
Mon. Not. R. Astron. Soc. 321, 199±226 (2001)

Star cluster ecology ± IV. Dissection of an open star cluster:

photometry

Simon F. Portegies Zwart,1w² Stephen L. W. McMillan,2 Piet Hut3 and Junichiro Makino4
1Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Department of Physics, Drexel University, Philadelphia, PA 19104, USA
3
Institute for Advanced Study, Princeton, NJ 08540, USA

4
Department of Astronomy, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Accepted 2000 August 21. Received 2000 August 17; in original form 2000 May 22

AB S TRACT

The evolution of star clusters is studied using N-body simulations in which the evolution of

single stars and binaries is taken self-consistently into account. Initial conditions are chosen

to represent relatively young Galactic open clusters, such as the Pleiades, Praesepe and the

Hyades. The calculations include a realistic mass function, primordial binaries and the

external potential of the parent Galaxy.

Our model clusters are generally significantly flattened by the Galactic tidal field, and

dissolve before deep core collapse occurs. The binary fraction decreases initially because of

the destruction of soft binaries, but increases later because lower mass single stars escape

more easily than the more massive binaries. At late times, the cluster core is quite rich in

giants and white dwarfs. There is no evidence for preferential evaporation of old white

dwarfs. On the contrary, the white dwarfs formed are likely to remain in the cluster. Stars

tend to escape from the cluster through the first and second Lagrange points, in the direction

of and away from the Galactic Centre.

Mass segregation manifests itself in our models well within an initial relaxation time. As

expected, giants and white dwarfs are much more strongly affected by mass segregation than

main-sequence stars.

Open clusters are dynamically rather inactive. However, the combined effects of stellar

mass-loss and evaporation of stars from the cluster potential drive the dissolution of a cluster

on a much shorter time-scale than if these effects are neglected. The often-used argument

that a star cluster is barely older than its relaxation time and therefore cannot be dynamically

evolved is clearly in error for the majority of star clusters.

An observation of a blue straggler in an eccentric orbit around an unevolved star or a blue

straggler of more than twice the turn-off mass might indicate past dynamical activity. We

find two distinct populations of blue stragglers: those formed above the main-sequence turn-

off, and those which appear as blue stragglers as the cluster's turn-off drops below the mass

of the rejuvenated star.

Key words: binaries: close ± blue stragglers ± stars: evolution ± stars: mass-loss ± open

clusters and associations: general.

1 INTRODUCTION

Star clusters are remarkable laboratories for the study of

fundamental astrophysical processes spanning the range of stellar

evolution, from birth to death. Open clusters are relatively small

(typically &104 stars), young (generally &1Gyr old) systems

found primarily in the Galactic disc. Roughly 1100 are known to

lie within a few kiloparsecs of the Sun (LyngaÊ 1987). As a class,

they afford us the opportunity to witness star formation and

explore the complex evolution of young stellar systems. Since

stars are born in star clusters and become part of the general

Galactic population only when the parent cluster dissolves in the

Galactic tidal field, it is of considerable interest to understand how

this process occurs, on what time-scale it operates, and what are

the detailed observable consequences of cluster evolution.
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At least as a first approximation, many star clusters are quite

well characterized dynamically as pure N-body systems, in that

there are few collisions or close encounters between stars, and the

clusters themselves are relatively isolated in space. The same

argument can be made for the evolution of the stars and binaries

without interactions, which may also quite well explain the

properties of open clusters. This simple picture rapidly becomes

inadequate when two effects are combined ± cluster evolution is

actually an intricate mix of dynamics, stellar evolution and

external (tidal) influences, and the subtle interplay between stellar

dynamics and stellar physics makes for a formidable modelling

problem. Of the many physical processes influencing cluster

evolution, probably the most important are the effects of stellar

evolution, the tidal field of the Galaxy, and the evolution and

dynamics of binary stars. We present here a series of models in

which all these effects are taken self-consistently into account.

The processes just mentioned are tightly coupled, complicating

the evolution and making it difficult to isolate the importance of

each individual effect. We refer to Meylan & Heggie (1997) for a

recent review. Generally speaking, we can say that mass-loss from

stellar evolution is of greatest importance during the first few tens

of millions of years of cluster evolution, and may well result in the

disruption of the entire cluster (cf. Chernoff & Weinberg 1990;

Fukushige & Heggie 1995; Aarseth & Heggie 1998; Takahashi &

Portegies Zwart 2000). If the cluster survives this early phase,

stellar evolutionary time-scales soon become longer than the time-

scales for dynamical evolution, and two-body relaxation and tidal

effects become dominant. Ultimately, these effects cause the

cluster to dissociate and the stars to become part of the general

`field' population of the disc.

There is strong observational evidence that star clusters contain

substantial binary populations, quite possibly as rich as those

found in the field (see Rubenstein 1997). The properties and

numbers of observed cluster binaries cannot be explained by

dynamical formation processes, such as three-body dynamics or

two-body tidal capture (Aarseth & Lecar 1975). The majority

must be primordial, i.e., formed together with the single stars at

the cluster's birth. These observations are important for cluster

dynamics, as a cluster's evolution depends strongly on its binary

population and even a small initial binary fraction can play a

pivotal role in governing cluster dynamics (Goodman & Hut 1989;

McMillan, Hut & Makino 1990, 1991a,b; Gao et al. 1991; Hut

et al. 1992; McMillan & Hut 1994). Binaries are also crucial to

cluster stellar evolution. The possibility of mass transfer between

binary components permits wholly new stellar evolutionary states

to arise; in addition, the presence of binaries will enhance the rate

of stellar collisions and close encounters, through the temporary

capture of single stars and other binaries in three-body resonance

encounters (Verbunt & Hut 1987; Portegies Zwart et al. 1998).

Until quite recently, dynamical models have tended to exclude

binaries, for the good practical reasons that (1) binaries slow down

the calculations dramatically and tend to induce numerical errors,

and (2) their internal evolution is much more complicated than the

evolution of single stars. However, it has also long been known

that cluster models lacking adequate treatments of binary systems

are of at best limited validity. In this paper we begin to address

these limitations by performing calculations of open clusters

containing substantial numbers of primordial binaries, with the

goal of studying the mutual influence of stellar evolution and

stellar dynamics in these systems ± the `ecology' of star clusters

(Heggie 1992).

The first paper in this series (Portegies Zwart et al. 1997a,

hereafter Paper I) quantified the effect of collisions on stellar

evolution, and attempted to assess the corresponding changes in

the stellar population. The stellar number density was held

constant in these calculations, thus excluding the possibility of any

interplay between the dynamical evolution of the cluster and

collisions between stars. In the second paper in this series

(Portegies Zwart, Hut & Verbunt 1997b, hereafter Paper II), the

evolution of a population of primordial binaries was followed in

time by tracking in detail the results of encounters between single

stars and binaries. The assumption of constant stellar number

density was relaxed in Portegies Zwart et al. (1999, hereafter

Paper III), where the dynamical evolution of a star cluster (without

primordial binaries) was followed in detail using N-body

calculations.

This paper continues the process of relaxing the simplifying

assumptions made in Paper I. As in Paper III, we calculate the

dynamical evolution of our model system by direct (N-body)

integration of the system, but now including both stars and

binaries in the computational mix. Binary evolution is incorpo-

rated into the N-body treatment, accounting for changes in binary

orbital parameters due to stellar mass-loss, supernovae, tidal forces

between the stars, mass transfer from one star to its companion,

general relativistic corrections, etc. Encounters between binaries

and single stars and higher order encounters (between binaries and

binaries, and between binaries and triples, etc.) are fully integrated,

as are the orbits of the other stars in the N-body system. All

changes in the stellar and binary population caused by stellar

evolution are fed back into the dynamical evolution of the parent

cluster, allowing stellar dynamics and the stellar evolution to be

studied simultaneously and self-consistently.

As an initial case study, we concentrate here on open star

clusters near the Sun (between ,6 and 10 kpc from the Galactic

Centre), which are less than 1 billion years old, and which initially

contain a few thousand (,2000±3000) stars, roughly half of them

in binaries. Well-known clusters fitting this general description are

the Pleiades, Praesepe and the Hyades (see Table 1). Such systems

are small enough that multiple simulations can be performed in

order to improve statistical coverage of their properties, yet they

are large enough and old enough that both stellar evolution and

stellar dynamics have had time to play significant roles in

determining their present structure and appearance.

In an effort to close the gap between theoretical and

observational studies of cluster structure, in this and subsequent

papers we will attempt wherever possible to `observe' our model

clusters using techniques similar to those employed by observers.

For this paper we have chosen to adopt a `photometric' approach.

Consequently, we present little detailed information about the

binaries in our calculations. Binary properties will be discussed in

depth in a `spectroscopic' companion paper (Portegies Zwart et al.,

Paper V, in preparation, hereafter Paper V).

Section 2 discusses the choice of initial conditions and

parameters for our model clusters. The results of the calculations

are presented in Section 3, followed by Section 4, which

compares our results with selected observations on a cluster-by-

cluster basis. Section 5 compares our results with some previous

studies in this area. We summarize our work in Section 6. Two

appendices are included: Appendix A gives an overview of the

terminology used throughout the paper, and Appendix B reviews

the `Starlab' software package, and the implementation and

coupling of its two main constituents kira (the N-body integrator

Section B1) and SeBa (the stellar/binary evolution program

Section B2).
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2 IN IT IAL CONDIT IONS

In order to begin a simulation, a number of critical cluster

parameters must be chosen: the mass, virial radius, tidal radius (or

its equivalent), the initial mass function, and the initial distribu-

tions of binary spatial density and orbital properties. Table 1

presents an overview of observed parameters for some star clusters

with similar total masses, stellar membership and half-mass radii.

The ages of these clusters vary widely, from about 110Myr

(Pleiades) to over 1Gyr (NGC3680). Their core and half-mass

radii suggest that they may be described approximately by King

models (King 1966) with dimensionless depths in the range W0 ,

4±6; where larger W0 corresponds to higher central concentration.

We define our mass-scale by arbitrarily adopting a `Hyades-

like' model, in which the mass of the system at an age of 625Myr

is ,1000M(. We then estimate the initial mass of a cluster by

applying a number of corrections. We adopt the initial mass

function for the solar neighbourhood described by Scalo (1986).

Table 2 shows how the Scalo mass function evolves in time.

Approximately 20 per cent of the initial mass is lost by purely

stellar-evolutionary processes.

In addition to stellar evolution, dynamical evolution of the star

cluster and the tidal field of the Galaxy also tend to consume

(eject) cluster stars, at a rate of about 10 per cent per relaxation

time (Spitzer 1987). With a current relaxation time for Hyades of

about 400Myr (see Table 1), we estimate that the amount of mass

lost by dynamical processes up to an age of 625Myr is similar to

the mass lost to stellar evolution. Adding these numbers provides a

conservative lower limit to the amount of mass lost by the star

cluster. This limit is conservative, because we have neglected the

interaction between stellar mass-loss and dynamical mass-loss.

We therefore adopt an initial cluster mass of M0 , 1600M(: This
is close to Weidemann (1993) estimate for the initial mass of

Hyades (1800M(). We assume a Scalo (1986) initial mass

function, with minimum and maximum masses of 0.1 and

100M(, respectively, and mean mass kml . 0:6M(: Our simu-

lations are performed with 1024 single stars and 1024 binaries, for

a total of 3096 (3k) stars and a binary fraction of 50 per cent.

Stars and binaries within our model are initialized as follows. A

total of 2k single stars are selected from the initial mass function

and placed in an equilibrium configuration in the selected density

distribution (see Table 4). We then randomly select half the stars,

and add a second companion star to them. The masses of the

companions are randomly selected between 0.1M( and the pri-

mary mass. For low-mass primaries, the mass ratio distribution

peaks at unity, whereas the distribution is flat for more massive

primaries. Once stellar masses are chosen, other binary parameters

are determined. Binary eccentricities are selected from a thermal

distribution between 0 and 1. Orbital separations a are selected

with equal probability in log a, with the lower limit set by the

separation at which the primary fills its Roche lobe (RLOF) or at

1R(, whichever is smaller. The upper limit for the initial

semimajor axis is taken at 106R( (about 0.02 pc; Duquennoy &

Table 1. Observed and derived parameters for several open star clusters with which our simulations may be
compared. Subsequent columns give (3) the distance to the cluster (in pc), (4) the cluster age (in Myr), (5) the
half-mass relaxation time (in Myr), (6) the total mass (in M(), (7) the tidal radius (in pc), (8) the half-mass
radius (in pc), and (9) the core radius (in pc). In cases where the parameters (relaxation time, mass, etc.) are not
accessible in the literature, we calculate them; these entries are printed in italics. In most cases these numbers
can be calculated using equation (A9) or equation (A10). Dashes and question marks indicate that we cannot
derive these numbers. The final two columns contain information on the cluster stellar content. The column
labelled fs:b:t indicates the number of single stars, binaries and triples (separated by colons). For clusters where
the numbers are given directly by observations, the table gives the observed numbers of each system. If the
binary fraction is derived by other methods, we give the relative fractions normalized to the number of single
stars. The last column (Nbss:gs:wd) gives the number of observed blue stragglers, giants and white dwarfs,
separated by colons.

name ref. d t trix M rtide rhm rcore fs:b:t Nbss:gs:wd

[pc] [Myr] [M(] [pc]

NGC2516 a 373 110 220 1000 13 2.9 ± 16:6:? 6:4:4
Pleiades b 135 115 150 ,1500 16 2±4 1.4 137:60:2 0:3:3
NGC2287 c 655 160±200 ± *120 6.3 ± ± 1:0.6:? 3:8:3
Praesepe d 174 400±900 370 1160 12 3.5 2.8 1:0.3:0.03 5:5:11
Hyades e 46 625 390 500±1000 10.3 3.7 2.6 1:0.4:0 1:4:10
NGC2660 f 2884 900±1200 315 *400 9.6 4 1.5 1:0.3:? 18:39:?
NGC3680 g 735 1450 28 *100 4.3 1.2 0.6 44:25:0 4:17:?

References to the literature (second column) are: (a) Abt & Levy (1972); Dachs, J & Kabus (1989); Hawley et al.
(1999). (Note: we interpret the quoted limiting cluster radius as the half-mass radius.) (b) Pinfield et al. (1998);
Raboud & Mermilliod, (1998); Bouvier et al. (1997); (c) Harris et al. (1993); Ianna et al. (1987); Cox (1954).
(d) Andrievsky (1998); Jones & Stauffer (1991); Mermilliod & Mayor (1999); Mermilliod et al. (1990); Hodgkin
et al. (1999). (Note: we interpret the quoted central radius for the cluster as the half-mass radius.) (e) Perryman
et al. (1998, and references therein); Reid & Hawley (1999); (f) Frandsen et al. (1989); Hartwick & Hesser
(1971); Sandrelli et al. (1999). (g) Hawley et al. 1999; NordstroÈm et al. (1997); NordstroÈm et al. (1996), Data on
numbers of white dwarfs were taken from Anthony-Twarog (1984) for Praesepe, from Koester & Reimers (1981)
for NGC 2287, and from von Hippel (1998) for the other clusters. Data on various clusters are also available via
Mermilliod's WEBDA online catalogue via http://obswww.unige.ch/webda/.

Table 2. Number Nx of stars of type x and total mass M, from the Scalo
(1986) initial mass function, evolved with SeBa. The calculation was
performed with a population of 100 k stars, but the numbers are normalized
to 1 k stars.

time [Myr] 0 100 200 400 600 800

ms 1024 1015 1008 996.7 988.3 982.1
gs 0 2.7 4.3 6.2 6.2 5.8
wd 0 3.0 8.5 17.6 26.0 32.7
ns 0 3.6 3.6 3.6 3.6 3.6
M [M(] 624.4 562.3 541.5 517.6 501.1 490.6

Star cluster ecology ± IV 201
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Mayor 1991). When a binary appears to be in contact at

pericentre, new orbital parameters are selected. Table 3 gives an

overview of the various distribution functions from which stars

and binaries are initialized.

