidate bridge set. We discussed that a candidate
can be a proper subset of other candidate in Section 5.1. To find all
proper candidate bridge sets, we first identify all proper crosslink
activation candidate bridge sets and then proper path enhancement
candidate bridge sets. When a proper crosslink activation candi-
date bridge set is identified, we mark the bridges in that set. Then,
after all proper crosslink activation candidates are identified, a path
enhancement candidate {p} is proper only when p is not marked.
This step takes O(|E|) time since there are O(|E|) proper candi-
date bridge sets.

We discussed the steps in Step 2 in earlier sections and the most ex-
pensive one is Step 2d. It involves running the Dijkstra’s algorithm
on GK

B for every bridge in K and updating d(x, y, GK
B). Number

of nodes in GK
B is |B| + |K|. As |K| ≤ 3, the time needed to

run the Dijkstra’s algorithm for every bridge in K is O(|B|2). Up-
dating d(x, y,GK

B) takes the same complexity. Therefore, the total
time for Step 2 is O(|E||B|2).

The execution times for Steps 3 and 4 are small compared with
other steps. Step 5 takes O(|V |2). As a result, the total time for
each iteration is O(|E||B|2).

5.4.4 Example
We now use an example to illustrate the whole algorithm. Suppose
that Figure 10(a) is the initial G, where all bridges are STD bridges.
Assume that the distance function is the hop-count. Solid edges are
tree links and dashed edges are crosslinks. There are seven possible
crosslinks in the example network as shown in the figure. Suppose
that we can replace at most three bridges.

Table 4 shows the distances among all 6 bridges before the replace-
ment algorithm starts, after the first iteration, and after the second
iteration.

g

hf

r

ba

g

hf

r

ba

f

g

r

ba

h

(a) original G (b) after one itera-
tion

(c) after two itera-
tions

Figure 10: G

First Iteration

As there is no STAR bridge in G, there is no path enhancement
candidate. There are seven crosslink activation candidates, one for

ba
1

ba

h

1

1

1

(a) (b)

Figure 11: GK
B

a b f g h

r 1/1/1 1/1/1 2/2/2 2/2/2 2/2/2

a - 2/ 1 /1 1/1/1 1/1/1 3/ 2 / 1

b - - 3/ 2 /2 3/ 2 /2 1/1/1

f - - - 2/2/2 4/ 3 / 2

g - - - - 4/ 3 / 2

Table 4: Distances (Initial/After 1st Iteration/After 2nd Itera-
tion)

each crosslink. They are K(a,b) = {a, b}, K(a,h) = {a, h, r},
K(b,f) = {b, f, r}, K(b,g) = {b, g, r}, K(f,g) = {f, g}, K(f,h) =
{f, h, r}, and K(g,h) = {g, h, r}. r �∈ K(a,b) because a and b are
siblings and according to the STAR bridge protocol, the tree path
distance between a and b can be correctly evaluated even if r is an
STD bridge.

As there are no STAR bridges in G, the only STAR bridges in
GK(a,b) are those bridges in K(a,b). Therefore, P (K(a,b)) = 2 *
|A(a, GK(a,b))| * |A(b,GK(a,b))| * (dT (a, b, G) − c(a, b)) = 2 *
3 * 2 * 1 = 12. Similarly, P (K(a,h)) = 12, P (K(b,f)) = P (K(b,g))
= 8, P (K(f,g)) = 2, and P (K(f,h)) = P (K(g,h)) = 6. K(a,b) is the
best candidate set since it has the maximum performance gain and
it requires fewer STAR bridges than K(a,h). Figure 10(b) shows
the network after replacing a, b to be STAR bridges. This is the
bridged LAN graph which the next iteration is working on. We
then update d(a, b, GK(a,b)) and some other distances as shown in
Table 4, where distances shortened are highlighted in boxes. The
STAR bridge graph of Figure 10(b) is in Figure 11(a). This con-
cludes the first iteration.

