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Abstract. When simply put on a solid, a liquid drop usually adopts the
shape of a spherical cap or a puddle depending on its volume and on the
wetting conditions. However, when the drop is subjected to a periodic
field, a parametric excitation can induce a transition of shape and can
break the drop’s initial axial symmetry, provided that the pinning forces
at the contact-line are weak enough. Therefore, a standing wave appears
at the drop interface and induces a periodic motion, with a frequency
that equals half the excitation frequency. In the first part, we review
the different situations where star drops can be generated from various
types of periodic excitations. In the second part, we show that similar
star drops can occur in a much less intuitive fashion when the drop is
put on an air cushion, where no periodic motion is imposed a priori.
Preliminary experiments as well as theoretical clues for a hydrodynamic
interpretation, suggest that the periodic vibration is due to an inertial
instability in the air layer below the drop.

1 Introduction

In the search for the dynamical properties of liquids drops, which are more and more
used for discrete microfluidics applications, various studies have been devoted to the
determination of their eigenmodes with respect to the response to external forces. In
the linear regime and for invicid spherical drops, the resonance frequency has been
theoretically predicted a long time ago by Rayleigh and Lamb [1]:
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in which fn denotes the resonance frequency of the nth mode of oscillation, V is the
drop volume, R its radius, γ and ρ the liquid surface tension and density.

In practice, however, the situation is much more complex for a number of reasons:
(1) the shape is not spherical, for instance if the drop is put on a solid substrate
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(sessile drop); (2) the drop deformations are large enough to depart from the range
of the linear theory; (3) the prescribed vibration is anharmonic. A common way to
access these dynamical properties is to put a sessile drop onto a mechanical shaker,
subjecting the liquid to an oscillatory inertial force [2–5]. This geometry allows for the
observation of a host of phenomena from linear to strongly non-linear behavior, i.e.
from surface wave undulations to strong deformations up to atomization [2]. However,
an additional degree of complexity appears due to the presence of the contact line,
which accounts for the liquid-solid interactions at the microscopic scales. Most of the
viscous dissipation occurs in the vicinity of the contact line, and the combination of
roughness and chemical heterogeneity of any real surface leads to a pinning force,
quantified by a contact-angle hysteresis [6]. The eigen-mode of a drop is strongly
influenced by this pinning force [3], but it is possible to remove this complexity by
using a low-friction hydrophobic substrate [4]. In this case the drop’s eigen frequencies
follow a law similar to (2), with a corrective geometrical pre-factor [5,7] that depends
on its shape - from a flattened sphere to a puddle - and on the contact-angle [8].

A drop weakly pinned on its substrate can experience a shape transition from
axisymmetric to that of finite azimuthal wave-number, giving it the shape of a star
(see Fig. 3). This transition happens in various situations where a periodic field (ac-
celeration, magnetic field, ...) can induce a parametric forcing in the drop. Since
examinations of the flow inside the drop show more or less regular vortex-like struc-
tures [9], this type of instability can be utilized on purpose to induce constant mixing
or particle re-suspension. Otherwise, star drops have been observed when levitated
on an air cushion, and this situation has numerous applications as well, depending on
whether one desires to induce or to avoid shape oscillations. For example in lens man-
ufacture, drops of molten glass can be prevented from contact with a solid substrate
[10] by levitating the glass above a porous mould. It is also employed as a viscosimeter
for harmful or high-temperature liquids [11]. In the former case, the shape oscillations
have to be avoided, whereas in the latter case they are desired.

When the drop is sustained by a gas stream flowing underneath [12], the levitat-
ing flow is not a priori time-dependent. However, the drop spontaneously exhibits
time-periodic oscillations. This suggests a mechanism that originates from an insta-
bility in the flow. A similar situation is encountered when the drop levitates above
a hot plate. When the temperature of the surface is much larger than the boiling
temperature, the liquid experiences a boiling crisis - the so-called ’Leidenfrost effect’
- where a thin vapour layer insulates the liquid from the substrate and keeps the drop
in levitation [13–18]. While it has become apparent that the star shapes come from
a parametric forcing, originating from a periodic acceleration field, the mechanism
for periodic spontaneous oscillations of the drop is not yet understood. Mechanisms
invoking thermal effects are invalidated by the observation of star drops on a ambient
temperature air cushion [12,19], and an analysis only based on viscous lubrication
and capillarity is unable to reproduce sustained oscillations [20]. The stability of this
air cushion is also crucial for the non-coalescence of droplets on a vibrated bath [21,
22].

In this paper, we review the current literature of the formation of facetted star
drops in various experimental situations and we show experimental results of star
formations from liquid puddle shaken on a super-hydrophobic substrate (section 2).
In the second part (section 3) we review situations of drops levitated on an air cushion
that develop similar star shapes, but without any prescribed periodic excitations. We
show the first experimental evidence of such stars and our data suggests that their
formation indeed originates from a hydrodynamic instability of the air flow.
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Fig. 1. A liquid puddle on a non-wetting substrate vibrated in the vertical direction at a
frequency fe. Due to a time-periodic acceleration a(t), the puddle radius R(t) and height
h(t) are time-dependent.