We select initial density profiles from the anisotropic density

distributions described by Heggie & Ramamani (1995) with

W0 � 4 and W0 � 6; and refer to these models as W4 and W6,

respectively, throughout this paper. The Heggie±Ramamani models

are derived from King (1966) models, by taking into account the

velocity anisotropy and non-spherical shape of the critical zero-

velocity (Jacobi) surface of the cluster in the Galactic tidal field.

(The classical King models have spherical boundaries.) Within

the half-mass radius, the Heggie±Ramamani models are quite

isotropic.

All models are started with a virial radius of rvir � 2:5 pc: For
our adopted parameters, the initial cluster dynamical time-scale is

then tc ; �GM=r3vir�
21=2 , 1:5Myr: Each cluster is assumed to

precisely fill its Jacobi surface at birth. (Expressed less precisely,

we could say that the limiting radius of the initial King model is

equal to the Roche radius of the cluster in the Galactic tidal field.)

Given the Oort constants in the solar neighbourhood, we find that

the models with W0 � 6 are somewhat farther (,12.1 kpc) from

the Galactic Centre than is the Sun, while a model with W0 � 4 is

slightly closer (,6.3 kpc).

For a total cluster mass of 1600M(, the Lagrange points of our

two standard clusters lie, respectively, at 14.5 pc �W0 � 4� and

21.6 pc �W0 � 6� from the cluster centre. A star is removed from a

simulation when its distance from the cluster's density centre

exceeds twice the distance from the centre to the first Lagrangian

point.

Table 4 reviews the adopted parameters and initial conditions of

our models. In order to improve statistics, we performed four

calculations (labelled I to IV) for each set of initial conditions.

3 RESULTS

We now discuss the `photometric' properties of our model

clusters. As mentioned above, we defer the discussion of

`spectroscopic' properties, including details on the various types

of binaries found in our simulations, to Paper V.

3.1 Global properties

Fig. 1(a) shows the mass of the cluster as a function of time for

several models. In this figure, the `total mass' of a model is simply

taken to be the sum of the masses of all stars remaining within the

N-body system. This gives the mass larger than the mass bound to

the system, and probably also larger than the mass that the

observers would derive. The dashed line gives the results from

model W6-III. The two dotted lines show the mass evolution of

two of the W4 models (upper line: model W4-II, lower line:

W4-IV), illustrating the run-to-run variations in dynamical evolu-

tion (which are mainly the result of the difference in the initial

total masses of the two models, caused by different random seeds).

Table 5 indicates the differences between the various line styles

in Fig. 1(a), except for the dotted line which represent calculations

with W0 � 4: All lines listed are computed using exactly the same

stellar masses as in model W6-III.

The two solid lines in Fig. 1(a) show (upper line) the total mass

of an N-body system without stellar evolution, but otherwise with

the same initial conditions as run W6-III, and (lower line) the total

mass of stars, excluding stellar dynamics but including mass-loss

by stellar evolution (with the same initial stellar masses as in

model W6-III; see Table 5 for a review of the line styles). Mass-

loss in the absence of stellar evolution is not linear with time, as

one expects from an equal mass N-body system; the presence of a

mass function causes heavier stars generally to be lost later,

resulting in larger mass-loss at a later time. However, the loss rate

of stars is roughly constant, and the curvature of the upper solid

line in Fig. 1(a) demonstrates the strong effects of mass segre-

gation and cluster dynamics.

The actual variation of the cluster mass (under the combined

effects of stellar mass-loss and dynamical evolution) is larger than

the sum of the two separate effects by about 50 per cent (see

dashed line in Fig. 1a). The interplay between stellar evolution and

stellar dynamics is especially important during the later stages of

the evolution. The presence of primordial binaries has little effect

on the evaporation rate of the clusters. The dot-dashed line gives

the total mass of the same model, but without binaries ± all stars

in the initial mass function (including binary secondaries) are

redistributed with the same density profile as model W6-III. As

noted by McMillan & Hut (1994), primordial binaries have little

effect on the overall rate at which mass is lost from the cluster.

Fig. 1(b) shows the masses of two model clusters (W6-III and

W4-II), with different criteria for the limiting radius of the stellar

system. The solid lines give the total mass in the N-body system

(see also Fig. 1a), the dotted lines the total mass within the Jacobi

surface, and the dashed lines the total mass within the Jacobi

Table 3. Initial conditions for the stellar and binary population.
The first column gives the parameter, and the second and third
columns give the symbol and the distribution function, followed
by the lower and upper limits adopted.

parameter function limits
lower upper

primary mass M P�M� � Scalo 0.1M( 100M(
secondary mass m P�m� � const: 0.1M( M

orbital separation a P�a� � 1=a RLOF 106R(
eccentricity e P�e� � 2e 0 1

Table 4. Initial conditions and parameters for the selected models. The columns give the model
name, initial mass (M(), number of stars, dimensionless central depth of the potential well (W0),
the distance from the Galactic Centre (kpc), the initial relaxation and half-mass crossing times
(both in Myr), rx, ry, and rz, the distances from the cluster centre to the Jacobi surface (so rx is
simply the Jacobi radius, rJ; see Appendix A), and the virial, half-mass and core radius (all in
parsec).

name M N W0 RGal trlx thm rJacob rvir rhm rcore
[M(] [kpc] [Myr] [pc] [pc]

W4 1600 3k 4 6.3 109 4.07 14.5 9.7 7.2 2.5 2.14 0.83
W6 1600 3k 6 12.1 102 4.15 21.6 14.4 10.8 2.5 2.00 0.59
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radius of the cluster centre, as seen by an observer looking along

the y-axis. The total mass in stars in the N-body system

overestimates the mass of the cluster; the mass within the zero

velocity surface may give a better measure of the mass one would

observe in a real situation. The cluster mass within the Jacobi

radius, viewed along the x-axis (towards the Galactic Centre),

always lies between the solid and dotted lines; the corresponding

mass viewed along the z-axis (from above the Galactic plane) lies

between the dotted and the dashed lines. These trends are found in

all models studied.

Fig. 2(a) presents the observational equivalent of Fig. 1(b),

showing the total MV magnitude of the W6 models at various

times. The spread in MV is caused by the intrinsic differences

between runs ± initial conditions, run-to-run variations and

fluctuations due to the small numbers of giants, which dominate

the total magnitude. Note that, for technical reasons, the output

intervals are not the same for the four calculations shown here.

Fig. 2(b) plots the integrated B2 V colour of the cluster as a

function of time. The initial colour of all models is confined to a

small range between B2 V . 20:15 and 20.28, but rapidly

grows to larger values with a larger spread: B2 V . 0:1±0:4 at

50Myr and B2 V . 0:5±0:8 at 500Myr. As in Fig. 2(a), the

intrinsic spread is caused by the presence of a relatively small

number of giant stars. The increase in the colour index indicates

that the cluster gets redder with age, which is mainly due to the

loss of the massive blue stars and the formation of red giants. The

colour variation of the W4 models is similar.

Fig. 3 shows how the radii of models W4 and W6 evolve with

time. All stars in the N-body system are taken into account in

calculating the Lagrangian radii. The outer radii therefore expand

much more than they would do if only stars within the Jacobi

surface were considered. The W6 models experience core collapse

between t � 100 and 150Myr, and somewhat earlier for the W4

models, but neither is very deep. This shallow core contraction

phase demonstrates the importance of a large-mass spectrum,

stellar mass-loss and, to a lesser extent, binary heating to the

dynamical evolution of these systems; mass segregation, for

example, also plays an important role here (see Fig. 5). A

comparable model with primordial binaries and without stellar

evolution would experience core collapse (McMillan et al. 1990,

1991a), even in the presence of a Galactic tidal field (McMillan &

Hut 1994).

In contrast to the W6 radii shown in Fig. 3(a), the Lagrangian

radii of model W4-II (Fig. 3b) expand for about 300Myr, and

subsequently shrink. The decrease in Lagrangian radii at late times

is an indicator of cluster evaporation. As the cluster dissolves in

the Galactic tidal field, its tidal radius decreases, accelerating the

dissolution and causing the Lagrangian radii to decrease. The W6

clusters show the same behaviour, but at somewhat later times. We

show the result of a single W4 model to illustrate the intrinsic

fluctuations within a single N-body run.

Finally, Fig. 4 shows the half-mass relaxation time (equation

A9) as a function of time for models W6-III (solid line) and W4-II

(dashed line). Note that the relaxation time peaks around the

cluster's `half-life' epoch: 750 and 400Myr for models W6-III and

W4-II, respectively. Consequently, estimates of the present-day

relaxation time of observed open clusters may provide poor

indicators of the dynamical age of the stellar system. The often-

used argument that a star cluster is barely older than its relaxation

time and therefore cannot be dynamically evolved is clearly in

error for the majority of star clusters (see also McMillan & Hut

1994).

Figure 1. (a) Mass (in M() as a function of time (in Myr) for various models. The solid lines show the time-dependence of the total mass with (upper curve)

stellar evolution suppressed, and (lower curve) without dynamical evolution. The dashed line is the total mass of model W6-III. The dot-dashed line is the

total mass of a calculation with the identical mass function as in model W6-III, but all stars were single and redistributed in an identical density distribution.

This line therefore gives the difference in a calculation with or without primordial binaries, but with all the other effects the same. The dotted lines represent

the total mass of models W4-II (upper) and W4-IV(lower). (b) Various definitions of the cluster mass (in M() as functions of time for model W6-III (upper

set of three lines) and model W4-II (lower set of lines). Solid lines represent the total mass in the N-body system, dotted lines the mass within the Jacobi

surface, and dashed lines the total mass seen in projection within a distance rJ of the cluster centre.

Table 5. Overview of the variation in
parameters for model W6-III in Fig. 1(a).
The realization of the initial mass function
was identical for all these models. Other
parameters are as in Table 4. For each of
these calculations some feature of starlab
was switched on (1) or off (-); Kira (the
N-body integrator), SeBa (the stellar and
binary evolution model) and whether the
calculation started with primordial binaries.
Both dotted lines in Fig. 1(a) are computed
using all model features of starlab, Kira,
SeBa and with primordial binaries, but for
an initial King model with W0 � 4:

Starlab Primordial
line style Kira SeBa binaries

upper solid 2 1 1

lower solid 1 2 1

dashes 1 1 1

dash-dots 1 1 2
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3.2 Mass segregation

The effect of mass segregation is clearly visible in Fig. 5(a), which

shows the mean mass kml of stars within the 5, 25, 50 and 75 per

cent Lagrangian radii as functions of time, averaged over the four

W6 models. The initial increase in the mean mass within the inner

5 per cent Lagrangian radius is the result of mass segregation. The

value of kml in the cluster centre decreases again after about

100Myr, when the most massive stars leave the main sequence

and lose most of their mass on the asymptotic giant branch. For

the remainder of the calculation, kml stays more or less constant in

each Lagrangian zone, but with a significantly higher value in the

inner zones.

Fig. 5(b) shows the evolution of the mean mass kml, in model

W4-II. Mass segregation in this model proceeds on a longer time-

scale than in the W6 models, but the cluster dissolves on a shorter

time-scale. Near the end of the cluster lifetime the mean mass in

the outer regions increase, caused by the preferential loss of the

lower mass stars by evaporation; the more massive stars have

greater difficulty in climbing out of the potential well.

Fig. 6 shows the mean mass-to-light ratio for the W6 models.

Except for the first few million years, the mass-to-light ratio in the

cluster core is always substantially smaller (and noisier) than that

in the halo, as mass segregation causes the most massive (i.e.,

brightest) stars to sink rapidly to the cluster centre. The general

increase in mass-to-light ratio with time is the result of stellar

evolution. The occasional dips in the mass-to-light ratio are

caused by individual red giant stars; most of these dips occur in

the core, where mass segregation causes the giants to accumulate.

We can reduce this `noise' considerably by averaging over the

four W6 calculations, but the effect remains visible.

Fig. 7(a) shows the radial stellar distribution in the W6 models

at various epochs. The cluster expands as it ages. The binaries

(dotted lines) closely follow the distribution of the single stars for

the first 100Myr, but become more centrally concentrated at later

epochs. Mass segregation is also clearly visible if we compare the

radial distributions of low-mass (faint) stars with the more massive

(bright) stars (Fig. 7b). Stars with L . 0:5 L( are clearly more

centrally concentrated than the mean cluster star, while giants

(although there are only a few) are even more strongly concen-

trated in the cluster centre.

Figure 2. (a) IntegratedMV magnitude as a function of time of the four W6 models (pluses, circles, squares, and diamonds give the data for the models I±IV).

(b) Integrated B2 V colour as a function of time for the W6 models.

Figure 3. Lagrangian radii (in pc) as functions of time. The data in (a) represent the mean of the four W6 runs, and those in (b) model W4-II. From top to

bottom, the radii contain the following mass fractions: 75 per cent (dots), 50 per cent (upper solid), 25 per cent (dashes) and 5 per cent (lower solid).

Figure 4. Half-mass relaxation time as a function of time for the models

W6-III (solid) and for model W4-II (dashes). The error bars indicate the

computed relaxation times for the observed star clusters from Table 1.

(Confidence intervals are not listed in the table.)
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Mass segregation can also be observed in the cluster's mass and

luminosity functions. Fig. 8(a) shows global mass functions for all

single stars and binary primaries for the W6 models at birth and at

t � 600Myr: The global mass function of the cluster is affected

only slightly by stellar evolution and mass segregation. However,

the mass function at t � 600Myr for stars in the inner part of the

cluster (dot-dashed line) is clearly different from the global mass

function at that time.

The white dwarfs are more centrally concentrated than stars

with luminosity .0.5 L( and slightly less concentrated than the

giants (see Fig. 7b). This is caused by the progenitors of the white

dwarfs, the giants, being centrally concentrated, while after their

envelopes are shed they have masses comparable to the mean

cluster stars. Segregating outwards takes more time than sinking

inwards, and at the same time more white dwarfs are produced in

the cluster centre (see the end of this section for more details).

Fig. 8(b) shows the luminosity functions (in MV) for stars

(including binaries) in models W6 at zero age, 600Myr and at an

age of 1.1Gyr. Note that the luminosity function at the later time

shows a larger faction of bright stars. The reason is two-fold: (1)

stellar evolution has removed only the most massive stars by this

time, while mass segregation has concentrated the remaining

massive (bright) stars in the cluster core, at the same time causing

the lower mass stars to escape, and (2) the heaviest stars turn into

giants, which for older (lighter) stars are much brighter than main-

sequence stars, whereas for younger (heavier) stars, the difference

in brightness between giant and main-sequence stars is much

smaller. Near the end of the clusters' lifetime (solid lines in Fig. 8)

the enormous overabundance of stars with a mass of 0.6±0.8M(
is caused by the large number of white dwarfs in the cluster; a

population of main-sequence stars with the same mass would lead

to an excess of stars with absolute visual magnitudes 8.6 ± 6.4 in

Fig. 8(b). The populations of giants and white dwarfs in the later

stage of the cluster are discussed in more detail in Section 6.6. The

excess of stars with masses up to 2M( in Fig. 8(a) is caused

mainly by main-sequence stars which have sunk in the cluster

potential. These stars also gives rise to an excess of bright stars in

Fig. 8(b).