Second Iteration

After replacing the bridges a and b, we have six crosslink activation
candidates. They are K(a,h) = {h}, K(b,f) = {f}, K(b,g) =
{g}, K(f,g) = {f, g}, K(f,h) = {f, h}, and K(g,h) = {g, h}.
a �∈ K(a,h) because a is already a STAR bridge. r �∈ K(a,h)

because after a becomes a STAR bridge, dT (a, h) can be correctly
determined even r is not a STAR bridge. As we have only 1 STAR
bridge left, K(f,g), K(f,h), and K(g,h) are not proper candidate
bridge sets. As dT (a, h, G) is now 2, the performance gain of {h}
is 2 * |A(a, GK(a,h))| * |A(h, GK(a,h))| * (dT (a, h, G)− c(a, h))
= 2 * 3 * 1 * 1 = 6. The performance gains of K(b,f) and K(b,g) are

both 4. {h} is the best candidate set and G
{h}
B is shown in Figure

11(b). Figure 10(c) is the bridged LAN graph after replacing bridge
h and Table 4 shows the updated distances between bridges.

The performance gain in terms of hops of the three bridges is 18,
which is the sum of the performance gains in the two iterations.

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200243

Name Content Space Needed

BF Table Best path between STAR bridges O(|B|)
HL Table Location of hosts O(|M |)

FD Forwarding port of hosts O(|M |)

Table 5: Storage Requirements in STAR Bridges

The average normalized reduction in forwarding path, which is
avg dT (x,y)−d(x,y)

dT (x,y)
, is 29%. If all seven crosslinks were activated,

the total distance shortened would be 28. Let short(x, y) be the
shortest distance between x and y. avg dT (x,y)−short(x,y)

dT (x,y)
= 48%.

Therefore, after replacing half of the STD bridges and putting 2
out of 7 crosslinks, the performance is increased by over half of
the possible gain. Note also that if only 2 crosslinks are allowed to
be added in the network, adding (a, b) and (a, h) yields the max-
imum enhancement among all other combinations of crosslinks.
The STAR bridge protocol is able to identify all possible shortest
paths when only (a, b) and (a, h) are in the network.

6. PERFORMANCE OF STAR BRIDGE
PROTOCOL

In this section, we analyze the storage, message complexity, and
path length of the STAR Bridge Protocol.

6.1 Storage
Each STD bridge keeps only one table for forwarding, which is the
FD. One entry is necessary for each known host. Therefore, the
space required is O(|M |), where M is the set of all hosts in the
extended LAN. In addition to an FD, there are two new tables in
each STAR bridge: BF Table and HL Table. Table 5 is a summary
of all tables in the STAR bridge n.

After the STAR learning process has been executed for some time
and old entries in the FD have been timed out, a host s appears
in both the HL Table and the FD of STAR bridge n only if n is
the agent bridge of s. Therefore, the total memory needed for the
HL Table and the FD in STAR bridges together would be about
the same as in the STD bridges. We do need extra space for the
BF Table. However, as the number of entries of the BF table is
at most |B| which is far less than |M |, we can conclude that the
storage requirement in a STAR bridge is comparable to that in an
STD bridge.

6.2 Message Complexity
For each message generated by the path finding process, there is at
most one recipient on each port. The number of messages needed
for each pair of STAR bridges depends on the length of the en-
hanced forwarding path between them. The path length is bounded
by the diameter of the tree. The number of messages generated by
the spanning tree is related to the diameter of the tree too. There-
fore, we can conclude that the number of messages generated by the
path finding process is at most |B| times of the messages needed in
building the spanning tree.

We have conducted simulation studies to determine empirically the
number of messages generated by the path finding process. We
generated networks of different sizes of different branching factors.
The simulation setup is summarized in Table 6. For each network
size with a certain range of root branching factor and a certain range
of number of children in other nodes, 50 different topologies were

Item Setting

Network Size 20 - 30 nodes
Number of Children root node: [4, 6], [6, 8]

other nodes: [2, 4], [4, 6]
of Networks per Setting 50

Link Cost tree links: [1, 3]
other links: min. cost + [1, 2]

Number of STAR Bridges 20% - 50%

Table 6: Simulation Setup

generated. There was a total of 2200 different topologies studied.
In each topology, the rooted spanning tree was generated first. The
number of children of the root node was either within the range
of [4, 6] or [6, 8]. The exact number of children was selected arbi-
trarily among the numbers in the range. The numbers of children of
other nodes are either 0 or in the range specified. The tree link costs
were integers in the range [1, 3]. After the tree was generated, 20%
- 50% of the nodes were selected to be STAR bridges. The STAR
bridges were selected according to the strategy described in Section
5. We assume a crosslink is available between any bridges that are
on different branches. The cost of each crosslink must be set in a
way that it should not change the tree structure. Therefore, each
crosslink was associated with a minimum cost and the minimum
cost of crosslink (x, y) is |dr(x) − dr(y)|. In our simulation, the
cost of crosslink was set to be the sum of the minimum cost and an
integer in the range [1, 2].