2 Star drops generated by periodic excitation: a catalogue

2.1 General features

Here we give a qualitative understanding of how a drop can generate standing waves,
associated to the shape of a star, as a response to a time-periodic excitation. We
basically follow the analysis found in the paper by Yoshiyasu et al. [5]. Let us consider
the simple case of a large drop (liquid density ρ and surface tension γ) sitting on a
non-wetting substrate Fig. 1. If the drop volume is large enough, it spreads like a
puddle which radius R is much larger than the height h. We wish to approach the
situation of a non-wetting substrate (contact angle θ equal to 180◦), although in
practice θ is rarely larger than 160◦. The height h is equal to twice the capillary

length lc: h = 2lc =
√

4γ
ρg , and it ranges between 2 and 3 millimeters for most liquids.

Now, the substrate is periodically vibrated in the vertical direction. Therefore,
the drop is subjected to a time-periodic acceleration field a(t). The balance between
gravity and surface tension, selecting the capillary length lc no longer holds. Conse-
quently, one has to build an effective capillary length l∗c that is also time dependent,
which implies that the height of the puddle (h = 2l∗c) varies periodically:

h =
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=
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(3)

Due to the volume conservation of the drop, V = πR2h, the radius also fluctuates
with a period of 1

fe

.

It can be argued that the eigen frequencies of a liquid puddle on a non-wetting
substrate do not differ much from those of a spherical drop described by eq. (2).
This is the case when the wetting conditions do not introduce any significant pinning
force at the contact-line. If a pinning force would exist, the contact-angle would show
a hysteretic behavior, which would prevent any variation of the radius R, or would
lead to stop-and-go variations for R [3]. By assuming in addition that the radius R is
significantly larger than the height h, Takaki and Adashi [14] showed that the eigen
frequency of the nth mode - corresponding to a drop with n lobes along the azimuthal
direction - is equal to:
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It is clear from eq. (3) that the resonance frequency fn for the free oscillations are
modulated in time. Therefore, this modulation leads to parametric forcing, by analogy
with the classical case of a vertically shaken pendulum [23]. Yoshiyasu et al. show
with simple arguments that the equation for the horizontal displacement of the drop
periphery u(t) is governed by an equation similar to the Mathieu equation:

d2u

dt2
+ ω2

n(1 + ξ cos(2πfet))u = 0 (5)

with ωn = 2πfn is the pulsation associated to the nth mode, and ξ = 3∆R
R . It was also

verified experimentally that the frequency of the drop oscillations fn is equal to half
the prescribed frequency fe, which is expected for parametric forcing. Consequently,
the drop exhibits a standing wave at its periphery, which wavelength λ has to match
both the perimeter 2πR and the number of lobes n: λ = 2πR

n , n being fixed by the

prescribed frequency: fn = fe

2
.

It is worth emphasizing the importance of having a weak pinning force between
the drop and the substrate. In the situation where a significant pinning force exists,
the substrate oscillations leads to a very different dynamics, as the drop radius stays
constant. Instead, it is the contact-angle that fluctuates, at the frequency fe [3], due
to the vertical oscillation of the drop’s center of mass. As the drop radius does not
vary over time, no parametric forcing is possible and the drop simply responds har-
monically. This also explains why a sessile drop on an oscillatory substrate responds
at the frequency of excitation whereas a non-adhesive drop undergoes a parametric
instability with a response at half the frequency of excitation.

It is also to be noticed that a similar phenomenon has been recently evidenced on
bubbles subjected to ultrasonic forcing [24]. Due to the much weaker mass of bubbles
compared to drops, the typical period for resonance is around 8 µs (f=125 kHz).

Finally, let us mention that the star shapes are the direct consequence of the
peculiar geometry of a flat puddle, i.e. that R is much larger than h. The star shapes
are much less pronounced for spherical drops, as shown e.g. in [25]. For drop of
intermediate volume, between sphere and puddle, the shapes are hybrids, as the lobes
and nodes take place in both the azimuthal and the up-down directions.

2.2 Experiments on puddles on a vibrating non-wetting substrate

2.2.1 A brief history of previous experiments

Putting a puddle on a non-wetting and non-sticky vibrating surface is probably the
easiest way to observe star drops. Yoshiyasu et al. [5] carried out the first qualitative
experiments, using a teflon plate. The authors pointed out that it is particularly
important that the water drop formed a contact angle θ larger than 120◦. However,
Noblin et al. showed that liquid stars - denoted there as ”triplons” to refer to the
azimuthal deformation of the triple (contact) line - could be observed on a substrate
with contact-angle θ smaller than 90◦, provided that the contact angle hysteresis was
small enough (in practice, less than 15 degrees). The only difference is the existence
of a threshold in acceleration (or shaking amplitude) below which the contact-line
keeps pinned [3,4]. They generalized eq. (5) in the case of solid-like friction, and
demonstrated that, above the threshold of contact line depinning, the instability
that turns an initial axisymmetric drop to a faceted star drop is associated to an
exponential growth of the lobe amplitude versus time. Therefore, this feature contains
the signature of a linear instability.

