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ABSTRACT

Star-formation activity is a key property to probe the structure formation and hence characterise the large-scale structures of the
universe. This information can be deduced from the star formation rate (SFR) and the stellar mass (M⋆), both of which, but especially
the SFR, are very complex to estimate. Determining these quantities from UV, optical, or IR luminosities relies on complex modeling
and on priors on galaxy types. We propose a method based on the machine-learning algorithm Random Forest to estimate the SFR and
the M⋆ of galaxies at redshifts in the range 0.01 < z < 0.3, independent of their type. The machine-learning algorithm takes as inputs
the redshift, WISE luminosities, and WISE colours in near-IR, and is trained on spectra-extracted SFR and M⋆ from the SDSS MPA-
JHU DR8 catalogue as outputs. We show that our algorithm can accurately estimate SFR and M⋆ with scatters of σSFR = 0.38 dex
and σM⋆ = 0.16 dex for SFR and stellar mass, respectively, and that it is unbiased with respect to redshift or galaxy type. The full-sky
coverage of the WISE satellite allows us to characterise the star-formation activity of all galaxies outside the Galactic mask with
spectroscopic redshifts in the range 0.01 < z < 0.3. The method can also be applied to photometric-redshift catalogues, with best
scatters of σSFR = 0.42 dex and σM⋆ = 0.24 dex obtained in the redshift range 0.1 < z < 0.3.
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1. Introduction

The galaxy types and their relations to the environment are key
features of the study and characterisation of large-scale struc-
tures (LSS) in the context of future large surveys of galaxies
such as the Large Synoptic Survey Telescope (LSST)1, the Dark
Energy Survey (DES)2 or Euclid3.

In the standard understanding of galaxy evolution, star-
forming galaxies (usually blue and spiral ones) align along a
main sequence in diagrams showing their star formation rates
(SFR) versus their stellar mass (M⋆) (blue dots in Fig. 1). This
sequence has been fitted for low-redshift galaxies (up to z ∼ 0.3)
by Brinchmann et al. (2004) using the Sloan Digital Sky Sur-
vey (SDSS, York et al. 2000) galaxies (Elbaz et al. 2007):

SFRSDSS

[

M⊙ yr−1
]

= 8.7 ×
[

M⋆/1011 M⊙
]0.77
.

Galaxies leave the main sequence when they stop form-
ing stars (quenching), that is, when they loose their cold gas.
This can be due to different processes that are not yet fully
understood: harassment (e.g. Moore et al. 1996), strangulation
(e.g. Peng et al. 2015), that is, when they enter a region with
denser and hotter gas (e.g. galaxy clusters or inner parts of cos-
mic filaments), or ejection of the gas through AGN jets (e.g.
Dubois et al. 2013). In all cases, galaxies stop forming stars
and undergo a transitioning stage, the so-called green-valley
(Alatalo et al. 2014), and finally become passive (or red and
dead) galaxies (red dots in Fig. 1). In this general picture, the
activity of a galaxy is usually defined in terms of its SFR or of
its stellar mass.

1 https://www.lsst.org
2 https://www.darkenergysurvey.org
3 https://www.euclid-ec.org

Estimating the quantities SFR and M⋆ is complex (see
Kennicutt & Evans 2012 for a review); they are directly or indi-
rectly related to the observations of stars. We briefly review
here the dependence of the star properties on wavelength across
the electromagnetic spectrum. The young and massive O- and
B-type stars are the hottest and thus the most energetic stars.
Their blackbody spectra peak in the blue wavelength and they
strongly emit in the UV. The UV luminosity of distant galax-
ies traces these types of stars that in turn directly relate to the
SFR, as they represent the youngest stellar populations. How-
ever, at these wavelengths the dust absorption is very important
and correcting the UV luminosities from the dust attenuation
is not trivial (Lagache et al. 2005; Kennicutt & Evans 2012).
Multi-wavelength tracers or dust attenuation estimations in the
UV/optical (Calzetti et al. 1994; Kennicutt 1998; Salim et al.
2007; Kennicutt & Evans 2012; Janowiecki et al. 2017) are
therefore needed to correct UV luminosities and use them as a
direct tracer to derive estimations of SFR.