The W4 models are more strongly affected by mass segregation

(not shown, but see Section 4). In part, this is caused by the more

rapid evaporation of these models compared to the W6 models.

Figure 5. (a) and (b) The mean mass kml of model W6-III (a) and W4-II (b), as functions of time. The data have been smoothed over time intervals of

8.8Myr. From top to bottom, the lines represent the mean mass within the 5 per cent (solid), 25 per cent and 50 per cent (dashes) and 75 per cent (dots)

Lagrangian radii (see Fig. 3 for the corresponding radii.)

Figure 6. The mean mass-to-light ratio for models W6-I to IV, within the

5 per cent (solid) and 75 per cent (dots) Lagrangian radii.

Figure 7. (a) Cumulative distribution of single stars (solid lines) and binaries (dotted lines), averaged over the four W6 models, at (upper left to lower right)

t � 0; 100, 200, 600 and 800Myr. (b) Cumulative distribution of various stellar populations for the four W6 runs at an age of 600Myr. Solid line: the distribution

of all stars (see also the appropriate solid line in panel (a); dot-dashed line: stars with L . 0:5 L(; dashed line: white dwarfs; dotted line: (sub)giants.
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This is consistent with the findings of Takahashi & Portegies

Zwart (2000), who noted that clusters which are close to complete

disruption contain a higher fraction of high-mass stars.

3.3 Hertzsprung±Russell diagrams

Fig. 9 shows a time sequence of Hertzsprung±Russell diagrams

for model W6-III. The youngest Hertzsprung±Russell diagram

(200Myr) already shows a white dwarf sequence. Note the

densely populated `binary sequence' ,0.75mag above the zero-

age main-sequence (ZAMS). One of the objects in the middle

panel (close to but just above the turn-off) is a blue straggler; the

other two are binaries (see also Fig. 11). The objects immediately

to the left of the main sequence (the two points in the 600Myr

diagram at B2 V , 1:18 and the single point at B2 V , 0:5;
V � 8� are binaries containing a mass-transfer remnant (a helium

star) and a main-sequence star which has accreted part of its

companion's envelope. Farther to the blue (between B2 V � 0

and 0.8), but to the right of the white dwarf sequence, are binaries

consisting of two white dwarfs (several are indicated with a `X' in

the 600- and 1100-Myr diagrams). In the bottom panel a break and

discontinuity in the ZAMS is visible near B2 V � 0:4 and at

V . 4: This is an artefact of the stellar evolution fitting formulae

given by Eggleton, Tout & Fitchett (1989), and appears when the

envelope of a main-sequence star becomes convective.

Fig. 10 shows Hertzsprung±Russell diagrams for the inner,

middle and outer regions of the combined W6 models at an age of

about 600Myr, and illustrates the effect of mass segregation. Each

diagram contains about 2000 objects. The slight `fuzziness' near

the main-sequence turn-off is the result of variations in output

times between individual simulations, which cause the combined

diagram to have a small spread in stellar ages. About one-quarter

(one run) of the stars come from a slightly younger cluster with an

age of about 550Myr.

The Hertzsprung±Russell diagrams of the inner and outer parts

of the cluster show significant differences due to mass segrega-

tion. The inner HRD has a clear excess of (sub)giants and white

dwarfs relative to the HRD at the half-mass radius or that in the

halo. The population of single white dwarfs and binaries con-

sisting of two white dwarfs is richest in the top panel of Fig. 10,

and their number decreases in the lower panels (see Section 6.6 for

discussion). Also, the turn-off region is more heavily populated in

the inner HRD than in the others. Striking also is the lack of a

clear binary sequence in the outer Hertzsprung±Russell diagram.

The bottom of the main sequence is less clearly affected by mass

segregation.

3.4 Blue stragglers

The (small) numbers of blue stragglers do not depend strongly

on the particular region of the cluster under study. We count four

blue stragglers in the inner Hertzsprung±Russell diagram, and

one and two in the middle and outer frames of Fig. 10,

respectively. These numbers are fairly typical of our simulated

clusters, and also quite typical for the numbers observed (see

Table 1). Fig. 11 presents a graphical representation of the blue

stragglers in model W6-III. (A main-sequence star is identified

as a blue straggler as soon as its mass exceeds the turn-off mass

for that epoch.)

Most blue stragglers are the result of mass transfer in a close

binary. In about half of all cases (37 out of 76 blue stragglers

formed in all calculations performed), the mass transfer is unstable,

leading to a merger. Blue stragglers formed from a stable phase of

mass transfer are generally accompanied by a white dwarf or

helium star (the young remnant of mass transfer; see Fig. 11),

causing the blue stragglers to lie slightly blueward of the turn-off

in the Hertzsprung±Russell diagram (see Section 3.3).

Three blue stragglers formed via collisions in which a third star

interacted with a binary, leading to a blue straggler accompanied

by a main-sequence star in an eccentric orbit. In each of these

cases, the binary components coalesced and the third star was

captured into the binary. Observing a blue straggler in an elliptical

orbit around a stellar (main-sequence) companion would provide

strong evidence for such dynamical interactions in star clusters

(see Portegies Zwart 1996).

In none of our calculations was a blue straggler with more than

twice the turn-off mass formed, i.e., there were no collisions

between three or more stars. A discovery of a blue straggler with a

mass more than twice the turn-off mass would provide strong

evidence for effects of stellar dynamics, although one could

imagine a primordial triple to get into a common-envelope

situation in which all three stars spiral in to a triple merger. In

Paper III we found runaway collisions between more than two

stars in the simulations of dense stars clusters without primordial

Figure 8. Mass function (a) and luminosity function (b) for model W6. The dotted lines give the t � 0 distributions, and the dashed lines give the

distributions at t � 600Myr (averaged over all models). The dot-dashed lines are the mass (luminosity) functions for stars within 3.4 pc (the half-mass radius

for W6 models at t � 600Myr� of the density centre [for (b) in projection, as viewed along the x axis]. The solid line gives the mass function of the W6

models within the cluster rhm [projected again for (b)] at an age of 1100Myr.
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binaries. These results, however, are applicable for a different

range of initial conditions, as they studied the dense and young

central star clusters R 136 in the 30 Doradus region of the Large

Magellanic Cloud.

Many blue stragglers experience mass transfer or a collision

long before actually being classified as blue stragglers by our

criterion (i.e., exceeding the turn-off mass). In most of these cases,

one or more phases of mass transfer (stable or unstable, or even

accretion from the stellar wind of a companion) has rejuvenated

one of the stars in a close binary system (see Appendix B). As the

cluster ages, the star remains behind on the main sequence, and

eventually becomes identifiable as a blue straggler (see also

Paper II). This is illustrated in Fig. 11 (the two long tracks with

m , 2 and the track near m , 3�:

A blue straggler which was rejuvenated long ago may show no

trace of the event that caused its rejuvenation. Apart from residing

above the turn-off, the star may appear completely normal;

anomalous atmospheric abundances will have had sufficient time

to mix with the stellar interior. In addition, if the blue straggler is

rejuvenated only a little, the maximum distance on the

Hertzsprung±Russell diagram between the cluster turn-off and

the blue straggler will be very small; such a star may remain

unidentified as a blue straggler. This may happen if mass transfer

is unstable but does not lead to a merger, or if a binary is too

wide for Roche lobe overflow, and the blue straggler is

rejuvenated by accreting a small portion if its companion's

stellar wind.

The lifetime of a blue straggler depends on the epoch at

Figure 9. Hertzsprung±Russell diagram of all stars in model W6-III at ages of 200Myr U 2 B in the left-hand panels and B2 V in the right-hand panels

(upper panels; 1983 objects), 600Myr (middle; 1603 objects), and 1100Myr (lower panels; 1009 objects). Single stars are indicated with open circles, and

binaries with filled circles.
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which it formed. Blue stragglers that form later are generally

products of lower mass stars, and tend to live longer than blue

stragglers that formed early in the evolution of the stellar

system.

3.5 Isophotes

Fig. 12 shows a series of isophotes, as seen from various

directions, for model W6-III at an age of 600Myr. The Galactic

Centre is located to the 2x direction (at a distance of 12.1 kpc ±

see Table 4), and z points toward the North Galactic Pole. While

the cluster is barely flattened at birth,1 by 600Myr the cluster is

significantly flattened by the Galactic tidal field. As expected, the

flattening is greatest along the z-axis, and also noticeable in

the y-direction.

Fig. 13 shows images of model W6-III at three different

moments in time. The images are created using a ray-tracing

technique.

3.6 Escaping stars

Stars escaping from the cluster are lost primarily near the first and

second Lagrange points. Figs 14 and 15 show the positions and

projected velocities of the first 100 escapers from the system, and

the 100 stars which escaped between t � 550 and 650Myr. The

left and right panels show, respectively, projections on to the x-z

and x-y planes. The first and second Lagrange points lie on the

x-axis, at distances of ,20 pc �t � 0� and ,17 pc �t , 600� from

the cluster centre. The small overall rotations of escapers evident

in the x-y projections are consequences of the Coriolis force acting

on stars in the rotating frame of reference in which we perform the

simulations. The high-speed escapers with roughly isotropic

velocities in Fig. 14 are escaping neutron stars, which receive

high kick velocities on their formation. They are absent in Fig. 15,

as the cluster is by that time too old for supernovae to occur

(except for type Ia supernovae).

The main differences between Figs 14 and 15 are (1) the

considerably larger spread in velocities, (2) the larger extent in z of

the region over which stars are lost, and (3) the higher speeds of

escaping stars at the earlier epoch. These differences are readily

explained by a combination of effects; the evolution of the cluster

in the Galactic tidal field, the presence of primordial binaries and

the formation of neutron stars. As the cluster ages it becomes less

massive and the Galaxy's gravitational pull becomes relatively

stronger. The tidal radius shrinks and the cluster velocity

Figure 10. Hertzsprung±Russell diagrams of the combined W6 models at

an age of about 600Myr. The upper panel shows the innermost (non-

projected) 4 pc (2004 objects), the middle panel stars between 4 and 9 pc

from the cluster centre (2058 objects), and the bottom panel stars more

than 9 pc from the centre (2039 objects). Single stars are indicated with

open circles, and binaries with filled circles.

Figure 11. Blue stragglers in model W6-III. The solid curve gives the turn-

off mass (in M() as a function of time (in Myr). The horizontal lines

represent the tracks of the blue stragglers in model W6-III. The tracks start

when the star is rejuvenated (see Appendix B), and stop when the blue

straggler leaves the main sequence.

1This is simply a consequence of the fact that only the outermost parts of

the cluster, near the Jacobi surface, show significant flattening, and these

are initially very sparsely populated. Only when cluster evolution drives

many stars out to the Jacobi radius does the flattening become readily

apparent.
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dispersion decreases, so the speed of escaping stars and their

distances above or below the Galactic plane also decrease. The

older cluster also lacks massive stars, and therefore no stars are

ejected via supernova explosions. The shallow core collapse

during the first 100Myr results in increased binary activity, which

also contributes to the higher stellar ejection speeds at the earlier

time.

3.7 Stellar populations

Tables 6 and 7 present, for several cluster ages, the numbers of

single stars and binaries by generic stellar types. The numbers are

averaged over the calculations performed for each set of initial

conditions, chosen with a different random seed from the same

probability distribution. Table 8 gives the same data for a

population of evolving binaries without dynamics, calculated

using SeBa (see Appendix B).

Overall, the evolutionary differences in the populations of

single stars and binaries between models W6 and W4 are quite

small. Clearly, as already noted, the W4 clusters evaporate more

rapidly (Fig. 1), resulting in a generally more rapid decrease in the

numbers of both stars and binaries. A more significant difference

between Tables 6 and 7 is the larger numbers of white-dwarf

binaries in the W4 models compared to other stellar types. Table 8

presents the stellar and binary properties of an evolving population

of isolated binaries. The differences between these binaries and

the dynamically evolving population is considerable.

Table 9 gives the fractions of various types of stars and binaries in

the dynamical calculations, relative to the corresponding numbers

from the population synthesis studies. The latter are normalized to

the same numbers of single main-sequence stars and main-sequence

binaries as in the initial dynamical calculations. (This normalization

is employed here to show trends which are hard to see in the Tables

6, 7 and 8.) Neutron stars are omitted from the comparison because

the differences are directly obvious: neutron stars escape from open

star clusters, but they are retained in the non-dynamical models;

black holes and binaries which contain two giants or a giant and a

white dwarf are omitted because of their small numbers.

Although the numbers of single giants and white dwarfs are also

rather small, a trend is clearly visible: single white dwarfs and

dwarfs in binaries are more abundant at later stages in the

dynamical calculations, especially for the W4 models. The basic

reason for this overabundance of white dwarfs and giants is their

larger mass, which makes them more likely to be retained by the

cluster. White dwarfs experience a complex evolutionary path

within the stellar system, their progenitors being among the most

massive objects while on the main sequence and the giant branch,

but the white dwarfs having masses comparable to the mean once

their envelopes are lost. White dwarfs are therefore preferentially

formed in the cores of star clusters. Once the white dwarf is

formed, it is hard to extract it from the core. These effects are

more pronounced in smaller clusters �trlx & 1Gyr�: At a greater

age the W4 models have a higher fraction of white dwarfs than the

W6 models. This is a result of the smaller relaxation time of the

W4 models which causes low-mass main-sequence stars to escape

more easily; the cluster therefore becomes more rich in stars

which have more difficulty to escape.

The number of contact main-sequence binaries [ms, ms]

drops in the dynamical models, whereas in the purely binary

evolution models their number remains roughly constant. In the

dynamical models, contact binaries easily merge when they

become perturbed by the close encounter of another star or

binary, whereas in the binary population synthesis such binaries

merge only when one of the stars leaves the main sequence (see

Section B2).

4 COMPARISON WITH OBSERVATIONS

4.1 The Pleiades

Fig. 16 shows the MI-magnitude luminosity function for the inner

part of the Pleiades cluster (Hambly & Jameson 1991), and

compares it with our model luminosity functions at 100Myr.

Figure 12. Isophotes in MV for model W6-III at a cluster age of 600Myr.

The three panels present views along the three coordinate axes. The 10

(sub)giants are plotted as dots with size proportional to magnitude (and are

excluded from the isophotes). The brightest region in the continuum plot

has a surface brightness of 22.2mag pc22. Contours are plotted at 20.86,

0.34, 1.6, 2.8, 4.1 and 7.8mag pc22. Stars are assigned a Gaussian point

spread function with a dispersion of 0.35 pc.
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The best fit between the observed and model luminosity

functions is obtained for the stars within the half-mass radius. This

suggests that some mass segregation has already occurred in this

cluster. Raboud & Mermilliod (1998) also find evidence for mass

segregation in this cluster. Our luminosity function has too many

bright stars, and to make a reasonable fit we have to exclude stars

with MI , 4:5 from the sample or, as is done in Fig. 16, lift the

cumulative luminosity function with the number of brightest

stars which are excluded in the sample by Hambly & Jameson

(1991).

The Pleiades is flattened, with an observed ellipticity e ;

�12 b=a� of 0.17. Taking into account the orientation of the

cluster in the tidal field of the Galaxy, Raboud & Mermilliod

(1998) derive an intrinsic ellipticity of almost 0.3 (see also van

Leeuwen, Alphenaar & Brand 1986), comparable to what we find

in our models (see Fig. 12) by comparing the distance to the

Jacobi surface along the z-axis with the distance to L1: e .

12 rz=rJ:

4.2 Praesepe

Fig. 17 shows the MR-magnitude global luminosity function for

the W6 clusters at birth and at 800Myr, and compares that with

the observed luminosity function for Praesepe reported by

Hambly et al. (1995a,b), which is shown as filled circles with

error bars.