Table 7 shows the message overhead of the STAR path finding pro-
cess in networks of different sizes. In the table, Num Mesg(PF) is
the number of messages generated by the STAR path finding pro-
cess and Num Mesg(ST) is the number of messages generated to
build the rooted spanning tree in the standard protocol. The table
shows that Num Mesg(PF) ≤ |B| * Num Mesg(ST). More specifi-
cally, Num Mesg(PF) is approximately 1

3
∗ |B| ∗ Num Mesg(ST).

Size Num Mesg(PF) Num Mesg(ST) Num Mesg(PF)
|B|∗Num Mesg(ST)

20 177 73 0.3603
21 195 78 0.3432
22 191 81 0.3331
23 232 86 0.3455
24 252 91 0.3330
25 310 99 0.3299
26 325 102 0.3384
27 333 106 0.3316
28 366 111 0.3292
29 359 115 0.3147
30 446 125 0.3258

Table 7: Message Overhead of the Path Finding Process

The path finding process will not generate any message after build-
ing the BF Table. Nevertheless, the root bridge will keep on gen-
erating configuration messages periodically after the spanning tree
has been built to maintain the tree. Therefore, for a stable bridged
LAN, the extra number of messages generated by the path finding
process is negligible.

Location information is necessary in all algorithms described in
Section 3 that are applicable for any additive metric. In those algo-

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200244

rithms, every bridge has to know the location of all known hosts.
In the STAR Bridge Protocol, STAR bridge keeps only the location
of host s provided ab(s) is defined. Therefore, the location mes-
sages generated by the STAR Bridge Protocol are less than those
generated by the algorithms in Section 3.

6.3 Path Length
In this section, we prove that the length of a STAR forwarding path
is always less than or equal to the corresponding tree path, and
present our simulation results. In the following discussion, we de-
note the length of the STAR forwarding path between two bridges
x and y as d(x, y).

THEOREM 1. The length of the STAR forwarding path for a
frame sent by a host s to another host t is less than or equal to the
length of the corresponding IEEE 802.1D tree path. In other words,

d(db(s), db(t)) ≤ dT (db(s), db(t)).

PROOF: We first observe that any STAR forwarding path is either
a tree path or an enhanced forwarding path. If it is a tree path, the
proof is complete. Otherwise, we will show that the inequality still
holds.

We divide all situations into the following two cases:

1. Either ab(s) or ab(t) or both are not defined

2. Both ab(s) and ab(t) are defined

(a) ab(s) and ab(t) are on different branches

(b) ab(s) and ab(t) are on the same branch

CASE 1: If ab(s) is not defined, no STAR bridge will encapsulate a
data frame originated from s. Therefore, the data frame will follow
a tree path. If ab(t) is not defined, no enhanced forwarding can be
used since there is no entry for t in the HL table.

CASE 2(a): Figure 12 shows various exemplary scenarios for this
case. In the figure, a black node represents a STAR bridge, a white
node represents an STD bridge, and a dot-dash line represents a
tree path. Since ab(s) and ab(t) are on different branches, s and
t must be on different branches too. If the forwarding path from
db(s) to db(t) is a tree path, then the proof is complete. Other-
wise, the forwarding path is an enhanced forwarding path. ab(s) is
the first STAR bridge on the enhanced forwarding path and ab(t)
is the last STAR bridge on the enhanced forwarding path. There-
fore, the enhanced forwarding path consists of three disjoint seg-
ments. The first segment, which is a tree path from db(s) to ab(s),
has a path length dT (db(s), ab(s)). The second segment, which
is an enhanced forwarding path from ab(s) to ab(t), has a path
length d(ab(s), ab(t)). The third segment, which is a tree path
from ab(t) to db(t), has a path length dT (ab(t), db(t)). There-
fore, d(db(s), db(t)), the length of the STAR forwarding path from
db(s) to db(t), satisfies the following inequality.