The non-ionizing low-mass old stars represent most of the
contribution to the galaxy luminosities in the optical. As they
are the most numerous in a galaxy, the optical luminosity is also
directly related to the number of stars, and thus to the stellar
mass, provided that there exists a theoretical model of star popu-
lation and an initial mass function (IMF; e.g. Bruzual & Charlot
2003). The estimation of stellar masses strongly depends on
the assumed IMF. For example, a typical correcting/calibration
factor of ∼1.6 is needed to change from a stellar mass with a
Salpeter IMF (Salpeter 1955) to a stellar mass with a Chabrier
(Chabrier 2003) IMF (Haas & Anders 2010).

In the near-IR (NIR; ∼0.8 µm < λ < ∼3 µm), the old and
non-massive stars also represent most of the contribution to
the total luminosity. These wavelengths can therefore also trace
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Fig. 1. SFR vs. M⋆ diagram. The contours represent the 1σ to 5σ
isodensities of all the SDSS MPA-JHU DR8 values from the training
sample. The dots are 100 random galaxies taken in the catalogue. The
purple solid line is the main sequence of star forming galaxies given
by Elbaz et al. (2007). The colours of the galaxies are a function of the
distance to the main sequence, d2ms, and are directly representative of
the passivity of the galaxies.

the stellar mass through the old population, in the same way
as optical measurements do (Wen et al. 2013). In the mid-IR
(MIR; ∼3 µm < λ < ∼70 µm), the contribution of dust becomes
predominant. Particularly in the 8–12 µm band, the contribu-
tion of heated small grains and polycyclic aromatic hydrocar-
bon (PAH, Leger & Puget 1984) offers a useful tool to study
the composition and the abundance of dust. From ∼20 µm to
∼70 µm, the luminosity is mostly due to thermalised dust and
large grains heated by the UV emission of the energetic young
O- and B-types stars. The luminosity in the IR is thus indi-
rectly related to the SFR and this was performed using, for
example, the 8 µm and the 24 µm bands from the Spitzer satel-
lite (Werner et al. 2004) or the 12 µm and the 22 µm from the
Wide-Field Infrared Survey Explorer (WISE, Wright et al. 2010)
satellite (Calzetti et al. 2007; Kennicutt et al. 2009; Jarrett et al.
2013; Cluver et al. 2014, 2017).

All of these relations are well calibrated, but applying them
to galaxies without having any prior on their types can lead to
potential biases, as passive galaxies do not have the same prop-
erties in the IR (see Sect. 4). Ideally, optical spectroscopic data
are needed to estimate the SFR and M⋆ properties, but they are
not always available and are costly in terms of observing time.
This is even more prohibitive when the goal is to characterise the
galaxy properties in large surveys.

In this study, we propose an alternative approach to esti-
mate SFR and M⋆ for all galaxies over 70% of the sky (i.e.
outside the Galactic plane) with measured redshifts in the range
0 < z < 0.3 (the redshift limit of the training catalogue),
without any priors on galaxy types. To do so, we use a machine-
learning algorithm. As a matter of fact and for several years
already, machine-learning algorithms have been developed
and have now become reliable tools to classify or estimate
physical properties of astrophysical objects (Aghanim et al.
2015; Huertas-Company et al. 2015; Bilicki et al. 2014, 2016;
Krakowski et al. 2016; Lucie-Smith et al. 2018; Pashchenko et al.
2018; Domínguez Sánchez et al. 2018; Tuccillo et al. 2018;
Ucci et al. 2018; Viquar et al. 2018; Delli Veneri et al. 2018;
Siudek et al. 2018a,b). The development of the scikit-learn
library (Pedregosa et al. 2011) in Python has made them

relatively easy to use. It has allowed “pythoneer” astrophysicists
to develop and test their own machine-learning algorithms on
their data.

In the machine learning domain, algorithms are designed
either to estimate or classify features based on reference sam-
ples, or to identify commonalities on the input features with-
out resorting to any models. These two families of algorithms of
machine learning are called supervised and unsupervised algo-
rithms, respectively. The first include algorithms such as Multi-
Layer Perceptron, Random Forests, Support Vector Machine,
Deep learning, and so on. The second include clustering meth-
ods such as k-mean algorithms (see the scikit-learnwebsite4

for more details about the algorithms). In our analysis, we use a
supervised machine-learning algorithm. Such a method is able to
estimate very non-linear laws based on models trained on reli-
able given inputs and outputs. In the present case, it allows us
to estimate SFR and M⋆ independently of any complex model
or any priors on galaxy types. The quality and pertinence of
the results of a supervised machine-learning algorithm depend
greatly on the training set and how it captures the features that
will be classified.