Figure 13. Visualization of model W6-III at zero age (top image), at an age of 622Myr, and at an age of 1512Myr. Images were created using a ray-tracing

technique.
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The two 800-Myr-old luminosity functions are taken from the

stars within the projected half-mass radius and stars farther away.

The outer luminosity function (dashes) fits better to the bright

stars, while the inner luminosity function fits better to the dimmer

stars. Again we can argue that omitting the brightest stars from the

sample provides a better fit to the observations, in which case the

luminosity function of the inner half of the cluster provides a

better comparison.

4.3 The Hyades

Fig. 18 compares the MI-band luminosity functions for the stars

and binaries of several models, at birth (dotted line) and at

600Myr (other lines), with the observed luminosity function the

Hyades (Reid & Hawley 1999). Reid & Hawley observed the

entire cluster, and their luminosity function reportedly extends

down to the hydrogen-burning limit. The W0 � 4 data for the

Figure 14. Vector diagram of the first 100 �t , 218Myr� stars escaping from model W6-III. Projections on to the x-z plane and the x-y plane are shown. A

velocity scale is shown in the upper right corner.

Figure 15. As for Fig. 14, but for the 100 stars escaping from model W6-III between t � 550 and 650Myr.

Table 6. Stellar and binary types in the W6 models at various times.
Binaries which contain two main-sequence stars are identified as (ms, ms),
(ms, gs) contain a main-sequence star and a giant, (gs, gs) contains two
giants, (gs, wd) contains a giant and a white dwarfs, and (wd, wd) contains
two white dwarfs. A bracket indicates the binary component which fills its
Roche lobe and is in a state of mass transfer to its companion star; binaries
with neutron stars or black holes are omitted. The bottom row gives the
binary fraction.

time [Myr]: 0 100 200 400 600 800

ms 1024 1174 1144 1038 914.5 678.0
gs 0 4.0 4.8 6.3 6.0 6.0
wd 0 6.0 11.8 26.5 32.5 35.0
(ms, ms) 1024 907.9 869.0 788.7 700.0 606.5
[ms, ms] 0 5.2 4.3 3.9 3.3 2.5
(ms, gs) 0 0.5 3.0 2.0 4.3 3.7
(ms, wd) 0 1.3 3.0 6.8 8.8 12.7
(gs, gs) 0 0.0 0.5 0.3 0.3 0.3
(gs, wd) 0 0.5 0.5 0.8 1.5 2.7
(wd, wd) 0 0.0 1.5 4.3 6.0 10.0

fbin 0.5 0.436 0.432 0.430 0.432 0.470

Table 7. Stellar and binary types in the W4 models.

time [Myr]: 0 100 200 400 600 800

ms 1024 1249 1174 964.0 604.5 164.0
gs 0 3.5 5.3 9.3 9.5 7.5
wd 0 5.3 11.8 25.8 33.5 31.0
(ms, ms) 1024 857.3 796.7 598.0 351.5 197.0
[ms, ms] 0 6.0 5.1 3.5 2.1 1.1
(ms, gs) 0 0.8 3.0 1.5 2.5 3.0
(ms, wd) 0 2.3 2.8 3.0 5.5 6.0
(gs, gs) 0 0.0 0.0 0.3 0.0 1.0
(gs, wd) 0 0.5 0.8 0.5 1.0 0.0
(wd, wd) 0 0.3 2.0 3.8 4.0 5.0

fbin 0.5 0.408 0.405 0.379 0.362 0.449
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entire cluster (solid) and the W0 � 6 model for the stars within the

half-mass radius (dash-3dot) do not fit as well as the data for

modelW0 � 4 for stars within the inner half-mass radius (dashes).

Our models W6 are somewhat farther from the Galactic Centre

than the Hyades, which would tend to suppress mass segregation

somewhat by increasing the cluster relaxation time. The W0 � 4

models do exactly the opposite. It is not clear whether the

overabundance of stars with MI & 9mag in the observed cluster

can be compensated by some primordial mass segregation in the

model calculations, as the cluster is much older than an initial

relaxation time. The degree of mass segregation can, however, be

explained if Hyades was born with a somewhat smaller initial

relaxation time, i.e., less massive and smaller in size. On the other

hand, the mass of the cluster may initially not have been too small,

otherwise the cluster would have dissolved in the tidal field of the

Galaxy long ago.

Oort (1979) compared observations of Hyades with Aarseth's

(1973, 1975) N-body calculations, and concluded that the outer

4 pc of the Hyades cluster are more strongly flattened, with e .

0:5; than the N-body models implied. The orientation of the

Hyades in the Galaxy relative to the position of the Sun then

implies that the intrinsic flattening is even greater. Our calcula-

tions do not support Oort's conclusion, and a flattening of e � 0:5
is quite consistent with our N-body models. The reason for the

discrepancy between our results and the conclusion of Oort is

Table 8. Stellar types from population synthesis study of 5 � 105 binaries.
The numbers of binaries is renormalized to 1024 because this is the
number of primordial binaries in each of our dynamical calculations. The
evolution of population of 1024 single stars was presented in Table 2. Note
that the dynamical models were performed with 1024 primordial binaries
and 1024 single stars. We added the extra class of binaries which includes
a neutron star or a black hole (indicated with remnant: rn), such binaries
are omitted in the dynamical models due their small number.

time [Myr]: 0 100 200 400 600 800

ms 0 0.81 0.56 0.40 0.35 0.32
gs 0 0.43 0.52 0.78 1.12 1.14
wd 0 0.89 2.01 3.66 5.11 6.70
rn 0 4.52 4.52 4.53 4.53 4.53
(ms, ms) 1024 1009 1000 988.4 979.6 972.6
[ms, ms] 0 5.58 7.12 7.79 7.73 7.60
(ms, gs) 0 2.00 3.25 4.79 5.16 4.78
(ms, wd) 0 2.35 4.89 9.22 13.00 16.51
(ms, rn) 0 0.11 0.08 0.05 0.04 0.04
(gs, gs) 0 0.14 0.23 0.27 0.28 0.22
(gs, wd) 0 0.28 0.80 1.36 1.63 1.67
(gs, rn) 0 0.01 0.01 0.01 0.00 0.00
(wd, wd) 0 0.55 2.08 4.85 7.24 9.58
(wd, rn) 0 0.32 0.35 0.37 0.38 0.38
(rn, rn) 0 0.13 0.13 0.13 0.13 0.13

Table 9. Relative numbers of stars and binaries in the
dynamical models, as fractions of the numbers found
in the non-dynamical population synthesis studies.
The normalization is such that the dynamical and non-
dynamical calculations contain equal numbers of
single main-sequence stars and main-sequence bin-
aries. Numbers greater than 1 indicate excesses of
those stellar type in the dynamical calculation;
numbers less than 1 represent depletion.

Normalized data for the W6 models
time [Myr]: 0 100 200 400 600 800

ms 1 1 1 1 1 1
(ms, ms) 1 1 1 1 1 1
gs 0 1.1 0.7 0.9 1.0 1.5
wd 0 0.6 1.5 1.2 1.1 1.3
[ms, ms) 0 1.0 0.7 0.6 0.6 0.5
(ms, gs) 0 0.3 1.1 0.5 1.2 1.2
(ms, wd) 0 0.6 0.7 0.9 1.0 1.2
(wd, wd) 0 0.0 0.8 1.1 1.2 1.7

Normalized data for the W4 models
time [Myr]: 0 100 200 400 600 800

(ms, ms) 1 1 1 1 1 1
ms 1 1 1 1 1 1
gs 0 0.9 1.0 1.4 2.5 7.6
wd 0 0.5 1.2 1.3 1.8 4.7
[ms, ms) 0 1.3 0.9 0.7 0.7 0.7
(ms, gs) 0 0.5 1.2 0.5 1.3 3.1
(ms, wd) 0 1.1 0.7 0.5 1.2 1.8
(wd, wd) 0 0.7 1.2 1.3 1.5 2.6

Figure 16. Cumulative luminosity function in MI magnitudes. The open

circles (W) with (Poissonian) error bars show the apparent luminosity

function for the Pleiades (Hambly & Jameson 1991). The corrected

absolute luminosity function, assuming a distance modulus m2M � 5:5

(Gatewood et al. 1990) is indicated by filled circles (X). Both luminosity

functions are corrected for the 150 stars brighter than mI � 10:5 (Pinfield

et al. 1998). The dotted line is the initial luminosity function for all stars in

the models (assuming that binaries are unresolved). The solid and dashed

lines show the luminosity function for all models at t � 100Myr within a

projected (on to the y±z plane) 25 per cent Lagrangian and the half-mass

radius of the cluster. The 3dot-dashed line give the luminosity function for

the cluster stars in the outer 90 per cent Lagrangian radius.

Figure 17. Cumulative luminosity function (MR magnitude) of the

Praesepe cluster. The filled circles with error bars give the observed

luminosity function within the half-mass radius (Hambly at al. 1995a,b), to

which 170 stars with MR , 4:5 were added. The model W6 luminosity

function for all stars at zero age is shown as a dotted line. The solid and

dashed lines give the luminosity functions for models W6 at 800Myr

within and outside the projected (on to the y±z plane) half-mass radii.
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based on Aarseth's models, which were computed with a very

small number of stars. The flattening of the cluster in the tidal

field of the Galaxy, however, becomes more apparent towards the

clusters' tidal radius which has smallest stellar density. Calcula-

tions which are performed with a limited number of stars &500

will hardly show the flattening in the tidal field.

4.4 NGC3680

Fig. 19 compares the observedMV-band luminosity function of the

old open cluster NGC3680 with our model luminosity functions.

The observed luminosity function is poorly reproduced by our

cluster models. However, if we remove the least luminous stars

(those with V . 11:5�; the 1.4-Gyr model fits the observed

luminosity function fairly well. The imposed lower limit is rather

arbitrary; it suggests that the observations might not properly

correct for the faintest stars, or that they may simply be absent

from the data. Mass segregation generally causes the lightest stars

to escape from the cluster which, in time, leads to an over-

abundance of massive stars. The observed clusters, however, seem

to have too few high-mass stars and also too few low-mass stars,

which is hard to understand from a dynamical point of view. We

therefore argue that in this case the lack of low-mass stars is

caused by observational selection effects.

5 COMPARISON WITH OTHER WORK

Table 10 lists the initial conditions of previously reported results

and compares the evaporation times with our own model

calculations. We discuss each model in turn.

Terlevich (1987) performed direct N-body calculations with up

to 1000 stars, including a power-law stellar mass function, mass-

loss from single-star evolution, and the tidal field of the Galaxy.

The implementation of the Galactic tidal field and the evolution of

single stars were similar to those presented in this paper. Her

model XII had initial conditions the closest to our own, although

some significant differences exist. Terlevich's models started with

spherical distribution of stars with density proportional to 1r2,

virial radius 2 pc (half-mass radius of about 1.6 pc), and located at

a distance of 10 kpc from the Galactic Centre. Her model XII

initially consisted of 1000 stars drawn from a Salpeter mass

function, with a mean mass of 0.5M(. The initial virial ratio,

however, was Q ; Ekin=jEpotj � 0:25; less than the equilibrium

value of 0.5. This makes it hard to make a direct comparison with

our models, which started in virial equilibrium. These cool initial

conditions makes a comparison at the half-mass radius meaning-

less, but we can use the conditions at the tidal radius. The

relaxation time at the tidal radius for our models W4 and W6 are

about 0.8 and 2.2Gyr, respectively, whereas Terlevich's model XII

has a relaxation time at the tidal radius of about 1.5Gyr. The half-

life of model XII was 770Myr. The run was terminated at 1Gyr,

by which time about 70 per cent of the mass had been lost. We

estimate that the cluster would have dissolved in about 1.4Gyr.

The lifetimes of our W4 and W6 models are 1.2 and 1.6Gyr,

respectively. The estimate for the lifetime of Terlevich's model

XII is then reconcilable with that of our models, as we would

expect that a model with a relaxation time of 1.5Gyr

[; 0:5 � �0:8� 2:2�� at the tidal radius would live roughly

1.4Gyr �; 0:5 � �1:2� 1:6��:
Terlevich's model XII evolved through a phase of core collapse,

which was aided by the absence of stars with masses greater than

10M(. By the time the turn-off mass has dropped below 10M(
(after about 22Myr) our W6 models have lost between 4 and 9 per

cent of their mass due to stellar evolution alone. The loss of even

such a small mass fraction may have dramatic consequences for

the further evolution of the stellar system, as this mass is lost from

the most massive stars, which reside deep inside the cluster

potential well. The shorter lifetime of clusters with large popu-

lations of massive stars is demonstrated by Terlevich's model XV,

where the initial mean mass was 7.4M( and the cluster did indeed

dissolve much more rapidly.

The Galactic tidal field produced a similar flattening effect in

Terlevich's clusters as in our own (compare her fig. 7 with our

Fig. 12).

The simulations reported by McMillan & Hut (1994) included

up to 2048 equal-mass stars, including up to 20 per cent rather soft

primordial binaries, and incorporated the Galactic tidal field,

modelled as the field of a distant point mass. However, they

Figure 18. Cumulative MI-magnitude luminosity function (filled circles

with error bars) of the Hyades star cluster (Reid & Hawley 1999). The

dotted line is the initial luminosity function for all stars in the model

calculations. The solid and dashed lines give the luminosity function for

model W4 at an age of 600 Mears for stars within the projected (on to the

y±z plane) tidal radius (solid) and within the half-mass radius (dashes).

The 3dot-dashed line gives the same data as the dashed line, but for model

W6.

Figure 19. The filled circles with error bars show the observed cumulative

luminosity function, corrected for field stars, of the star cluster NGC3680

(Hawley et al. 1999). The dotted line gives the initial luminosity function

for all models, and all other lines show luminosity functions at 1400Myr.

The solid and dashed lines give the luminosity function for all stars within

the half-mass radius of model W4 and W6, respectively. The 3dot-dashed

line shows only the stars with MV , 11:5 from the dashed line (within the

half-mass radius of model W6 at 1400Myr).
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excluded stellar evolution and hence any possibility of stellar

mass-loss. In the absence of a physical time-scale associated with

stellar evolution, they presented their results in units of the initial

half-mass relaxation time. Our W6 models have half-lives of about

6 initial relaxation times, much shorter than the ,29 initial

relaxation times for the most comparable McMillan & Hut

models. Also, as discussed previously, all the McMillan & Hut

models experienced core collapse, which is absent in our

simulations.

The main reasons for these differences are the effects of stellar

mass-loss and the presence of a stellar mass function in the present

studies. In our models, core collapse is arrested by a combination

of effects, such as mass-loss binary activity and a large range in

stellar masses. In addition, the McMillan & Hut models all started

off well inside their tidal radii, significantly increasing their

lifetimes.

In a continuing effort to understand the evolution of young open

star clusters, Kroupa (1995a,b,c) performed N-body calculations

with up to 400 stars, all of them members of primordial binaries.

He adopted a distribution in orbital separation flat in log a, but

selected a between ,360 and ,3:6 � 105 R(; the binaries in his

calculations were thus on average much wider than in our

calculations. His models included the Galactic tidal field and

stellar mass-loss, but neglected binary evolution.

Kroupa's model with the highest initial relaxation time started

from a Plummer sphere with a half-mass radius of 2.5 pc and a

crossing time of,20Myr. It dissolved in about 700Myr. Scaled to

the initial relaxation time, this is somewhat faster than our W4

models. The main reasons for this more rapid evaporation are

probably the shallower initial density profile in his models and the

cluster's smaller distance from the Galactic Centre.

We compare the binary and triple properties of our models

with those of McMillan & Hut and Kroupa in more detail in

Paper V.