More recent experiments by Okada and Okada [25] produced more quantitative
data using a more hydrophobic teflon plate. They especially focused on the mode n=3,
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Fig. 2. Schematic experimental set-up utilized to generate star drops on a shaken hy-
drophobic curved substrate. The bottom inset shows a hydrophobic particle used to coat the
substrate (the bar scales for 10 µm).

and produced an existence diagram for this simple mode varying both amplitude and

excitation frequency. They also checked that the response frequency scaled with V
1

2

for the same n, with V is the drop volume. Finally, it is to be noticed that star drops
have recently been observed in the geometry of a large drop sandwiched between two
hydrophobic plates shaken vertically [9].

2.2.2 Our experiments: the set-up

In order to give a more quantitative picture of the formation of stars, we carry out
systematic experiments in a large range of frequency and with different drop volumes.
We choose V = 100, 200 500 and 1000 ml, for which water drops adopt the shape
of puddles. As a substrate, we fabricate a home-made superhydrophobic surface by
spreading a water-repellent powder (Lycopodium) on a layer of adhesive wax. Then,
we blow on the powder layer to remove the remaining grains. As a result, we obtain
a nearly regular monolayer of powder: the combination of surface roughness and
hydrophobic nature of the powder layer ensures a highly water-repellent behavior.
Although the superhydrophobic properties deteriorate faster than those of the surfaces
mode of micro-pillar arrays or nano-structurations (see [26] for a review), they have
a reasonable life-time, suitable for the time of the experiments. The contact angle θ
was measured to be equal to 140 ±2◦. When puting a large puddle on the surface,
one observed a thin layer of air trapped between the liquid and the substrate which
testifies for the strong repellency (see Fig. 2). The hysteresis is very weak and a drop
would roll off the surface even for very small tilts. Therefore, we operate in a curved
glass surface to keep the drop at the same central location. The whole substrate is
shaken vertically using an electromagnetic shaker. The drop dynamics was recorded
using a high-speed camera (Phantom V5). The set-up is schematically reproduced in
Fig. 2.

2.2.3 Results

By varying the drop volume, the amplitude and frequency of the shaking, we are able
to generate star drop with n from 2 up to 15 lobes. Some examples of these stars are
presented in Fig. 3. In order to better understand the selection mechanism, we con-
struct phase diagrams for different drop volumes by varying both the frequency fe of
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Fig. 3. Liquid drops (V=500 ml) adopting faceted shapes (stars) after being put on a shaken
hydrophobic substrate. The snapshots show drops with 2 to 13 lobes, the number of lobes
increasing with the prescribed frequency for the same drop volume. The last (bottom-right)
shot shows a ”chaotic” mode which results from the erratic combination of several modes.

Fig. 4. The phase diagram in frequency and acceleration of a liquid puddle drop shaken on
a non-wetting substrate Left - V=100 ml, Right - V=200 ml.

excitation and the acceleration a through the amplitude of vibration: a = A0(2πfe)
2.

These diagrams are reproduced in Figs. 4 and 5. The different colored symbols cor-
respond to the threshold for the appearance of a star drop mode with n number of
nodes in the azimuthal direction. At low acceleration, no instability appears whereas
at high acceleration the drop can either take off the substrate (for smaller drops),
either split into several smaller droplets (for larger drops). In between, stars such as
those represented in Fig. 3 are observed.

The first striking impression is the complexity of the diagrams, especially for
intermediate volumes (V=200 and 500 ml). This complex behavior is due to several
factors: (1) The finite size of the drop leads to a constraint on the azimuthal wave-
number, as the number of nodes has to be integer. The wave-number is not necessarily
compatible with the frequency of excitation. (2) The drop can react preferentially to
certain frequencies of excitations, due to the discrete values for the resonance peaks
depending on the drop size. (3) The liquid viscosity is a damping factor, which is
more and more prevalent as f is increased (see also [27]).
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Fig. 5. The phase diagram in frequency and acceleration of a liquid puddle drop shaken on
a non-wetting substrate. Left - V=500 ml, Right - V=1000 ml.

On the diagrams, the number of nodes inside the corresponding domains are writ-
ten, and we also wrote the states denoted as ”Chaos” where the coexistence between
two or several modes leads to an undefined (or fluctuating) number of nodes (see Fig.
3, Bottom-Right shot). The general structure of the diagram is an ensemble of en-
tangled and interconnected tongues of stability for various number of lobes n, which
is reminiscent to what was obtained in the case of a droplet on a vibrating bath of
the same liquid [22]. It is interesting to draw an analogy with the results for the
(presumably) simpler system of a liquid layer exhibiting standing waves when shaken
vertically: the so-called Faraday instability is also induced by parametric forcing. The
linear stability theory of Faraday instability of a viscous fluid layer has been carried
out by Kumar and Tuckerman [27], and a system of stability tongues in the space of
wave-number and acceleration was predicted. In the case of a confined geometry, that
is more similar to that of a drop, a system of sub-tongues is theoretically predicted
and measured [28,29], due to the constraint imposed by an integer number of waves
at the surface. The superposition of the different stability tongues in our diagrams
have similar features that require a more thorough investigation.