In Sect. 2, we therefore present the data used to generate
the trained model and train the machine learning algorithm. In
Sect. 3, we present an analysis of the Random Forest algorithm,
and the results. We discuss the results and the limitations of the
method in Sect. 4, and also present an example and an illustra-
tion of the method. Finally, we briefly summarise the method in
Sect. 5.

We use the Planck 2015 cosmological parameters through-
out this paper (Planck Collaboration XIII 2016) with H0 =

67.74 km Mpc−1 s−1, ΩM0 = 0.3075 and Ωb0 = 0.0486. Also,
all luminosities noted as Lν in different wavelengths refer to the
luminosity density in this wavelength νLν.

2. Data

In this section, we present the data used to construct the training
catalogue of the machine-learning algorithm.

2.1. WISE

The WISE satellite surveyed the whole sky in four near- and
mid-infrared wavelengths (3.4, 4.6, 12 and 22 µm). From the
coadded WISE Atlas Images (at angular resolutions respectively
of 6.1, 6.4, 6.5 and 12 arcsec), the AllWISE Source Catalogue5

was generated with accurate positions, photometry, and ancil-
lary information for 747 634 026 detected sources (Cutri et al.
2013). For our study, we use the profile-fitted photometry mea-
surements of the W1 (3.4 µm), W2 (4.6 µm), and W3 (12 µm)
bands, noted w1mpro, w2mpro, and w3mpro in the AllWISE
Source Catalogue. The associated errors and signal-to-noise
ratios (S/Ns) of magnitude measurements are noted w1sigmpro,
w2sigmpro, w3sigmpro, and w1snr, w2snr, w3snr, respectively.
We reject the sources with known detection or measurement
artifacts by taking cc_flags= 0 for each of the three bands.
We also select the sources with high-quality photometry mea-
surements. The WISE magnitudes being upper-values below
w*snr< 2 (Krakowski et al. 2016), where * can be 1, 2, or 3,
we proceed in the same way as Krakowski et al. (2016) and
select only sources with reliable magnitudes in W1 and W2:

4 http://scikit-learn.org/
5 Available at http://wise2.ipac.caltech.edu/docs/release/
allwise/expsup/sec1_3.html#src_cat
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Fig. 2. SFR and M⋆ provided in the SDSS catalogue. Each contour
represents a galaxy population as defined by their position on the BPT
diagram. Red contours represent passive galaxies, blue contours star-
forming galaxies, green contours the galaxies from the green valley,
and purple contours the AGNs.

w1snr< 2, w2snr< 2. Around one third of the selected sources
have w3snr< 2. In this case, the w3mpro upper-value mag-
nitudes can be considered as a typical bias, and a correction
of +0.75 can be applied to the values to correct for this bias
(Fig. A.1 in Krakowski et al. 2016). We also apply a 0th-order
k-correction (dependence on redshift) by adding the quantity
−2.5×log (1 + z) to the measured magnitudes in each of the three
bands, where we take the spectroscopic redshift z from the SDSS
catalogue (see the cross-match procedure between the two cata-
logues in Sect. 3.3).

2.2. SDSS

The SDSS is one of the largest optical surveys available. It
has produced deep images of one third of the sky in five
optical bands: u, g, r, i, and z, and has performed spectro-
scopic measurements for more than three million astronomical
objects. From these data, several value-added catalogues were
generated, which provide a wealth of information about the
objects thanks to the study of a large panel of spectral emis-
sion lines. We use here the MPA–JHU DR8 catalogue, from the
Max Planck Institute for Astrophysics and the Johns Hopkins
University (Kauffmann et al. 2003; Brinchmann et al. 2004). It
provides SFR and stellar masses for 1 843 200 galaxies with red-
shifts up to z ∼ 0.3 (Fig. 2). These data based on the SDSS DR8
release are publicly available6 together with all details about the
catalogue and the computations and fits of the galaxy physical
properties.

The SFR (flagged as SFR_TOT_P50) are estimated using
the Hα emission lines (when available) corrected from the dust
extinction with the Balmer decrement Hα/Hβ (Brinchmann et al.
2004). For no-emission line galaxies, SFRs are estimated using
a relation between the SFR and the spectral index D4000 (Bruzual
1983; Balogh et al. 1999; Brinchmann et al. 2004). The M⋆
(flagged as LGM_TOT_P50) are computed based on theoreti-
cal models of stellar populations (Kauffmann et al. 2003), and
assuming a Kroupa IMF (Kroupa 2001).