De la Fuente Marcos (1997) studied the effect of the initial

mass function on the dynamical evolution of open star clusters,

including both stellar mass-loss and the tidal field of the Galaxy.

His calculations were limited to 750 stars and included 33 per

cent rather wide primordial binaries, all with a mass ratio of 0.5,

in which (binary) evolutionary effects were neglected. His model

XX used Scalo's (1986) mass function and had an initial virial

radius of 2.47 pc. The initial relaxation time for this model was

about 67Myr; the crossing time was 7.5Myr. This model

dissolved in about 1Gyr, slightly faster than our models.

However, scaled to the initial relaxation time, this result is

consistent with the dissolution time of our W6 models (see

Table 10).

6 SUMMARY AND DISCUSS ION

The aim of our simulations is to study the evolution of open star

clusters such as the Pleiades, Praesepe and the Hyades. These

clusters differ significantly in age, but have comparable physical

characteristics, stellar membership, total magnitude and internal

velocity dispersions. Our N-body calculations incorporate, in a

fully self-consistent fashion, mass-loss from single stars, binary

evolution, dynamical encounters among single stars and binaries

and the effect of the Galactic tidal field.

We have compared the luminosity functions, isochrones and

projected luminosity profiles of our models with observations. For

some clusters, it is hard to find a good match between model and

observed luminosity functions. Mass segregation and observa-

tional limitations significantly reduce our ability to find a match,

and restrict our understanding of the differences we see. However,

we find that for models for which we compared the luminosity

functions with Praesepe and the Hyades, the observations show a

somewhat flatter luminosity function than is seen in the models.

We conclude that these clusters may have been born somewhat

mass segregated. Alternatively, these clusters may have started out

somewhat more massive than assumed here, but with a shallower

density profile. The selective evaporation of lower mass stars then

results in a `dynamically old' appearance (see also Takahashi &

Portegies Zwart 2000).

The global luminosity function of Praesepe and its degree of

mass segregation suggest an age greater than 800Myr, which is at

the high end of the observed range. The luminosity function of

NGC2287 is consistent with the observed age of 150±200Myr.

Our age estimates for the Pleiades and Hyades, based on the

structure and dynamical state of these clusters, are consistent with

ages derived from isochrone fitting.

6.1 Mass segregation

The first effects of mass segregation in our models are discernible

in the cluster core after only a few million years, a small fraction

of an initial half-mass relaxation time. After about a relaxation

time, mass segregation becomes measurable in the cluster

outskirts. The luminosity function of the inner parts of the cluster

provides a useful tool for studying mass segregation, although one

has to select regions which are well separated in radius in order to

make the effect visible. As expected, giants and binary stars are

most strongly affected by mass segregation, and it is easiest to

identify the effect by comparing the radial distribution of giants

with that of the lower mass main-sequence stars.

One important effect of mass segregation is that older clusters

Table 10. Overview of the model features, initial conditions and lifetimes of our model calculations and those reported by other workers.
The Galactic tidal field may be modelled as that of a self-consistent disc (Disc) or a point mass (PM); initial density profiles are an
anisotropic King model (AKing), an Isothermal sphere (Iso), or a Plummer sphere (Plummer) the latter two with a cut-off. Stellar and
binary evolution are indicated by1 (included) or2 (for neglected). Note: Terlevich and de la Fuente Marcos work in terms of the initial
virial radius, which is typically about 20 per cent bigger than the half-mass radius. Initially, model XII of Terlevich is not in virial
equilibrium, and therefore we do not provide the initial half-mass relaxation time.

Galaxy Density Stellar Binary N kml fbin rtide rhm trlx tend tend/trix
model profile evolution [M(] [pc] [Myr]

W4 Disc AKing 1 1 3072 0.56 50 6.3 2.14 109 1200 11.0
W6 Disc AKing 1 1 3072 0.54 50 12.1 2.00 102 ,1600 15.7
Terlevich Disc Iso 1 2 1000 0.50 0 12.1 1.70 ± ,1400 ±
McMillan & Hut PM Plummer 2 2 2048 1 10 16.5 2.06 86 2500 29.0
Kroupa PM Plummer 1 2 400 0.32 100 6.5 2.53 77 693 9.0
de la Fuente Marcos Disc Iso 1 2 750 0.60 33 9.9 2.47 67 1061 15.8
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become rich in white dwarfs and giants relative to the Galactic field.

These stars may be single or members of binary systems. The main

reason for the overabundance of giants and white dwarfs in clusters

is the depletion of low-mass main-sequence stars by evaporation.

This flattening of the mass function due to mass segregation has

also been studied by Takahashi & Portegies Zwart (2000) for more

massive clusters. They also find that clusters which are close to

disruption are rich in compact objects and giant stars.

The W4 models have shallower initial potentials, lie closer to

the Galactic Centre, and are more strongly affected by mass

segregation because of their more rapid evaporation. We suggest

that the best place to look for evidence of mass segregation is in

star clusters with larger half-light radii, which have shallower

potentials. Since mass segregation manifests itself more clearly in

dynamically evolved systems, it is also better to look at older

clusters. A relatively old cluster (age *500Myr) with a relatively

small mass �Mtot & 500M(� would be ideal.

6.2 Age estimates

The `dynamical ages'2 of our model clusters are often somewhat

different from the ages determined by isochrone fitting. The

instantaneous relaxation time is a poor estimator of a cluster's

dynamical age. The cores of star clusters lose their memory of the

initial relaxation time within a few million years, well within an

initial half-mass relaxation time, but the time-scale for global

cluster amnesia to set in is far greater than the initial relaxation

time. The half-mass relaxation time tends to increase by a factor

of 2 or 3, reaching a maximum near the cluster's half-life and

decreasing thereafter. The increase is caused by the internal

heating of the cluster; the decrease mainly by loss of stars.

6.3 Escaping stars

Stars tend to escape in the direction of the L1 and L2 Lagrange

points of the Galaxy±cluster system. The velocities of the stars at

these points are highly anisotropic and, as expected, pointing

mostly radially away from the cluster centre. The velocities of the

escaping stars are comparable to the cluster velocity dispersion;

very few stars are ejected with high velocities following a strong

dynamical encounter.

Neutron stars are ejected isotropically and with much higher

velocities, owing to the asymmetric kicks they receive during the

supernovae that create them. Binaries containing the progenitors

of neutron stars are generally disrupted by the first supernova

explosion; in all the calculations presented in this paper, only one

binary survived the first supernova. However, the existence of that

single binary does suggest that it may be possible to form X-ray

binaries in open clusters. Such binaries are only expected to exist

in star clusters which are younger than ,45Myr (the turn-off age

of a 7-M( star), because mass-loss and the velocity kick imparted

to the binary causes it to escape (see Paper V).

Black holes are more easily retained by the cluster, but are very

rare due to their high progenitor mass and the steepness of the

Scalo initial mass function.

6.4 Tidal flattening

The tidal field of the Galaxy flattens the cluster significantly in the

z direction, and to a lesser extent along the y-axis. A cluster which

is spherical at birth develops this flattening in its outer regions

within a few crossing times; the inner parts remain fairly

spherical. All our models show this flattening, but its observability

from Earth depends on the orientation of the cluster in the Galactic

plane.

Ellipticities reported for the Pleiades �e , 0:3; van Leeuwen

et al. 1986) and Hyades �e , 0:5 in the outer regions; Oort 1979)

are consistent with our model calculations. We inspected the

spatial structures of NGC2287, NGC2516 and NGC3680. The first

two do not show significant flattening (NGC2287 has e , 0:05,
and NGC2516 has e , 0:14�; but these data contain only stars

from the innermost 3 pc, which are least affected by the Galactic

tidal field. NGC 3680 appears more square than elliptical. This

may be caused by the small field of view of the telescope, which

could cause a star cluster to take on the shape of the CCD frame.

The flattening in our models persists during mass segregation,

in the sense that the mass-segregated Lagrangian radii are

ellipsoids. Projection of the cluster on to the background may

therefore decrease the observed mass segregation.

6.5 Core collapse

Our models experience rather shallow core collapse during their

early evolution, followed by a more or less homologous expansion.

The expansion is most likely driven by a combination of effects,

among which stellar mass-loss and binary heating; dynamical

models without stellar mass-loss, but which include a tidal field and

primordial binaries, do show core collapse (McMillan & Hut 1994).

Once the cluster has lost a considerable fraction of its stars, the

system shrinks again. The remnant with a few remaining stars may

become quite compact before it dissolves, but we find no evidence

for late core collapse before complete disruption.

6.6 Giants and white dwarfs in open clusters

A cluster's single-star population is not noticeably affected by

cluster dynamics until the age of the system exceeds ,2 initial

half-mass relaxation times. However, the binary populations are

measurably influenced by dynamics even at early times (see

Paper V). At later times �t . 400Myr�; our model clusters tend to

become rich in giants and white dwarfs. Small-number statistics

on the giants limit the degree to which we can quantify this

statement, but the population of single white dwarfs in our models

increased by factors of 1.3 to 4.7 (for models W6 and W4,

respectively) relative to what one would expect for a non-

dynamically evolving population of single stars and binaries.

Table 1 presents an overview of the numbers of white dwarfs

observed in the clusters studied in this paper. Explaining the

number of white dwarfs in the Hyades is a long-standing problem,

starting with discussions in the mid-1970s by Tinsley (1974) and

van den Heuvel (1975), and continuing into the 1990s (Eggen

1993; Weidemann 1993). All these papers conclude that the

observed number of white dwarfs is too small, by about a factor of

3, for the inferred cluster mass and age. The three leading

explanations were: (1) the upper mass limit for the production of

white dwarfs may be as low as ,4M( (Tinsley 1974), white

dwarfs are born with a velocity kick as neutron stars do

(Weidemann et al. 1992), and (3) mass segregation selectively

ejects white dwarfs (van den Heuvel 1975). By studying the white

dwarfs in NGC2516, Koester & Reimers (1996) firmly conclude

2We define the dynamical age of a cluster as its lifetime expressed in units

of the initial relaxation time.
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that stars up to 8M( can form white dwarfs, removing the first

solution to this conundrum. However, our calculations are

inconsistent with the idea that white dwarfs are preferentially

ejected from star clusters by a dynamical process. On the contrary,

the white dwarfs in our simulations are more easily retained than

main-sequence stars of the same mass, causing the older clusters

to become relatively white-dwarf-rich for their mass.

We can study this problem further by comparing the ratio of the

number of white dwarfs to the number of giants: f wd
gs
; Nwd=Ngs:

For the first five open clusters in Table 1 this fraction ranges

from f wd
gs
� 1 for NGC 2516 and the Pleiades to f wd

gs
� 2:5 for the

Hyades. For an evolving population of single stars without

dynamics (see Table 2), we find that the ratio ranges from 1.1 at

100Myr (the age of NGC 2516) to 4.2 at 600Myr (comparable to

the age of Hyades).

Binary evolution complicates the comparison due to an obvious

selection effect ± the giants can probably all be seen, but white

dwarfs are easily hidden near a main-sequence or giant

companion. We obtain estimates for f wd
gs

in a field population

with 50 per cent primordial binaries by combining the single stars

from Table 2 with the binaries from Table 8. We calculate an

upper limit to f wd
gs

by accounting for all white dwarfs [counting

(wd, wd) binaries as two objects and including (ms, wd) and (gs,

wd) binaries]. A lower limit is obtained by counting (wd, wd)

binaries as one object and excluding white-dwarf binaries

containing a main-sequence or giant companion. For the field

(no dynamics) population, we find f wd
gs
� 0:80±1:3 at 100Myr, and

f wd
gs
� 2:6±4:1 at 600Myr. Combining models W4 (Table 7)

and W6 (Table 6), we obtain f wd
gs
� 1:2±1:7 at 100Myr and f wd

gs
�

3:2±4:0 at 600Myr.

The observed value of f wd
gs
, 1 at around 100Myr seems

somewhat low, but probably not inconsistent with our models.

However, the value of f wd
gs
, 2:5 of the Hyades cluster (at about

600Myr) is smaller than our models predict, suggesting that a

considerable fraction of the white dwarfs are hidden in binaries.

The value of the fraction f wd
gs
does not seem to pose a serious

problem to understand any of the clusters discussed here,

being less than a factor of 2 too small. However, according to

the evolution of the field stars and binaries (combining Tables 2

and 8), at an age of 600Myr we expect a total of about 15 giants

and 60 white dwarfs. The comparable models W4 and W6

contain, respectively, 13 and 12 giants, and 48 and 55 white

dwarfs at that age. Model W6 has lost about 40 per cent of its mass

and model W4 about 60 per cent, yet the numbers of giants and

white dwarfs have decreased by only 4±20 per cent. Averaging

over time, we find a decrease in the number of giants and white

dwarfs of about 2 per cent per 100Myr. Apparently, the dynamical

evolution of these clusters has little effect on the number of giants

and white dwarfs. (In fact, this was assumed by von Hippel 1998

in estimating the mass fractions of white dwarfs in open clusters.)

Number counts of giants and/or white dwarfs may therefore

provide a reasonable estimate of a cluster's initial mass.

For a 50/50 mixture of single stars and binaries, meaning that

2/3 of the stars are binary components, the mean mass of a star is

kml � 0:46 at t � 100Myr; 0.41 at 600Myr, and almost constant

�kml , 0:40� thereafter. We use the numbers of giants to estimate

the initial masses of the star clusters in Table 1, because the giants

are least plagued by selection effects (although their small

numbers significantly limit the accuracy of our estimates). The

number of giants per 1k stars is 2.8 at 100Myr (see Tables 2 and

8), and rises rapidly to about 6.5 at 600Myr, after which the

specific number of giants remains roughly constant. For an open

cluster older than ,400Myr, we thus estimate its initial mass via

M0 � 65M(Ngs 1�
0:02t

�100Myr�

� �

: �1�

For younger clusters, the factor 65 �� 1024 � 0:41=6:5� is larger
(170 at 100Myr and ,100 at 200Myr).

We apply this method to the clusters from Table 1 with more

than five giants and obtain the following birth masses: 830M( for

NGC 2287, 3100M( for NGC 2660, and 1400M( for NGC 3680.

These mass estimates seem reasonable. For NGC 2534, Praesepe

and the Hyades, the mass estimates are 690, 370 and 290M(,

respectively, considerably smaller than the observed masses of

these clusters (see Table 1).

The initial mass estimate for these clusters increases propor-

tional to the number of giants. The ratio f wd
gs
for these cluster does

not pose a serious problem and therefore, instead of too few

white dwarfs, Hyades seems to have too few giants. While white

dwarfs can be hidden easily in binaries, giants are not so easy to

hide. One way to decrease the number of giants is by binary activity.

The number of giants can be decreased when subgiants are stripped

in a phase of mass transfer before they reach the horizontal branch,

where they spend most of their time. In order to reduce the number

of giants in this fashion, we require a large fraction of binaries to

be born with short orbital periods (&100 d). Alternatively, the

giant lifetimes adopted in our models may be too long.

6.7 Notes on individual clusters

NGC2516 deserves much more study, as its dynamical para-

meters (total mass, half-mass and core radii) are poorly known.

The Pleiades cluster has been quite thoroughly studied in

searches for brown dwarfs and planets. Its mass function fits well

with the luminosity function from our models, with the exception

that our models contain too many bright stars.

NGC2287 is quite poorly studied, and with the quoted values

for the tidal radius it has an extremely low mass for its age (see

Table 1). The presence of eight giants suggests that its mass must

have been comparable to that of NGC2516.