We can extract several trends from the diagrams, which are summarized here:

- The threshold for the appearance of the first instability generally increases with
the frequency, although not always in a monotonic way.

- The selected wave-number increases with the frequency. But there are generally
several tongues of stability for the same number of nodes, which are disconnected.
Between these tongues at constant n, other tongues corresponding to other values of
n are selected.

- The chaotic regime generally appears for values of the acceleration higher than
those required to observed regular stars at constant n. However, in some situations
the chaos regime is between two tongues of stability and it is possible to re-observe
a regular mode at higher accelerations: for instance for fe around 40 Hz and n=3 at
V =200 ml, or for fe about 100 Hz and n=7 at V =500 ml.

- The area of stability generally increases for larger n. For instance, the areas of
stability of n=2 and n=3 are quite narrow, except for the smallest drop of V =100
ml.



8 Will be inserted by the editor

Fig. 6. Star drops generated in acoustic levitation, where the prescribed acoustic field is
modulated in time at low frequency. Reprinted figure with permission from [30].

- The mode n=1 does not correspond to a parametric forcing, but it can sometimes
be observed between the ”No instability” area and the tongues of stability of stars.
Therefore, it is always stable at accelerations lower than those for n ≥ 2.

2.3 Acoustic levitation

Recently, Chen, Xie and Wei [30] have set-up an experiment of acoustic levitation
where a drop is put in an ultrasonic acoustic field (frequency f0=20 kHz). As the drop
is trapped by acoustic radiation pressure, this acoustic force acting on the liquid/gas
interface can counterbalance gravity and hence the drop can be kept in levitation.
The drop is large compared to the capillary length lc, so that it adopts the shape of a
puddle, and not that of a sphere. This set-up can be particularly adapted to situations
where contact between liquid and solid has to be avoided, for instance undercooled
or reactive melts [30].

When the acoustic field is modulated in time, at a modulation frequency fm much
smaller than f0 - typically from 20 to 150 Hz, the authors observed star drops, with
a number of lobes n between 2 and 7 depending on the modulation frequency, see
Fig. 6. Therefore, a natural explanation of the phenomenon can be the following: the
modulation of the acoustic power induces a modulation in the force that maintains the
drop in levitation, and hence the drop’s vertical position fluctuates at the frequency
fm. This situation is very similar to that of a puddle on a vibrated substrate is set
up. However, the acoustic levitation offers an even more symmetric situation: while
a drop on a vibrated substrate is flattened at its lower base by the proximity of the
substrate, a drop in acoustic levitation is up/down symmetric.

2.4 Metal drops in oscillating magnetic field

Fautrelle, Etay and Daugan [31] have observed very similar stars with a drop of
quicksilver put in an magnetic field that is modulated at low frequency (about 1
to 10 Hz). These much smaller values for the frequency are explained by that the
radius of the drop - denoted as ”liquid pool” by the authors - is larger than that
of other situations: R ranges between 1.5 and 2 cm. Furthermore, the ratio γ

ρ is
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Fig. 7. Star drops of quicksilver generated in an oscillating magnetic field. Reprinted figure
with permission from [31]

much smaller here than for usual liquids due to the high density, which leads to even
smaller eigen frequencies according to eq. (2). Figure 7 shows examples of such liquid
metal stars. Similarly to the previous situations, the number of lobes n increases
as one increases the frequency of the magnetic field modulation. The authors also
mentioned the existence of the axisymmetric mode (snapshot (a) in Fig. 7), where
n=1, in a significant range of parameters. This mode is very similar to that observed
for drops on an non-wetting vibrating substrate (sections 2.1 and 2.2), i.e. consisting
of surface waves propagating inwards from the drop periphery.

It is also noticeable that unstructured patterns of waves were observed, with a
host of various shapes for the drop. In these drops, some of which can resemble
chaotic drops shown in Fig. 3, the number of lobes varies erratically over time and no
well-defined wavelength can be observed. In their extreme shapes, these unstructured
patterns can exhibit voids (absence of liquid) which position fluctuates in the middle
of the drop, as well as ejections of small droplets.

2.5 Drops levitated by a pulsating air flow

Starting again from the issue of setting up containerless measurements on liquids,
Papoular and Parayre [32] carried out experiments of oscillating drops on a porous
substrate whereby an air stream flows. The air flow reaches the drop and acts as a
bearing, hence insulating it from the substrate. The levitation is due to the lubrication
flow in the air layer below the drop, which balances gravity. Therefore, this set-
up allows to avoid contact between the liquid and the substrate, which ensures a
very small friction. A piezoelectric exciter set below the cushion ensures the time-
modulation of the air flow, hence leading to periodic excitation of the drop.