d(db(s), db(t))

= dT (db(s), ab(s)) + d(ab(s), ab(t)) + dT (ab(t), db(t))
≤ dT (db(s), ab(s)) + dT (ab(s), ab(t)) + dT (ab(t), db(t))
= dT (db(s), db(t))

CASE 2(b): When ab(s) and ab(t) are on the same branch, the
tree path is the shortest path between them and the frame will be
forwarded using the tree path. �

s t

db(s) -> ab(s) -> -> ab(t) -> db(t)

ab(s) ab(t)

db(s) db(t)

between ab(s) and ab(t)
Enhanced Forwarding Path

Enhanced Forwarding Path:

s

t

ab(s) ab(t)

db(s)

db(t)
Crosslink

Enhanced Forwarding Path:

w
db(s) -> ab(s) -> w ->

db(t) -> ab(t) -> db(t)

Figure 12: Scenarios for Theorem 1

We now present our simulation results. We compare the perfor-
mance of the STAR Bridge Protocol with the standard protocol by
measuring the maximum path length ratio and the average normal-
ized reduction in forwarding path length. The simulation setting is
described in Section 6.2. We denote the shortest path between x
and y as short(x, y). The shortest path refers to the shortest path
that can be achieved in the network with the activated crosslinks
selected by the STD bridge replacement strategy. The maximum
path length ratio of the standard is max dT (x,y)

short(x,y)
. Similarly, the

maximum path length ratio of STAR is max d(x,y)
short(x,y)

. The av-
erage normalized reduction in forwarding path length of STAR
bridge protocol R(STAR) is avg dT (x,y)−d(x,y)

dT (x,y)
. As dT (x, y) ≥

d(x, y), a larger value implies more enhancement. An upper-bound
on the average normalized reduction in forwarding path length,
which is that achieved by shortest paths, is avg dT (x,y)−short(x,y)

dT (x,y)
.

Table 8 shows the simulation result. The result shows that the
STAR Bridge Protocol outperforms the standard protocol is all net-
work sizes and the average normalized reduction in forwarding path
length is about 20%. The reduction is over 95% of that the short-
est paths can achieve, demonstrating that the STD bridge replace-
ment strategy effectively identifies appropriate locations for putting
STAR bridges. On the other hand, the STAR bridge protocol sig-
nificantly reduces the maximum path ratios in all networks.

7. CONCLUSION
In this paper, we have described a novel bridge protocol, called
STAR, which has provably enhanced forwarding path performance
and can be used to improve the QoS routing capability in an ex-
tended LAN in a cost-effective manner. As we aim to strike a bal-
ance between performance and protocol simplicity, we have chosen
to use best-effort shortest paths rather than shortest paths. Specifi-
cally, our protocol uses a spanning tree for default frame forward-
ing, and allows shorter alternate paths to be used whenever they are
available and can be identified. Moreover, we require our protocol
to be backward compatible with the standard IEEE 802.1D span-
ning tree bridge protocol to offer smooth migration. Therefore, im-
provement may be achieved by replacing an appropriate subset of
the bridges in an extended LAN by STAR bridges. We have also de-
scribed a heuristic algorithm for determining appropriate locations
for incremental replacement of STD bridges by STAR bridges such
that, given a constraint on the number of STD bridges that may be
upgraded, the reduction in the average pair-wise distance among
bridges in the extended LAN is maximized. Our study shows that
we can significantly improve the end-to-end performance when de-
ploying the STAR Bridge Protocol.