Praesepe has been studied recently in great detail, and appears

to fit well with our dynamical models. However, the cluster is

rather shallow and may have been born somewhat more massive

and less concentrated �W0 & 4� than our models. This conclusion

is based on the observed shallow density profile and the high

degree of mass segregation. There is some excess of stars with

V , 9±11; unexplained by our models. The observed cluster

seems to be very deficient in giants. Based on the number of white

dwarfs and the dynamical state of the cluster we would expect at

least 20 giants in this cluster, whereas only five are known.

The Hyades cluster fits well with our models, indicating that it

is possible to estimate the initial conditions for an observed star

cluster rather accurately. The cluster does not appear to be defici-

ent in white dwarfs if we compare them to the number of giants.

However, if the mass of Hyades quoted in Table 1 is correct, the

observed number of white dwarfs and giants seems too small by a

factor of about 3.

NGC3680 fits well with our W6 models expect for the

luminosity function, which is deficient of low-mass stars. A

possible solution may be that these stars were initially absent in

the cluster or that the observations do not go deep enough to reveal

the low-mass stars.
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6.8 Comparison with other work

Our models evaporate on time-scales generally consistent with

dissolution times reported in previous calculations. The models of

Terlevich (1987) and de la Fuente Marcos (1997) compare well

with the evaporation times of our models. Terlevich's models

evolve somewhat more slowly due to the lack of massive stars and

the rather cool initial conditions, which drive the cluster to core

collapse and therefore extend its lifetime somewhat. The models

of McMillan & Hut (1994) dissolve more slowly than ours. This

discrepancy can be completely explained by the absence of stellar

evolution mass-loss and binary evolution in their models, along

with the small size of those models relative to the clusters' tidal

radii in the Galactic potential.

The only real discrepancy is with the work of Kroupa (1995a),

whose models dissolve somewhat more rapidly than ours. Possibly

the small numbers of stars and the large fraction of rather soft

binaries drives a more rapid evaporation than one might naively

expect. The evaporation rate of star clusters is known to depend on

the total number of stars (Heggie et al. 1997; Portegies Zwart et al.

1998). In Section 1 we argue that the presence of primordial

binaries has little effect on the cluster lifetime. It is, however, not

clear how this trend propagates in the scaling of cluster lifetimes

with respect to the number of stars.
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APPENDIX A: TERMINOLOGY

Throughout the paper (and in future papers in this series) we will

use consistent nomenclature. Some of these terms are rather

confusing and have been used by different authors in the past with

slightly different meanings. For clarity, we present here a short

glossary of terms.

Binary fraction: Throughout this paper we define the binary

fraction as

f bin �
Nbin

Nsing � Nbin

: �A1�

Here Nsing and Nbin are the number of single stars and binaries.

Cluster centre: The density centre of the cluster, as defined

below. Alternative definitions may use the number density or the

luminosity density, or the point where the density is greatest, and

may include projection effects.

Collision: A collision occurs when the distance between two

stars i and j becomes smaller than the sum of their effective radii:

d , dcoll�ri � rj�; with dcoll � 1: The effective radii are deter-

mined from detailed fluid-dynamical calculations.

Core radius: The weighted average distance of all stars from

the density centre. Casertano & Hut (1985) originally used a

weighting proportional to the local density. However, in practice

this definition is unsuitable for clusters with near-isothermal

density profiles �r , r22�: Following Aarseth (1986), we adopt

the modified definition

rcore ;

P

ijri 2 rjjr
�i�
j

2

P

ir
�i�
j

2
; �A2�

where r j is given by equation (A6). Note that this definition of the

core does not necessarily have any simple relation to the `core

radius' normally quoted by observers, nor to the `dynamical' core

radius rc �
���������������������������

3kv2lc/4pGrc
p

; where r c and kv2lc are, respectively,

the cluster's central density and velocity dispersion (Binney &

Tremaine 1987).

Crossing time: The time taken by a star with velocity equal to

the velocity dispersion v to cross the virial radius r of the stellar

system tc � r=v, which for practical reasons is written as

tc ;
r3vir
GM

� �1=2

: �A3�

In more convenient units, we write the half-mass crossing time as

thm � 57
�M(�

Mtot

� �1=2
rhm

�pc�

� �3=2

�Myr�: �A4�

Density centre: The density weighted average of the positions

of all stars (von Hoerner 1960, 1963):

rdens ;

P

irir
�i�
j

P

ir
�i�
j

: �A5�

In these expressions, r�i�j is the density estimator of order j around

the ith particle, with position vector ri. For any star i we define the

local density within the volume Vj of the sphere containing the j

nearest neighbours (i1, i2, ¼, ij) of i as

r�i�j ;

P

j21

k�1

mik

V j

; �A6�

where V j �
4p
3
jrij 2 rij

3
; and the sum over masses excludes the

masses of both stars i and ij (see Casertano & Hut 1985). We take

j � 12:
Escaper: A star which is not bound to the cluster, i.e., whose

energy exceeds the energy at the cluster's Jacobi surface. An

escaper may lie within the Jacobi surface.

Half-mass radius: The radius of the sphere, centred on the

cluster density centre, that contains half of the total cluster mass

(as defined in the text). It is not always clear which stars to include

in determining this radius, as the cluster is generally flattened in

the Galactic tidal field.

Hard binary: A binary whose binding energy exceeds the

mean stellar energy in the cluster (Heggie 1975). A binary is hard

if its semimajor axis is less than

a �
GMm�M � m� m3�

�M � m�m3v2
: �A7�
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Jacobi radius: The distance from the cluster centre to the L1
and L2 Lagrange points ± the maximum distance from the cluster

centre to the cluster Jacobi surface.

Jacobi surface: The cluster's `Roche lobe' in the tidal field of

the Galaxy. Consider a star moving with Jacobi integral EJ ;
1
2
v2 � feff�r� in the rotating frame of reference in which our

simulations are performed, where v is velocity, and the effective

potential feff includes the cluster's self-gravity, the tidal field of

the Galaxy, and the centrifugal force in the rotating frame. The

zero-velocity surface for that value of EJ is defined by v � 0; so
feff�r� � EJ (Binney & Tremaine 1987). The Jacobi surface for

the cluster is defined to be the last closed zero-velocity surface

that contains the cluster ± that is, the surface passing through the

cluster's L1 and L2 Lagrange points. With the conventions adopted

in kira, the Lagrange points are located along the x-axis, the

cluster orbits in the x±y plane, and the Jacobi surface is elongated

in the x-direction. The three coordinate axes intersect the Jacobi

surface at distances rx � rJ (the Jacobi radius), ry, and rz from the

cluster centre.

Member: A star (or multiple system) which is bound to the

cluster. The energy of such a star is less than the energy at the

cluster Jacobi surface. A member may lie outside the Jacobi

surface.

Primary: The more massive of the two stars in a binary system.

Denoted by M.

Relaxation time:We use Spitzer's (1987) definition of the half-

mass relaxation time:

trlx �
r3hm
GM

� �1=2
N

8 logL
: �A8�

Here L . 0:4N is the Coulomb logarithm. (In the presence of a

realistic mass function, L & 0:1N may be more appropriate;

Farouki & Salpeter 1982, 1994; Smith 1992; Fukushige & Heggie

2000.) In convenient units this may be written as

trlx � 2:05
�M(�

Mtot

� �1=2
rhm

�pc�

� �3=2
N

logL
�Myr�: �A9�

Note that `N' here is the number of bound objects (a binary is a

single object) in the star cluster, and is smaller than the total

number of stars if the cluster contains binaries.

Secondary: The less massive of the two stars in a binary

system. Denoted by m.

Tidal radius: Since clusters are somewhat elongated in the

Galactic tidal field, the tidal `radius' is not well defined. For

definiteness, we take the tidal radius to be the Jacobi radius of the

cluster. For a disc field described by Oort (1927) constants A and

B, we have

r3tide �
GMtot

4A�A2 B�
�pc�: �A10�

In the solar neighbourhood, A � 15 km s21 kpc21; and B �

212 km s21 kpc21:
Unperturbed binary: A binary for which the dimensionless

perturbation due to its neighbours is less than some critical value

(typically 1026). Dynamically, unperturbed binaries are treated in

the point-mass approximation, as seen by the rest of the system.

Only unperturbed binaries can be treated using the SeBa binary

evolution module described in Appendix B. Perturbed binaries are

treated as two single stars; mass transfer and tidal circularization

are currently not handled in perturbed binaries.

Virial radius: A characteristic length-scale for the system,

defined by

rvir �
GM2

tot

22U
; �A11�

where U is the total potential energy of the system (including the

tidal potential). For an isolated equal-mass system, rvir is the

harmonic mean of the particle separations (HeÂnon 1972).

APPENDIX B : STARLAB

The simulations described in this series of papers are carried out

within the `Starlab' software environment, version 3.5. Starlab is a

software package for simulating the evolution of dense stellar

systems and analysing the resultant data. It consists of a collection

of loosely coupled programs (`tools') linked at the level of the

UNIX operating system. The tools share a common data structure

and can be combined in arbitrarily complex ways to study the

dynamics of star clusters and galactic nuclei. The main

components of Starlab used in this work are kira, the N-body

integrator, and SeBa, a stellar and binary evolution package. The

Starlab system is described in detail in http://www.

manybody.org/.

B1 Kira

The N-body integrator kira is the largest single program within

Starlab. Its basic function is to take an input N-body system and

evolve it forward for a specified period of time, producing

snapshot and other diagnostic output at regular intervals. In

addition to strictly dynamical evolution of stars and multiple

stellar systems, kira also incorporates stellar and binary evolution

(via the SeBa subpackage), and the possible influence of an

external (`tidal') gravitational field. The program is designed to

take advantage of the `GRAPE-4' special-purpose processor

(Makino et al. 1997), if available, although GRAPE is not

required for its operation.

B1.1 The integrator

Particle motion is followed using a fourth-order, block-time-step

(McMillan 1986) `Hermite' predictor-corrector scheme (Makino

& Aarseth 1992). Briefly, during a time-step d t, particle positions

x and velocities v are first predicted using the known acceleration

a and `jerk' j (the time derivative of the acceleration):

xp � x� vdt � 1
2
adt2 � 1

6
jdt3; �B1�

vp � v� adt � 1
2
jdt2: �B2�

The acceleration ap and jerk jp are then computed at the predicted

time using xp and vp, and the motion is corrected using the

additional derivative information thereby obtained,

k ; 1
2
a 00dt2 � 2�a2 ap� � dt�j2 jp�; �B3�

l ; 1
6
a 000dt3 � 23�a2 ap�2 dt�2j� jp�; �B4�

to obtain the corrected position and velocity:

xc � xp �
1

20
l�

1

12
k

� �

dt2; �B5�

vc � vp �
1
4
l� 1

3
k

ÿ �

dt: �B6�

A single integration step in thus proceeds as follows.
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(i) Determine which stars are to be updated next. Each star has

associated with it an individual time t, representing the time to

which it was last advanced, and an individual time-step d t. The list

of stars to be integrated consists of those with the least value of

t+d t. Time-steps are constrained to be powers of 2, allowing

`blocks' of many stars to be advanced simultaneously.

(ii) Before the step is actually taken, check for

(a) termination of the run;

(b) escaper removal;

(c) system reinitialization;

(d) diagnostic (`log') output, which includes

± information on bulk parameters of the system: total mass,

energy, momentum, anisotropy, etc.,

± technical information on CPU time, time-step distribution,

etc.,

± detailed information on the cluster mass distribution: core

properties, Lagrangian radii, etc.,

± stellar mass distribution and anisotropy by Lagrangian zone,

± luminosity profile, and mass and luminosity functions,

± cluster stellar content (by spectral type and luminosity class),

± detailed dynamical and physical data on all binary

systems, and

(e) snapshot output, for restart and display.

(iii) Perform low-order prediction of all particles to the new

time. This operation may be performed on the GRAPE, if present.

(iv) Recompute the acceleration and jerk on all stars in the

current block (using the GRAPE, if available), and correct their

positions and velocities for fourth-order accuracy.

(v) Check for and initiate unperturbed motion.

(vi) Check for collisions and mergers.

(vii) Check for tree reorganization (see below).

(viii) Check for and apply stellar and/or binary evolution

(Section B.2), and correct the dynamics whenever necessary.

B1.2 Tree structure

An N-body system in Starlab is represented as a linked-list

structure, in the form of a mainly `flat' tree having individual stars

as leaves. The tree is flat in the sense that single stars (i.e., stars

that are not members of any multiple system) are all represented

as top-level nodes, having the root node (the system centre of

mass) as parent. Binary, triple, and more complex multiple

systems are represented as binary trees below their top-level

centre of mass nodes. The tree structure determines both how node

dynamics is implemented and how the long-range gravitational

force is computed.

Each parent node contains `local' information about its

dynamics ± mass, position, velocity, etc. ± relative to its parent

node. The leaves contain additional information about stellar

properties ± effective radius, luminosity, temperature, etc. The

parent node of a unperturbed binary also contains information on

the binary parameters ± semimajor axis, eccentricity, mean

anomaly, etc. The motion of every node relative to its parent

node is followed using the Hermite predictor-corrector scheme

just described. The use of relative coordinates at every level

ensures that high numerical precision is maintained at all times,

even during very close encounters.

The tree evolves dynamically according to simple heuristic

rules: particles that approach `too close' to one another are com-

bined into a centre of mass and binary node; when a node becomes

`too large', it is split into its binary components. These rules apply

at all levels of the tree structure, allowing arbitrarily complex

systems to be followed. In practice, the term `too close' is taken to

mean that two stars (1 and 2) approach within the `close-encounter

distance' Rclose , rvir�m1 � m2�=2Mtot; the impact parameter that

would lead to a 908 deflection if both bodies moved at typical

stellar speeds. `Too large' means that a node's diameter exceeds

2.5Rclose.

B1.3 Binaries

How the acceleration (and jerk) on a particle or node is computed

depends on its location in the tree. Top-level nodes feel the force

due to all other top-level nodes in the system. Forces are computed

using direct summation over all other particles in the system; no

tree or neighbour-list constructs are used. (This procedure is

designed specifically to allow efficient computation of these

forces using GRAPE hardware, if available.) Nearby binary and

multiple systems are resolved into their components, as necessary.

The internal motion of a binary component is naturally

decomposed into two parts: (1) the dominant contribution due to

its companion, and (2) the perturbative influence of the rest of the

system. This decomposition is applied recursively, at all levels in a

multiple system. Since the perturbation drops off rapidly with

distance from the binary centre of mass, usually only a few near

neighbours are significant perturbers of even a moderately hard

binary. These neighbours are most efficiently handled by main-

taining lists of perturbers for each binary. Perturber lists are

recomputed at time the centre of mass is integrated.

A further efficiency measure is the imposition of unperturbed

motion for binaries whose perturbation falls below some specified

value for all or part of an orbit. Unperturbed binaries may be

followed analytically for many orbits as strictly two-body motion;

they are also treated as point masses, from the point of view of

their influence on other stars. The use of the unperturbed approxi-

mation near the periastron of eccentric orbits was a key element in

our decision not to use complex regularization schemes for the

computation of binary motion.

Because unperturbed binaries are followed in steps that are

integer multiples of the orbit period, we can relax the perturbation

threshold for unperturbed motion relative to that for a perturbed

step (since most of the perturbative effects of nearby stars are

periodic). Perturbed binaries are resolved into their components,

both for purposes of determining their centre-of-mass motion and

for determining their effect on other stars. Unperturbed treatments

of multiple systems are also used, based on empirical studies of

the stability of their internal motion. A hierarchical system is

regarded as stable if (a) the external perturbation is less than some

threshold value, and (b) each component is stable (or single), by

the same criterion.