Figure 8 shows two examples of oscillating drops (side views) obtained with this
set-up. The authors have focused their study on the determination of corrections to be
brought to the Rayleigh-Lamb theory (eq. (2)), in the situations where the shape of the
drop at rest is different from spherical. Therefore, the shape of their drops is elliptical,
flattened by gravity at the lower base, but it is not a puddle. Consequently, the
periodic excitation produces parametric instability, but the subsequent drop shapes
are not star-like: the lobes and nodes develop along the up-down direction (see Fig.
8).
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Fig. 8. Drop on a pulsating air flow, showing shape oscillations that remain axisymmetric.
Reprinted figure with permission from [32].

3 Star drops levitated by a non-pulsed air cushion

So far, we presented formation of star or facetted drops that were subjected to a pre-
scribed periodic forcing. But there are a few situations where star drops are observed
without periodic forcing. Therefore, the vibrations come from an instability in the flow
required to keep the drop in a non-wetting situation. Indeed, if one ensures the pres-
ence of an air cushion between the liquid and the substrate, a perfectly non-wetting
situation is created. The contact angle is rigorously equal to 180◦ and the friction is
almost zero. The levitation is ensured by a lubrication pressure due to the radial air
flow, which balances gravity forces on the drop. This situation is observed at least
within two sorts of experiments:

- A drop of liquid on a substrate which temperature is far beyond the liquid boiling
temperature Tb, generating a situation of ”boiling crisis” or Leidenfrost effect [34].
In this case, the vapor cushion comes from the evaporation of the liquid of the drop
itself, that vaporizes fast enough to lift the drop up the surface and insulate it from
the hot plate, making the drop evaporation much slower and less explosive than in
boiling [37].

- A drop of liquid on a (porous) substrate through which an ascending air stream
flows, generating a radial flow below the drop.

These two situations are depicted in Fig. 9. The average thickness of the air layer
has been measured to be of the order of 100 microns or less [37].

3.1 Leidenfrost star drops

The Leidenfrost effect is known since the 18th century, discovered by the german
scientist who gave the name of the phenomenon [34]. However, the observation of
vibrating Lendenfrost drops and the subsequent stars were first reported in the early
fifties by Holter and Glasscock [15], with a tentative theoretical explanation by Gouin
and Casal [35]. Many quantitative studies of the boiling crisis have focused on the de-
termination of the Leidenfrost critical temperature, i.e. the temperature above which
the lifetime of a drop dramatically increases, as boiling disappears (see [36] for a re-
view). In many applications like quench-cooling, the boiling crisis has to be avoided as
it strongly limits heat transfer between the solid to be cooled and the surrounding liq-
uid. Recently, Biance et al. [37] investigated Leidenfrost drops in permanent regime,
i.e. by feeding drop with water at the same rate as evaporation, and focused on the
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Fig. 9. Schemes of the two situations of levitating star drops on non-pulsed air cushions.
Top - Leidenfrost drop on a hot plate. Bottom - Drop levitating by an ascending air stream.

(a) (b) (c) (d)

Fig. 10. Facetted drops of water sitting on a metallic hot plate, producing a vapor cushion
(Leidenfrost effect). (a) Axisymmetric drop with propagating surface waves. (b) Facetted
drop (four lobes) as the plate temperature is increased further. (c) and (d) A drop with 3
lobes spinning along the azimuthal direction. A needle is used to hold the drop in place.

vapor layer. They did observe drop vibrations leading to stars as well as a ’chimney’
instability. The latter is manifestly different from the star instability, and occurs as
the drop exceeds a certain size. The authors attributed these chimneys to the growth
and rise of a vapor bubble at the centre of the drop, due to Rayleigh-Taylor instability
[37].

Figure 10 shows a few examples of vibrating Leidenfrost drops of water and iso-
propanol on a hot plate (temperature T about 220◦C. There are a number of exper-
imental challenges that make it difficult to obtain reproducible experimental data.
The main issue is to carefully control the roughness of the substrate, which seems to
have a large influence on the stability of the vapor layer [36]. Furthermore, in order to
prevent the drop to slide off the plate, either the substrate has to be curved - which
can bring an additional geometric parameter - either the drop has to be pinned by
a thin needle on a flat plate (Fig. 10) the influence of which is quite unquantifiable.
Finally, operating at constant local temperature for the plate is also an issue. There-
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Fig. 11. Star drops of liquid nitrogen sitting on a layer of glycerol, hence developing a
Leidenfrost state. Reprinted figure with permission from [18].

fore, the alternative solution of operating in ambient conditions with liquid nitrogen
has been adopted by many experimentalists.

3.2 ”Cold” Leidenfrost stars

Most of the quantitative experiments of vibrating Leidenfrost drops were conducted
with liquid nitrogen on a substrate at ambient temperature. The main reason for this
is that the substrate can be a liquid, which ensures more reproducible experiments:
not only the liquid constitutes a perfectly smooth substrate at the molecular scale,
but also its surface deforms under the weight of the levitating drop, ensuring that
the drop stays trapped at a given location. In order to avoid flow inside the liquid
substrate [18], the liquid has to be very viscous, yet thermally conductive enough.
Figure 11 gives examples of such regular liquid nitrogen stars on glycerin pools.