The SDSS MPA-JHU DR8 catalogue provides BPT classes
(flagged as BPTCLASS), which depend on the position of

6 http://sdss3.org/dr8/

the galaxies in the Baldwin, Phillips, & Terlevich (BPT) dia-
gram (Baldwin et al. 1981). This diagram can segregate a
population of galaxies by comparing the emission-line ratios
[OIII] /Hβ and [NII] /Hα (see Fig. 2). In the classification
provided by the MPA-JHU catalogue, BPTCLASS= 1 cor-
responds to star-forming galaxies, BPTCLASS= 2 to com-
posite galaxies (transitioning), BPTCLASS= 3 to AGNs, and
BPTCLASS= 4 and BPTCLASS= 5 to low-S/N emission line
galaxies (Brinchmann et al. 2004). The class BPTCLASS=−1
corresponds to galaxies unclassifiable in the BPT diagram: pas-
sive galaxies without emission lines (Brinchmann et al. 2004).

From the SDSS catalogue, we generate a purer catalogue
by selecting objects with only reliable properties. To do so
we set the following flags: RELIABLE, 0, Z_WARNING= 0,
SFR_TOT_P50,−9999, LGM_TOT_P50,−9999, and Z> 0.
This pure catalogue contains 794 633 galaxies.

3. The machine-learning algorithm

3.1. Principle and advantages

Increasingly used in astrophysics and cosmology, machine-
learning algorithms have become very powerful tools to detect,
classify, or characterise astrophysical sources (e.g. as a very non-
exhaustive list: Aghanim et al. 2015; Bilicki et al. 2014, 2016;
Krakowski et al. 2016 and references therein). One of the main
advantages of this technique is that a model is not needed (usu-
ally complex or empirical) to perform regression on a set of data.
Here only a set of input data and output data are needed; and the
machine learns the relation (which can be very non-linear and
complex) between the input and output data. Different kinds of
machine-learning algorithms have been developed and are eas-
ily usable (e.g. see the scikit-learn website7). For this study,
we choose to use the Random Forest (RF) algorithm (Ho 1995)
which is among the simplest, fastest to run, and easiest to under-
stand among the many machine-learning methods (see Sect. 3.4),
and scikit-learn v.0.19.1.

The usual way to estimate the efficiency of the algorithm (its
ability to perform a regression) when applied to a training sample
(i.e. the inputs and outputs data set) is to split this training sam-
ple into several subsamples, and train and test the algorithm on
these different samples. One can then train the machine-learning
algorithm on a subsample (50% of the whole sample) and apply
it to the other subsample (the other 50%). Knowing the refer-
ence values of the last subsample and having their estimation by
the machine-learning algorithm, the errors and the bias can be
estimated by comparing the two.

3.2. The choice of inputs and outputs

Ensuring good, that is, unbiased, training of the algorithm, the
choice of reference inputs and the outputs is essential. This can
be overridden by other algorithms, in particular deep-learning
algorithms. In this study, the choice of using the WISE data is
motivated by its full-sky coverage and its very large number of
sources.

First of all, we have to define our inputs, that is, the data that
will be used to estimate the SFRs and the stellar masses at the
end. As the SFR can evolve with redshift, we choose to use z as
an input. As a proxy for the stellar mass, we use the luminosity
in the W1 band (3.4 µm) of WISE that traces the old non-
ionizing stars (Wen et al. 2013; Jarrett et al. 2013). As a proxy

7 http://scikit-learn.org/
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for the SFR, we use the luminosity in the W3 band (12 µm)
of WISE, which traces the emission from small grains and is
directly related to the total quantity of dust (Jarrett et al. 2013;
Cluver et al. 2014, 2017). Although the W4 band of WISE is
also a good tracer of the SFR (Jarrett et al. 2013; Cluver et al.
2014, 2017), its larger beam size of 12′′ and its poorer sensitiv-
ity could lead to an important incompleteness and a significant
bias of source selection with respect to redshift. We therefore
decided not to use it. As we want to estimate the SFR and the
stellar mass for both galaxy types (active and passive) without
any prior, we also chose as input the two colours of WISE that
can segregate the galaxy types: W1–W2 (3.4−4.6 µm) and W2–
W3 (4.6−12 µm) (Wright et al. 2010).