`Lightly perturbed' binaries, having external perturbations

within a factor of ,10 of the unperturbed threshold, are treated

using a variant of the method described by Mikkola & Aarseth

(1998), in which the internal motion of the binary is artificially

slowed and the perturbation is increased by the same factor.

Briefly, the result is that long-term secular trends in the binary

orbital elements are properly reproduced, while periodic pertur-

bative terms are amplified; the latter effect is suppressed by

following the `slow' motion over an integral number of orbits. Our

`slow' binary treatment differs from that of Aarseth mainly in that

it is not coupled to a regularization scheme ± it is applied directly
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to the unregularized equations of motion. In addition, we apply

pairwise corrections to forces between perturbers and the binary

centre of mass in order to avoid spurious high derivatives caused

by the mismatch between the (slowed) internal motion and the

(normal) external interaction.

B1.4 Tidal field

The standard form of the external (tidal) potential is

fext �
1
2
�a1x

2 � a3z
2�: �B7�

This expression includes contributions from both the Galactic tidal

field and the centrifugal force in the cluster's rotating frame of

reference. The Galactic Centre is assumed to lie along the negative

x-axis, and the rotation vector V is in the z-direction. (We assume

motion in a circular orbit in the x-y plane around the Galactic

Centre.) The equations of motion also include a Coriolis

acceleration ac � 22V � v: Tidal and Coriolis effects are applied

to top-level nodes only, i.e., we neglect the tidal effect of the

Galaxy on a binary's internal motion.

The values of a1, a3, and V depend on the details of the field

being modelled. Some common examples are the following.

(i) Point-mass field. If the Galaxy is represented as a point mass

MG at distance RG, we have

a3 � 2
1

3
a1 � V2 �

GMG

R3
G

: �B8�

(ii) Isothermal field. For motion in a `halo' mass distribution

modelled as an isothermal sphere �r , r22�; with M�, r� �

MG�r=RG�; we have

a3 � 2
1

2
a1 � V2 �

GMG

R3
G

: �B9�

(iii) Disc field. For motion in a disc described by local Oort

constants A and B, with local density rD, we have

a1 � 24A�A2 B�; �B10�

a3 � 4pGrD � 2�A2
2 B2�; �B11�

V � A2 B: �B12�

In the (fairly good) approximation that the gravitational potential

of the cluster stars may be represented close to the Jacobi surface

simply as fC�r� , 2GMtot=r; where Mtot is the cluster mass, the

Jacobi radius may straightforwardly be shown to be

rJ <
2GMtot

a1

� �21=3

: �B13�

The ratio a3/a1 determines the shape of the Jacobi surface.

B1.5 Escaper removal

Stars are removed (`stripped') from the system when they exceed

a specified distance from the cluster centre of mass (or density

centre). For systems without an imposed Galactic tidal field, this

stripping radius is arbitrary. For systems with a tidal field, the

stripping radius is usually tied to the Jacobi radius of the cluster.

For the runs described in this paper, stars were stripped when their

distance from the cluster centre exceeded twice the instantaneous

Jacobi radius.

B2 SeBa

The stellar and binary evolution package SeBa3 is fully integrated

into the kira integrator, although it can also be used as a stand-

alone module for non-dynamical applications.

B2.1 Evolution of a single star

Stars are evolved via the time-dependent mass±radius relations for

solar metallicities given by Eggleton et al. (1989, with corrections

by Eggleton, Fitchett & Tout 1990 and Tout, Aarseth & Pols

1997).4 These equations give the radius of a star as a function of

time and the star's initial mass (on the ZAMS). Neither the mass

of the stellar core nor the rate of mass-loss via a stellar wind are

specified in this prescription. However, both quantities are

important, both to binary evolution and to cluster dynamics. We

include them using the prescriptions of Portegies Zwart & Verbunt

(1996).

Stars are subdivided within SeBa into the following types:

planet Various types, such as gas giants, etc.; also includes

moons.

brown dwarf Star with mass below the hydrogen-burning limit.

main sequence Core hydrogen burning star.

hypergiant Massive �m . 25M(� post-main-sequence star

with enormous mass-loss rate in a stage of evolution prior to

becoming a Wolf±Rayet star.

helium star Helium core of a stripped giant, the result of mass

transfer in a binary. Subdivided into helium core, carbon core and

helium giant.

Hertzsprung gap Rapid evolution from the terminal-age main

sequence to the point when the hydrogen-depleted core exceeds

the SchoÈnberg±Chandrasekhar limit.

subgiant Hydrogen shell burning star.

horizontal branch Helium core burning star.

supergiant Double shell burning star.

Thorne±ZÇ ytkow Shell burning hydrogen envelope with

neutron star core.

black hole Star with radius smaller than the event horizon. The

result of evolution of massive �m . 25M(� star or collapsed

neutron star.

neutron star Subdivided into radio pulsar, X-ray pulsar and

inert neutron star �m , 2M(�:
white dwarf Subdivided into helium dwarf, carbon dwarf and

oxygen dwarf.

disintegrated Result of carbon detonation to Type Ia super-

nova.

Stellar-wind mass-loss is neglected for main-sequence stars

with m , 25M(: Following Langer (1998), more massive stars

lose mass with _m / m2:5 before becoming a Wolf±Rayet star (see

Paper III, for the implementation). These stars eventually collapse

into black holes with mass mbh � 0:35m0 2 12M(; where m0 is

the initial mass of the star. (For a star whose mass increases due to

collisions or other processes, m0 is the highest mass reached by

the star. The black hole radius equals the Schwarzschild radius:

r � 2Gm=c2:�

3The name SeBa is taken from the ancient Egyptian word for `to teach',

`the door to knowledge' or `(multiple) star'. The exact meaning depends

on the hieroglyphic spelling.
4New equations which include metallicity dependence have recently been

made available by Hurley, Pols & Tout (2000), and will be implemented in

the next version of SeBa.
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A star with a helium core mass between 2.2 and 5M( becomes

a neutron star. (These limits correspond to 8- and 25-M( ZAMS

stars which evolve as isolated single stars.) At birth, a neutron star

receives a velocity `kick' in a random direction. The magnitude of

the velocity kick is chosen randomly from the distribution

proposed by Hartman (1997):

P�u� du �
4

p

du

�1� u2�2
; �B14�

with u � v=s and s � 600 km s21:
A star with a core mass less than 2.2M( sheds its envelope at

the end of its evolution and becomes a white dwarf. The mass of

the white dwarf equals the core mass of its progenitor at the tip of

the asymptotic giant branch.

B2.2 Schematic evolution of a binary

The evolution of a single isolated or unperturbed binary is carried

out in the following steps (see Sections B2.3 and B2.4 for details).

A binary is ready to evolve after its orbital parameters are set,

and the primary and secondary stars are identified. The first thing

to do then is to determine the binary evolution time-step. This is

the smallest time-step allowed by either of the stars. A stellar

evolution time-step is 1 per cent of the time taken for the star to

evolve from the start of one evolutionary stage to the next±for

example, from the ZAMS to the terminal-age main sequence. (The

stellar evolution step is not to exceed 1Myr.) A list of these

mileposts along a star's evolution is provided in Section B2.1. A

binary is evolved whenever one of its stars requires an update. If a

binary is in a state of mass transfer (but not in a common

envelope) the time-step is reduced such that #1 per cent of the

donor envelope is lost per step.

Each binary evolution step is subdivided into the following

phases.

(i) Angular momentum loss (aml)

(a) by magnetic stellar wind,

(b) by gravitational wave radiation.

(ii) Check for coalescence.

(iii) Evolve primary star:

(a) adjust binary parameters for stellar wind mass-loss,

(b) resolve supernova.

(iv) Check if binary still exists. The evolution of the primary [or

secondary, see (v)] star may have resulted in a supernova which

may disrupt the binary or resulted in a collision between the two

stars.

(v) Evolve secondary star:

(a) adjust binary parameters for stellar wind mass-loss,

(b) resolve supernova.

(vi) Check if binary still exists [see (iv)].

(vii) Check for tidal effects:

(a) circularize binary if appropriate (see Section B2.3),

(b) synchronize binary components if appropriate.

(viii) Check if any star is Roche lobe filling and identify the

donor and the accretor. If neither star is filling its Roche lobe,

leave binary evolution and notify dynamics, otherwise proceed

with the following steps:

(a) find moment mass transfer starts,

(b) check binary stability:

± if binary unstable apply common envelope,

± if components merge leave binary evolution and notify

dynamics,

(c) calculate z ad, zRl and z th,

(d) determine amount of mass-loss from donor,

(e) determine amount of mass gained by accretor,

(f) subtract mass from donor,

(g) add mass to accretor, calculate new evolutionary state of

accretor and rejuvenate (Section B2.4),

(h) calculate new binary parameters.

(i) determine the observational binary characteristics and stellar

spectral types.

B2.3 Evolution of binary parameters without mass transfer

The orbital parameters of a binary are affected by the evolution of

its components. We will not present here all the many details of

binary evolution, but for clarity we summarize those which affect

the dynamics or are important for interpreting our results. The

details of the binary evolution program SeBa are discussed in

more detail by Portegies Zwart & Verbunt (1996) and Portegies

Zwart & Yungelson (1998).

Mass lost in a stellar wind is assumed to escape isotropically

from the mass-losing star. If the companion accretes a fraction j

of the other star's wind, this implies

a

a0
� f

M0 � m0

M � m
; �B15�

Here M0 and m0 are the initial primary and secondary mass,

respectively, and M and m are their final masses. Also,

f �
M

M0

� �j
m

m0

" #22

: �B16�

The fraction j is calculated via Bondi±Hoyle (1944) accretion,

assuming that the thermal velocity in the wind equals the escape

velocity of the mass-losing star (for details see Portegies Zwart &

Verbunt 1996).

When the radius of one of the stars exceeds 5 times the orbital

periastron separation a�12 e�; orbital energy is transformed into

oscillatory modes in the two stars. This leads to a decrease in the

orbital separation and, due to conservation of angular momentum

�a�12 e2� � constant�; to the eventual circularization of the

binary.

Mass-loss in a supernova takes place impulsively from the

binary system. As a result, both the orbital separation and the

eccentricity change: both increase if the pre-supernova orbit was

circular. The velocity kick (equation B14) received by the neutron

star at formation is added in a random direction to its orbital

velocity. New orbital parameters are then calculated, assuming

that the positions of the two stars are unchanged, that mass is lost

isotropically from the exploding star, and that the companion is

unaffected by the explosion. If the pre-supernova orbit is eccen-

tric, things get somewhat more complicated (see Portegies Zwart

& Verbunt 1996).

Low-mass stars may have magnetically coupled winds, and

relatively large changes in angular momentum may occur even

when a negligible amount of mass escapes. We follow the

prescription described by Rappaport, Joss & Verbunt (1983) for
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tidally synchronized binaries in which at least one component is a

main-sequence star or (sub)giant with mass 0:7 # m=M( # 1:5:
Compact stars in short-period binaries and highly eccentric

binaries lose orbital energy and angular momentum via gravita-

tional radiation. For such binaries, we use the expressions

provided by Peters (1964) to compute the time dependence of

the orbital semimajor axis and eccentricity.

B2.4 Mass transfer in binaries

When one star in a binary approaches its Roche limit, we

iteratively determine the moment at which contact occurs. The

size of the Roche lobe is calculated as (Eggleton 1983)

rRl �
0:49

0:6� q2=3 ln�1� q21=3�
; �B17�

where q ; m=M: The Roche lobe filling star is then identified as

the donor, and its companion as the accretor.

B2.4.1 Unstable mass transfer. When a star fills its Roche

lobe, we first check for the possibility of Darwin±Riemann

instability. This happens if

Jdonor .
1
3
Jbin; �B18�

where Jdonor and Jbin are the angular momenta of the Roche lobe-

filling star and the binary, respectively.

During spiral-in the envelope of the donor is expelled, at the

cost of orbital energy, following the prescription of Webbink

(1984):

a

a0
�

Mc

M

1� 2a0

al

Me

m

� �21

: �B19�

The parameters governing binary evolution are listed in Table B2.

If the Roche lobe-filling star is a main-sequence star or compact

object, the two stars simply merge because the donor has no core±

halo structure. A merger occurs when the binary that remains after

the common-envelope phase is semidetached, in which case no

more mass is lost (see Section B4).

If the donor and the accretor are both (sub)giants and mass

transfer happens to be dynamically unstable, we expel both

envelopes at the cost of the binding energy of the binary in a

double spiral-in (see Nelemans et al. 2000). The cores of the two

giants will then spiral-in in the combined envelopes of the two

(sub)giants. The energy required to expel the combined envelopes

is computed by analogy with the standard common envelope (see

equation B19). The final orbital separation is then be calculated by

solving the energy balance between the orbital energy and the

binding energies of both envelopes:

MMe

lR
�

mme

l 0r
; a

Mcmc

2a
2

�Mc �Me��mc � me�

2a0

� �

: �B20�

Here me and mc are the envelope and core masses of the secondary

star, where R and r are the radii of the two giants before the

common envelope. We assume that the binding energy of both

envelopes are the same, i.e., l 0 � l:
The double spiral-in results in a merger if the final orbital

separation a is too small for in a semidetached binary with the two

stellar cores. In this case, a fraction f of both stellar envelopes is

lost from the binary system, and the rest �12 f � is retained.

The merged star has a core mass equal to the sum of the cores of

the two merged stars �Mc � mc�; and the envelope of the merged

star has mass �12 f ��Me � me�; with f # 1: Instead of a total

massMe � me; only f �Me � me� is lost before the two stars merge.

We can calculate f by solving equation (B20) with the envelope

masses substituted for the amount of mass lost in the double

spiral-in, i.e., Me, becomes fMe, and me becomes fme. In order to

solve this equation for f, we have to replace the final semimajor

axis with the separation at which one of the cores start filling its

Roche lobe.

B2.4.2 Stable mass transfer. We calculate the time-scale for

mass transfer in a dynamically stable binary by considering the

responses of the donor and the binary parameters to changes in the

donor mass. For this purpose we define the logarithmic derivative

zi �
d ln r

d lnm

� �

i

; �B21�

for each of the following processes:

zad the change in donor radius due to adiabatic adjustment of

hydrostatic equilibrium,

zRl the change in the size of the donor's Roche lobe,

z th the change in donor radius as it adjusts to a new thermal

equilibrium.

The adopted values for zad are as follows. For main-sequence

stars with m . 0:7M( and in the Hertzsprung gap we use zad � 4

and half this value for lower mass main-sequence stars. For stars

on the horizontal branch we use zad � 15: For other stars with a

core±halo structure (subgiants, supergiants and Thorne±ZÇytkow

objects) we use the following fit to the composite polytropic

models of Hjellming & Webbink (1987):

zad � 20:222 2:85x� 32:0x2 2 75:7x4 � 57:8x5; �B22�

Table B2. Free parameters in binary evolution.

term value description

k 1 accretor rejuvenation factor
h J 2 specific angular momentum loss per unit mass
l 0.5 envelope binding energy fraction
a ce 4 common-envelope constant

Table B1. Schematic diagram of the time-scales on which stable mass transfer (donor to
accretor) proceeds.

Donor: main sequence subgiant supergiant compact object

Accretor:

main-sequence nuclear/thermal thermal dynamic ±
(sub)giant ± nuclear/thermal thermal/dynamic ±
compact object thermal/aml dynamic dynamic aml
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where x � mc=m:We use z th between 0 and 0.9 for main-sequence

stars and zth � 0 for all other stars, except those on the

Hertzsprung gap and on the horizontal branch for which we use

zth � 22 and 15, respectively.