The first quantitative studies were carried out by Adachi and Takaki [13,14], which
revealed a very rich dynamics including non-trivial transitions between the different
spatial modes. They provided a tentative mechanism for the mode selection, that
compared well with experiments. Later on, Strier et al. [16] reconsidered the results
in terms of amplitude equations. Recently, Snezhko et al. carried out a new series of
experiments and showed that the internal flows inside the liquid substrate could lead
to different dynamical regimes. It was proposed that the vibrations could originate
from thermal effects: these interpretations were supported by a linear stability analysis
[17] and by direct visualization of thermal-convection like flow inside the drop [16].
This mechanism predicts a time-periodic variation of the radius of the drop, hence
ensuring the conditions for parametric forcing (see Section 2.1).

An alternative explanation for the oscillations can invoke a purely hydrodynamic,
non-thermal, mechanism. This scenario is supported by the observation of stars in
athermal experiments, where a drop is simply put in levitation above an ascending
air stream, which are reviewed and described thereafter.

3.3 Oscillating star drops on a constant ascending air stream

To our knowledge, the occurrence of oscillations of drops levitating on a constant
ascending air stream has first been reported by Goldshtik, Khanin and Ligai [19],



Will be inserted by the editor 13

Fig. 12. Star drops obtained on an air cushion formed above a porous mould, here with 3
or 5 lobes.

who drew an analogy between the air flow lubrication and the boiling crisis. Later on,
Hervieu et al. [12] carried out a numerical study of the problem, which exhibited real-
istic shapes and oscillations of the center of mass 1. They also checked experimentally
the existence of such oscillations, with a few results comparing well with numerics.

3.3.1 General features

To levitate a drop on a porous mould intervenes in several practical situations like the
manufacture of lenses, for which it is crucial to avoid shape instability in the drop of
liquid glass. As summarized in Duchemin, Lister and Lange’s paper [10], instabilities
can occur due in the coupled system of air flow and drop, leading to the oscillations
of the drop shape. Several kinds of instabilities have been reported:

- the growth and rise of a bubble below the drop, which ends up piercing on top
of the drop. This is reminiscent to the ”chimneys” observed by Biance et al. [37] in
Leidenfrost drops.

- the appearance of static ”brim waves” [10], i.e. small deformations at the edge
of the drop.

None of these two instabilities have been proposed to possibly lead to star drops.
We know that liquid stars should appear as soon as the drop’s center of mass os-
cillates vertically with a high enough amplitude, and it is not possible to conclude
whether one of mechanism described in [10] can generate the required oscillations.
However, according to the conclusions of Goldshtik et al., star drops should in princi-
ple be possible to observe on an air cushion as the flow produces the required vertical
oscillations for the drop. This is what we checked experimentally, an it turned out
that indeed a drop of liquid levitating on top of a air cushion did show star shapes
(see Fig. 12.

We recently conducted a theoretical study to predict the maximal size of a drop
on an air cushion [20]. This study was based on solving the shape of the drop/air
interface using lubrication approximation, i.e. neglecting the inertia in the air flow.
This was justified by the very realistic shapes obtained, as well as by the simpli-
fications in the theoretical and analytical treatment. Analytical predictions for the
shape based on asymptotic matching could be obtained, and numerical computations
were additionally run to capture the transient dynamics of unstable drops. The main
conclusions of the study in relation to the oscillating drops, are summarized here:

- A solution exists for drops up to a certain external radius which is in very
good agreement with experiments by Biance et al. [37]. Indeed they observed the

1 As the numerical scheme was axisymmetric, it was unable to reproduce stars
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appearance of chimneys above a drop radius equal to about 4 times the capillary
length.

- The model predicts that a bubble grows and rise at the center of the drop,
forming a chimney, if the radius is larger than the threshold radius. This threshold is
dependent on air flow-rate: a larger flow-rate lowers the maximal radius that a stable
drop can adopt.

- The presence of a curved substrate enhances stability of large drops.
- The lubrication flow alone is unable to reproduce drop oscillations.
Therefore, if one wishes to explain the occurrence of periodic vertical vibrations of

the drop leading to star shapes, one cannot account on a simple balance between the
lubrication pressure driven by the radial air flow and the Laplace pressure induced by
the drop deformation at its lower base. Before conjecturing some possible mechanisms,
we present new experimenal results of drops levitated by an air cushion which show
oscillations and star shapes.

3.3.2 First experiments

A schematic view of the experimental set-up is described in Fig. 9. An air stream
flows through a porous substrate made of sintered glass, and keeps in levitation a
drop of water placed above. Due to the very low friction, it is necessary to keep the
drop pinned by a thin needle (0.35 mm thin). This needle is connected to a syringe
which is used to control the drop volume. The air flow is produced by a pressurized
air supply, which can maintain pressures up to 4 bars. The flow-rate Q is measured by
a float flow-meter. The drop is observed from above by a high-speed camera (Photron
SA3).