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200245

Size R(short) = avg dT (x,y)−short(x,y)
dT (x,y)

R(STAR) = avg
dT (x,y)−d(x,y)

dT (x,y)
R(STAR)
R(short)

max dT (x,y)
short(x,y)

max d(x,y)
short(x,y)

20 0.1997 0.1921 0.9617 7.25 1.0093
21 0.2113 0.2027 0.9594 7.46 1.0108
22 0.2018 0.1931 0.9565 7.44 1.0105
23 0.2042 0.1947 0.9538 7.86 1.0113
24 0.2032 0.1953 0.9612 7.66 1.0095
25 0.2242 0.2169 0.9673 8.15 1.0093
26 0.2152 0.2075 0.9643 8.20 1.0096
27 0.2219 0.2125 0.9578 8.73 1.0117
28 0.2202 0.2138 0.9709 8.13 1.0079
29 0.2092 0.2013 0.9618 8.36 1.0096
30 0.2295 0.2208 0.9621 9.07 1.0111

Table 8: Path Performance

8. ACKNOWLEDGMENTS
The authors would like to thank Art Harvey and the anonymous
reviewers for their constructive comments and suggestions on im-
proving the quality of the paper.

9. REFERENCES
[1] Data-Over-Cable Service Interface Specifications (DOCSIS).

[2] Information technology - telecommunications and
information exchange between systems - local an d
metropolitan area networks - common specifications. Part 5:
Remote Media Access Control (MAC) bridging, 1998.

[3] Information technology - telecommunications and
information exchange between systems - local and
metropolitan area networks - common specifications. Part 3:
Media Access Control (MAC) bridges, ISO/IEC 15802-3,
ANSI/IEEE Std 802.1D, 1998.

[4] E. Benhamou. Integrating Bridges and Routers in a Large
Internetwork. IEEE Network Magazine, 2(1), Jan. 1988.

[5] L. Bosack and C. Hedrick. Problems in Large LANs. IEEE
Network Magazine, 2(1), Jan. 1988.

[6] R. P. et. al. Utilization of Redundant Links in Bridged
Networks. U.S. Patent Number 5,150,360, Sept. 22, 1992.

[7] R. Garcia, J. Duato, and J. Serrano. A New Transparent
Bridge Protocol for LAN Internetworking Using Topologies
with Active Loops. In International Conference on Parallel
Processing, 1998.

[8] J. Hart. Extending the IEEE 802.1 MAC Bridge Standard to
Remote Bridges. IEEE Network Magazine, 2(1), Jan. 1988.

[9] J. Hart. Distributed Load Sharing. U.S. Patent Number
4,811,337, Mar. 7, 1989.

[10] T. Jeffree. Unifying Class of Service Provision in LANs -
The Role of MAC Bridges. IEE Colloquium, 1999.

[11] Y.-D. Lin and M. Gerla. Brouter: The Transparent Bridge
with Shortest Path in Interconnected LANs. In LCN, 1991.

[12] K. Lui and W. Lee. Spanning tree alternate routing bridge
protocol. Technical report, Department of Computer Science,
University of Illinois at Urbana-Champaign, Apr. 2001.

[13] R. Perlman. Interconnections - Bridges, Routers, Switches,
and Internetworking Protocols. Addison-Wesley, second
edition, 1999.

[14] R. Perlman, A. Harvey, and G. Varghese. Choosing the
Appropriate ISO Layer for LAN Interconnection. IEEE
Network Magazine, 2(1), Jan. 1988.

[15] B. Rajagopalan and M. Faiman. Load Sharing and
Shortest-Path Routing in Transparently Interconnected Local
Area Networks. In INFOCOM, 1991.

[16] T. Rodeheffer, C. Thekkath, and D. Anderson. SmartBridge:
A Scalable Bridge Architecture. In SIGCOMM, 2000.

[17] B. Rose. Home networks: a standards perspective. IEEE
Communications Magazine, 39, Dec. 2001.

[18] W. Seifert. Bridges and Routers. IEEE Network Magazine,
2(1), Jan. 1988.

[19] M. Steenstrup. Routing in Communications Networks.
Prentice-Hall, 1995.

[20] T.-Y. Tai and M. Gerla. LAN Interconnection: A
Transparent, Shortest-Path Approach. In ICC ’91, 1991.

[21] G. Varghese and R. Perlman. Transparent Interconnection of
Incompatible Local Area Networks Using Bridges. IEEE
Journal on Selected Areas in Communications, 8(1), Jan.
1990.

[22] XILINK. FPGA Enabled Home Networking Technology
Bridges - Connecting Disparate Technologies, Mar. 2001.

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200246