The response of the Roche lobe to mass transfer zRl is

calculated by transferring a infinitesimal amount of mass from the

donor to the accreting star, and we study the response of the binary

parameters. This test particle is transferred on the same time-scale

as was used in the previous mass transfer step. At first Roche lobe

contact, when there was no previous mass transfer step, we assume

that the test particle is transferred on a thermal time-scale, which

is a rather conservative choice.

The time-scale on which mass transfer proceeds is determined

as follows:

zad , zRl dynamically unstable mass transfer proceeds on time-

scale tdyn
zad . zRl and zth , zRl thermally unstable mass transfer pro-

ceeds on time-scale t th
zad . zRl and zth $ zRl nuclear unstable mass transfer proceeds

on time-scale min (tnuc, t J),

where the time-scales associated with the various criteria are as

follows:

dynamic : tdyn . 5:1 � 10211
����������

r3=m
p

�Myr�

thermal : tth . 32m2=�rL� �Myr�

nuclear : tnuc . 0:1tms

aml : tJ . Jbin=� _Jgr � _Jmb�:

Here tms is a star's main-sequence lifetime, and m, r and L are its

mass, radius and luminosity, respectively. The loss of angular

momentum via gravitational radiation and magnetic braking are

denoted by JÇgr and JÇmb, respectively.

Table B1 gives a flavour of the various time-scales on which

mass transfer generally proceeds. However, the details depend

critically on the orbital separation and on the mass and

evolutionary state of both the donor and the accreting star.

Some mass may be lost from the binary system during mass

transfer. The new orbital parameters are calculated assuming that

the mass lost from the binary carries specific angular momentum

h J (see Table B2). We calculate the final orbital separation using

a

a0
�

Mm

M0m0

� �22
M � m

M0 � m0

� �2hJ�1

: �B23�

Here M � M0 2 dM and m � m0 � dm (so dM and dm are

defined as positive quantities). The binary thus loses mass if dM 2

dm $ 0: For the amount of mass accepted by the accretor, see

Portegies Zwart & Verbunt (1996).

B3 Rejuvenation of the accretor

An accreting star generally becomes more massive, which

shortens its evolutionary time-scale. The method described here

is rather ad hoc. We assume that a star accreting dm of mass

remains in the same evolutionary state (see the list in Section

B2.1). The age of the star with mass m is t(m), and we want to

know what is the age t�m� dm� of the star with mass m� dm: At
the moment the mass of the accretor increases from m to m� dm

the star is in evolutionary state i. It took the star ti(m) to reach that

evolutionary state, and this state lasts for ti�m� ; ti�1�m�2 ti�m�

for a star with mass m. The same stage for a star with mass

m� dm lasts for ti�m� dm�: The age of the star after accretion

then becomes

t�m� dm� � ti�m� dm� �
t�m�2 ti�m�

ti�m�

� �

ti�m� dm�R : �B24�

Here R is a fraction introduced to mimic the rejuvenation of the

accretor �R . 1�: The mass dumped on its surface may lead to

some internal mixing, refreshing some of the helium core material

with some of the freshly accreted hydrogen. This rejuvenation

fraction is calculated with

R �
m� dm

m

� �k

; �B25�

and we use R � 1 if the accreted material is not hydrogen, in

which case the accretor is not rejuvenated. Allowing R , 1

would mimic the behaviour of a star becoming older upon

accreting material. The adopted value for k is listed in Table B2.

We will give two examples of an m � 2M( star which accretes

dm � 0:2M( from a helium-rich companion �R � 1�: For sim-

plicity, we assume here that this amount of mass is transferred in

an infinitesimal time-step. The main-sequence lifetime for a 2-M(
star is about 801Myr, and about 608Myr for a 2.2-M( star. If

mass transfer starts at t � 700Myr; the 2M( accretor is still on

the main sequence. After mass transfer the accreting star has an

age of 531Myr and is still on the main sequence.

If mass transfer started at t � 1Gyr; things become somewhat

more complicated. The 2-M( accretor is then on the horizontal

branch. The time it takes from zero-age to the beginning of the

horizontal branch is about 938Myr; for a 2.2-M( star this is about

712Myr. The 2-M( star spends roughly 84Myr on the horizontal

branch, whereas a 2.2-M( star spends only 82Myr in that stage.

Substitution of these numbers into equation (B24) results in an age

of the post-mass-transfer star of 773Myr.

B4 RESULT OF A MERGER OR COLLIS ION

We have adopted a set of simple prescriptions to specify the

outcome of stellar collisions. In the future these prescriptions can

be refined when more accurate calculations become available. As

a rule of the thumb, the result of a collision is the conservative

accretion of the lower mass star on to the more massive star. The

accretor will then be rejuvenated as described by equation (B25).

This rule is violated when one component is a giant or a compact

Table B3. Simplified representation of possible
merger outcomes. The four columns correspond
to the four choices given for the type of massive
star (primary), while the four rows indicate the
type of less massive star (secondary): main-
sequence star (ms), (sub)giant (sg), white dwarf
(wd) and neutron star (ns). In this table we do
not distinguish between stars in the Hertzsprung
gap (Hg) or on the first and second ascent on
the asymptotic giant branch (AGB).

primary
star ms sg wd ns

ms ms sg wd� disc ns� disc
sg Hg AGB wd� disc ns� disc
wd sg AGB ± ±
ns TZÇO TZÇO ± ±
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object. A detailed prescription of how to calculate the evolu-

tionary state of such a merger is presented in Paper I.

We describe our treatment of the possible outcomes of

encounters between two stars, ordered by the evolutionary state

of the more massive of the two (the primary). Table B3 sum-

marizes this treatment.

B4.1 Main-sequence primary

If both stars involved in the encounter are main-sequence stars,

then the less massive star is accreted conservatively on to the more

massive star. The resulting star is a rejuvenated main-sequence

star (see Lai, Rasio & Shapiro 1993 and Lombardi, Rasio &

Shapiro 1995). The details of this procedure are described in

appendix C4 of Portegies Zwart & Verbunt (1996).

If the less massive star in the encounter has a well-developed

core (giant or subgiant), this core becomes the core of the merger

product. The main-sequence star and the envelope of the giant are

combined to form the new envelope of the merger. In general, the

mass of the core is relatively small compared to the mass of the

envelope, and the star is assumed to continue its evolution through

the Hertzsprung gap. Note that this type of encounter can occur

only when the main-sequence star is itself a collision product (e.g.,

a blue straggler).

When a main-sequence star encounters a less massive white

dwarf, we assume that the merger product is a giant whose core

and envelope have the masses of the white dwarf and the main-

sequence star, respectively. We then determine its evolutionary

state as follows. We calculate the total time tagb that a single,

unperturbed star with mass equal to that of the merged star would

spend on the asymptotic giant branch, and the mass mc,agb of its

core at the tip of the giant branch. The age of the merger product is

then calculated by adding tagbmc=mc;agb to the age of an unper-

turbed star with the same mass at the bottom of the asymptotic

giant branch. For example, a single, unperturbed 1.4-M( star

leaves the main sequence after 2.52Gyr, spends 60Myr in the

Hertzsprung gap, moves to the horizontal branch at 2.96Gyr, and

reaches the tip of the asymptotic giant branch after 3.06Gyr, with

a core of 0.64M(. Thus, if a 0.6-M( white dwarf merges with an

0.8-M( main-sequence star, the merger product has an age of

2.87Gyr, leaving it another 180Myr before it reaches the tip of the

asymptotic giant branch.

If the less massive star is a neutron star or black hole, a Thorne±

ZÇytkow object is formed.

B4.2 Evolved primary

When a (sub)giant or asymptotic branch giant encounters a less

massive main-sequence star, the main-sequence star is combined

with the envelope of the giant, which stays in the same

evolutionary state. Its age within that state is changed, however,

according to the rejuvenation calculation described in Section C3

of Portegies Zwart & Verbunt (1996). For example, an encounter

of a giant of 0.95M( and age 11.34Gyr with a 0.45-M( main-

sequence star produces a giant of 1.4M( with an age of 2.67Gyr.

When both stars are (sub)giants, the two cores are merged and

form the core of the merger product (see Davies, Benz & Hills

1991 and Rasio & Shapiro 1995). Half the envelope mass of the

less massive star is accreted on to the primary. The merger product

continues its evolution starting at the next evolutionary state ± a

(sub)giant continues its evolution on the horizontal branch, and a

horizontal branch star becomes an asymptotic giant branch star.

The reasoning behind this assumption is that an increased core

mass corresponds to a later evolutionary stage.

If the less massive star is a white dwarf, then its mass is simply

added to the core mass of the giant, and the envelope is retained. If

the age of the giant before the encounter exceeds the total lifetime

of a single unperturbed star with the mass of the merger, then the

newly formed giant immediately sheds its envelope and its core

turns into a single white dwarf. Otherwise the merged giant is

assumed to have the same age (in years) as the giant before the

collision, and continues its evolution as a single unperturbed star.

If the other star is a less massive neutron star, a Thorne±ZÇytkow

object is formed.

B4.3 White-dwarf primary

In an encounter between a white dwarf and a less massive main-

sequence star, the latter is assumed to be completely disrupted,

and forms a disc around the white dwarf (Ruffert & MuÈller 1990;

Rasio & Shapiro 1991). The white dwarf accretes from this disc at

a rate of 1 per cent of the Eddington limit. If the mass in the disc

exceeds 5 per cent of the mass of the white dwarf, the excess mass

is expelled from the disc at a rate equal to the Eddington limit.

If a white dwarf encounters a less massive (sub)giant, a new

white dwarf is formed with a mass equal to the sum of the pre-

encounter core of the (sub)giant and the white dwarf. The newly

formed white dwarf is surrounded by a disc formed from half the

envelope of the (sub)giant before the encounter. The factor of a

half is rather arbitrary and based on the lack of detailed

calculations which provide a proper number. If the mass of the

white dwarf exceeds the Chandrasekhar limit, it explodes in a type

Ia supernova, leaving no remnant (Nomoto & Kondo 1991; Livio

& Truran 1992).

A collision between two white dwarfs results in a single white

dwarf with mass equal to the sum of the original masses. If the

total mass of the collision product exceeds the Chandrasekhar

mass, it explodes in a type Ia supernova.

Collisions between white dwarfs and neutron stars or black

holes result in the formation of an accretion disc around the

compact object; the white dwarf is destroyed. Following the

accretion, the neutron star may collapse into a black hole.

B4.4 Neutron-star or black-hole primary

All collisions involving a neutron-star or black-hole primary lead

to the formation of a massive disc around the compact star. If the

compact star had a disc prior to the collision, this disc is expelled.

This disc accretes on to the compact star. We chose, rather

arbitrarily, that the accretion rate is 5 per cent of the Eddington

limit. An accreting neutron star turns into a millisecond radio

pulsar, or ± when its mass exceeds 2M( ± into a black hole.

B5 COMMUNICATION BETWEEN SEBA AND

KIRA

Due to the interaction between stellar evolution and stellar

dynamics, it is difficult to solve for the evolution of both systems

in a completely self-consistent way. The trajectories of stars are

computed using a block time-step scheme, as described earlier.

Stellar and binary evolution is updated at fixed intervals (every

1/64 of a crossing time, typically a few thousand years). Any

feedback between the two systems may thus experience a delay of
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at most one time-step. Internal evolution time steps may differ for

each star and binary, and depend on binary period, perturbations

due to neighbours, and the evolutionary state of the star. Time-

steps in this treatment vary from several milliseconds up to (at

most) a million years.

After each 1/64 of a crossing time, all stars and binaries are

checked to determine if evolutionary updates are required. Single

stars are updated every 1/100 of an evolution time-step or when

the mass of the star has changed by more than 1 per cent since the

last update. A stellar evolution time-step is the time taken for the

star to evolve from the start of one evolutionary stage to the next

(see Section B2.2).

After each stellar evolution step the dynamics is notified of

changes in stellar radii, but changes in mass are, for reasons of

efficiency, not passed back immediately (mass changes generally

entail recomputing the accelerations of all stars in the system).

Instead, the `dynamical' masses are modified only when the mass

of any star has changed by more than 1 per cent, or if the orbital

parameters, semimajor axis, eccentricity, total mass or mass ratio

of any binary has changed by more than 0.1 per cent.

B6 MASS -LOSS FROM STARS AND BINARIES

Fast (sudden) and slow (gradual) mass-loss affects the dynamics

of the stellar system in different ways. Mass-loss is considered fast

when it takes place within a fraction of an orbital time-scale. For

single stars, this time-scale is of the order of the crossing time of

the star cluster. For binaries, it is much shorter±on the order of the

binary orbital period. Mass-loss during a supernova explosion is

considered fast, stellar winds and mass lost from a binary during

mass transfer are considered slow.

Due to the discretized time steps of the stellar dynamics and the

stellar evolution, from the point of view of the dynamics mass is

lost in `bursts'. For example, an asymptotic giant branch star with

a strong stellar wind may lose its entire envelope in 100 steps

spanning roughly one crossing time, while a supergiant might lose

its entire envelope instantaneously in a supernova. Mass-loss for

single stars affects the dynamics of the entire stellar system. For

binaries and multiple systems, mass-loss from a member star

directly affects the orbital characteristics of its neighbours.

The rate of mass-loss is particularly important for binaries.

Slow mass-loss via a stellar wind will soften a binary system, but

will not affect its eccentricity or its centre-of-mass velocity. (This

is true if the binary is unperturbed. In a perturbed binary, the

eccentricity and centre of mass velocity are both affected by

stellar wind mass-loss.) Sudden mass-loss, on the other hand, can

dramatically affect the binary's internal parameters. For unper-

turbed binaries, the effects of mass-loss from both component

stars are computed consistently using SeBa. Changes in binary

parameters are calculated and the dynamics is notified, thereby

transmitting the information to the rest of the stellar system via the

integrator.

For perturbed binaries and multiples (and also hierarchical

systems where the inner binary is unperturbed), the integrator

takes care of the dynamical effects of stellar mass-loss. By

construction, mass transfer cannot occur in a perturbed binary or

multiple system. If a supernova occurs in a perturbed binary, any

slow mass-loss is accounted for before fast mass-loss occurs, since

a star which is about to explode generally loses a significant

fraction of its mass in a stellar wind before the supernova event

itself. Supernova remnants do not lose mass. This assumption

breaks down when the binary companion of the exploding star

loses a significant fraction of its mass between the moment of the

supernova and the end of the stellar update time-step. (This can

happen if the binary companion is either a hypergiant, a massive

helium star or a supergiant.) The stellar evolution time steps in

these cases are taken sufficiently small (on the order of 100 years)

to ensure that this causes a negligible error.

B7 COLLIS IONS AND MERGERS

We draw a distinction between `mergers' and `collisions.' A

merger may result from mass transfer or a common-envelope

phase during the evolution of an unperturbed binary. The binary

node is then replaced by the merger product. The product of a

merger is generally different from the result of a collision, since a

merger is often preceded by a phase of mass transfer which affects

the masses of both stars.

Collisions may occur between single stars (which are part of a

binary tree) or between stars in a perturbed binary. Since the

integrator may miss the precise moment of closest approach, the

orbital elements of each `close' pair of stars is calculated after

each integration step. A collision occurs when the stars are found

to be within dcoll times the sum of their radii at periastron: p ,

dcoll�r1 � r2�: In this case, the two stars are replaced by the

collision product, which is placed at the centre of mass and with

the centre-of-mass velocity of the original two-body system. The

characteristics of the collision product are calculated using SeBa

(Section B4).

A collision may also occur when an unperturbed binary in a

state of mass transfer is perturbed by a close encounter with

another cluster member. Such a induced collision may be triggered

by a close flyby, or in a multiple system with a perturbed outer

orbit. The collision occurs if the sum of the component radii

exceeds the distance between the two stars at the moment the

binary becomes perturbed.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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