The main difficulty of the experiment is to have a robust hydrophobic chemical
treatment of the porous medium. Indeed to set up drop levitation experiments is
tricky because any contact between the liquid drop and the porous substrate has to
be avoided. On that purpose, we chose perfluorodecyltrichlorosilane, which is a low
surface-energy molecule, as a chemical coating that ensures a molecular monolayer on
the activated glass porous layer. In the case of liquid contact and intrusion into the
porous substrate, the quality of the water-repellent character is dramatically reduced,
even after extensive drying, making the experiments even more difficult. Practically,
with the best care devoted to protect the coating, we could carry out experiments
during two days without observing irreversible damage of the porous material.

It was possible to obtain some results demonstrating the appearance of liquid
stars, very similar to those observed in the Leidenfrost configuration. Examples of
such stars are illustrated in Fig. 13, where modes n=3 and n=4 are presented.

By taking water drops of different volume V and radius R, we measured the
conditions for a drop to be stable. It turns out that below a threshold in air flow-
rate Qc, a drop of given radius does not show oscillations and adopts a smooth
spherical or puddle shape. We measured the threshold Qc which is larger for smaller
drops. In other terms, larger drops are more susceptible to get destabilized. This is
consistent with the results of the study in [20]. The destabilization always starts with
fast capillary waves (of frequency about a few hundred Hertz) at the surface of the
drop. Then, the drop undergoes more dramatic changes and turns to facetted and
stars shapes like those shown in Figs. 12 and 13. Figure 14 summarizes the various
observed drop shapes: while small drops gets unstable by taking the shape of stars
(n=3 for the smallest diameters, n=4 or 5 for slightly larger drops), the largest drops
get destabilized by the occurrence of chimneys, which do not turn the drop’s shape
into a star but simply break the upper interface. The theoretical limit of stability
for drops at low flow-rate should be equal to about 4 times the capillary length [20].



Will be inserted by the editor 15

Fig. 13. Vibrations and subsequent faceted shapes on water drops sitting on an air cushion.
Top - A mode n=3. Bottom - A mode n=4.

Fig. 14. The limit of air flow-rate and drop diameter that separates stable and unstable
drops, showing that smaller drops turn unstable at smaller air flow-rate.

This limit is traced in red dotted line in Fig. 14, which is in good agreement with the
extrapolation of the experimental measurements to Q=0.

We checked experimentally that the measured frequencies of the stars correspond
to those predicted by the eq. (4):

- for the n=3 stars (Fig. 13-Top), the measured frequency is 58.5 Hz, whereas the
frequency predicted from eq. (4) is fth=52.9 Hz (the drop radius is measured equal
to 2.52 mm). It is to be noticed that the eq. (2) for spherical drops give a better
prediction with fth=56 Hz, presumably because this small drop is closer to a sphere
than to a puddle (see Fig. 13-Top).

- for the n=4 stars (Fig. 13-Bottom), the measured frequency is 31 Hz, which is in
good agreement with the frequency predicted from eq. (4) is fth=30.3 Hz (the drop
radius is measured equal to 4.95 mm).
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Fig. 15. Vibrations of a liquid marble, a drop coated by hydrophobic powder, sitting on an
air cushion. Top - Axisymmetric waves propagating inwards (n=1). Bottom - Examples of
a faceted liquid marble (n=4).

This quite satisfactory agreements are encouraging for more systematic measure-
ments of the selected frequency for different flow-rate Q, which should give the rela-
tionship between Q and the frequency of the vertical oscillation of the drop, equal to
twice the measured frequency of the stars according to the mechanism of parametric
instability presented in Section 2.1.

3.3.3 Levitation and faceting of liquid marbles

Due to the short lifetime of the current available hydrophobic coating, we carried out
experiments by coating the drop itself with hydrophobic particles. Using such coated
drops efficiently prevents any liquid/substrate contact, as the particles self-assemble
at the liquid surface and constitute a robust ”skin”. These drops have been denoted
as ”liquid marbles” in the literature and have first been studied by Aussillous and
Quéré [38]. Later on, several authors have attempted to measure their effective surface
tension through their dynamical properties [39,40].

Figure 15 shows two examples of dynamical modes generated by vertical oscil-
lations. The mode n=1 (on top of the figure) seems to be much more stable than
for usual levitating liquid drops, and could be observed during several seconds. This
mode consists of surface waves propagating inwards, without azimuthal corrugation.
Despite the vertical oscillations and the time-periodic fluctuations of the radius, the
drop stays symmetrical as the amplitude of the vertical vibrations are too weak to
induce parametric forcing. The unusual stability of the mode n=1 could be explained
by the additional dissipation due to the presence of particles on the drop interface. It
is important to note that the eigen frequency of this mode n=1 cannot be predicted
by eqs. (2) and (4).

Besides, we observed more usual modes with n=3, 4 or 5 (bottom of Fig. 15).
From our experimental observations, it turns out that the mode selection is not very
regular: the number of lobes fluctuates over time, as the occurrence of a selected
mode generally lasts no longer than a few periods. This chaotic behavior could not
be tamed, and it is presumably due to the uneven shape of the interface of the coated
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drop. Nevertheless, this is encouraging for future experiments because it was possible
to obtain star drops with much larger puddles than for simple water drops, and also
to evidence that the transition from a mode n=1 to modes with several lobes occurs
above a certain threshold in air flow-rate.

3.4 The underlying mechanism of oscillations?

The fact that stars drops also appear when levitated by an air cushion suggests that
the thermal effects present for Leidenfrost drops are not crucial for the star formation.
We therefore look for a hydrodynamic mechanism that generates the oscillations.
In principle, one would need to solve the stability of the air flow below the drop,
coupled to the flow inside the drop. It is not possible to conjecture a priori whether
or not the inner flow of the drop is involved in the instability process. The theoretical
study conducted in [20] showed that no oscillations can appear from a purely visco-
capillary treatment of the air flow below the drop. Hence, one may expect inertia to
be important. Let us therefore consider the Reynolds number in the air layer, which
quantifies the relative importance of inertial and viscous forces:

Re =
U × h

ν
(6)

where ν is the kinematic viscosity of air, U is the mean radial velocity and h is the
average thickness. The radial flow is a direct consequence of the ascending air stream
below the drop. Therefore, the product U ×h can be evaluated by mass conservation,
considering that all the ascending air flowing through the porous surface in the area
below the drop is conserved in the flow leaving radially the drop.

Q
d2

D

d2

P

= πdDU(R)h(R) (7)

where dP and dD are the diameters of the porous substrate and of the drop, and
R = 1

2
dD. Knowing the global flow-rate Q, it is easy to calculate the Reynolds number

by taking U × h at the periphery of the drop (r = R). From the critical flow-rate
measurements of Fig. 14, we can plot the critical Reynolds number for the appearance
of unstable drops. Figure 16 show the results versus the dimensionless drop diameter
dD

lc
: the critical Reynolds number is not far from being constant at the transition,

with values ranging from 8 to 12.
These results suggest that the instability appears when inertia in the air flow is

significant enough. Other dimensionless numbers like the Reynolds number in the
liquid drop, or the Weber number (ratio between inertia and capillarity) do not show
such trend at the transition.

4 Conclusions - Open points and perspectives

In this short review, we presented various situations where large drops can develop
time-periodic standing waves in their azimuthal direction, giving them the shape of a
star. This instability occurs subsequently to a parametric forcing that originates from
the time-periodic fluctuations of the drop radius, generally induced by an oscillating
acceleration field. We have shown that this situation could be obtained in many
experimental set-ups, some of which have been imagined for practical purposes like
the handling of corrosive or supercooled fluids. The creation of such stars induces
inner flow which is suitable for mixing.
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Fig. 16. Critical Reynolds number vs diameter for the destabilization of the drop.

We also presented preliminary experiments that showed for the first time that
star drops can be generated above non-pulsed air cushions. In this latter case, an
instability in the air layer occurs above a threshold in Reynolds number of about
10, suggesting that an inertial mechanism takes place in the instability process. The
vibration frequency is once more compatible with Rayleigh-Lamb modes, so it will
be crucial to determine the vertical frequency of oscillations to propose a detailed
mechanism. Note that these experiments show that thermal effects (as present in the
Leidenfrost drops) are not necessary to generate the instability towards star drops.

A possible way to answer the remaining unsolved questions about the instability
process, would be to carry out levitation experiments with highly viscous liquids.
Duchemin et al. [10] mention that chimneys or brim waves are observed in a drop
of viscous molten glass, but there was no mention of stars. Experiments of levitation
were carried out with a solid plastic disk of about the same size of drops and density
comparable to water, and no vertical oscillations could be observed (see also [41].
One of the remaining question is then: are oscillations and subsequent stars only due
to the deformable character of the liquid drop2, or does the mechanism also involve
the inner flow of the drop, where the liquid is sheared by the air stream ? This last
question points out that it could be possible to observe vertical oscillations due to
the air flow instability, without necessarily inducing stars or facetted shapes (which
generation is hindered by a large viscosity). Indeed, a significant inner flow is required
to generate stars and the liquid viscosity could well damp the parametric forcing. The
large range of stability of the axisymmetric n=1 mode (i.e. vertical oscillations without
stars) noticed for the levitated liquid marbles, is a clue that goes in this sense.

Acknowledgements - It is a pleasure to thank Basile Pottier for his significant
contribution to the experiments of levitating drops. Nhung T.P. Nguyen is kindly ac-
knowledged for her support and help in the surface treatment of the porous substrate.

2 In this case, the vertical oscillations would appear in a mechanism analogous to that of
some wind musical instruments, like the clarinet, where constant air flow through a narrow
space induces vibrations of the flexible reed and produces the sound.
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