We then needed to choose what outputs would be used as
reliable reference for SFR and M⋆. We chose to use the SFRs and
stellar masses from the SDSS MPA-JHU DR8 catalogue, since
their values are based on calibrated spectra (Brinchmann et al.
2004). These latter authors estimated SFR for different types
of galaxies using the metal lines as tracers (the Hα recombi-
nation line for most of galaxies, corrected from the dust atten-
uation with the Balmer decrement Hα/Hβ), and the relation
with the spectral index D4000 (Bruzual 1983; Balogh et al. 1999)
for no-emission-lines galaxies. To estimate the stellar mass,
Brinchmann et al. (2004) used theoretical models of star pop-
ulations fitted with Monte Carlo (Kauffmann et al. 2003) based
on models from Bruzual & Charlot (2003), and a Kroupa IMF
(Kroupa 2001).

3.3. Constructing the training catalogue

We construct the training set by performing a positional cross-
match of the SDSS subsample of 794 633 galaxies described in
Sect. 2 with the AllWISE Sources Catalogue within a radius of
6′′ (the beam of the W1 band of WISE from which the source
positions are extracted). In order to ensure a pure catalogue,
we remove all cross-match cases with multiple associations and
end up with 603 293 galaxies. After removing sources with bad
WISE magnitude measurements (only ∼5% of the total sources)
as explained in Sect. 2, we finally end up with a reliable cata-
logue of 573 582 galaxies. For all these galaxies, we have access
to measured or estimated redshifts, WISE w*mpro magnitudes,
SFRs, and M⋆. This is the basis of our input and output data
(see previous section). We show in Fig. 6 the range of LW1,
LW3, W1–W2 and W2–W3 (i.e. the inputs data) on the training
catalogue.

3.4. The Random Forest algorithm

The RF algorithm used in the present study is based on decision
tree learning. It uses a decision tree that splits the training set
optimally by reducing the Gini impurity8. The principle is to
define if-else rules on the input features, in order to finally
obtain the best and purest representation of the sets at each
splitting, according to the outputs (see the documentation in the
scikit-learn website9).

The RF algorithm uses the mean estimator of a sample of
decision trees learned by bootstrapping the training set. For a
training set of n samples, with X = x1, . . . , xn and Y = y1, . . . , yn,
the inputs and the outputs of the machine learning, respectively,

8 Detailed here: https://scikit-learn.org/stable/modules/
tree.html#classification-criteria
9 http://scikit-learn.org/

Fig. 3. Percentage score of the RF results on the validation sample as a
function of the RF parameters M and dmax (M being the number of trees
and dmax the maximum depth). Setting M = 40 and dmax = 12 is enough
in our case to optimise the RF.

the estimator for an untrained value x′ is computed as

ỹ
(

x′
)

=
1

M

M
∑

m=1

ỹm

(

x′
)

, (1)

where M is the number of decision trees, and ỹm is the estimator
for x′ of the decision tree m trained on a random sample with
replacement of n elements in the sample of couples (X,Y).

To optimise the results, some of the parameters have to be
fixed, such as the number of trees M or the maximum depth
of the tree (i.e. the maximum number of splitting) dmax. These
parameters can be set by splitting the training set into several
subsample sets, and by training and computing the score of the
algorithm on these independent subsample sets. The best opti-
mised parameters can be set when the score on independent sub-
sample tests is the highest.

3.5. Optimisation

To set the optimal number of trees M and the maximum depth
dmax, and further estimate the errors on the RF, we proceed
in splitting the training set into subsamples (see Sect. 3.1).
Following standard procedures, we split our sample into three
randomised subsamples: 60% as the training set, 20% as the val-
idation set, and 20% as the test set (we further check that chang-
ing the sizes of the subsamples does not affect the results of the
algorithm). We train the RF on the training set, varying M and
dmax. We compute the score of the RF on the validation set using
the coefficient of determination 100×R2, where R2 = 1−σ2

res/σ
2,

σ2
res =

∑n
i=0 (ỹ(xi) − yi)

2, which is the residual sum of squares,

and σ2 =
∑n

i=0 (yi − ȳ)
2, the variance of the output distribution.

We then set the two optimised parameters to the ones that give
the highest scores on the validation set. Figure 3 shows the score
of the RF on the validation set, depending on the two parame-
ters M and dmax. For the parameter dmax, the performance of the
RF increases until dmax = 12 and starts decreasing beyond. For
the parameter M, a simple lower limit is enough to optimise the
parameter, as increasing the value of M to higher values does not
give better results. Here, setting M = 40 and dmax = 12 is suf-
ficient to optimise the algorithm, for an optimal score of 84.5%
on the validation set.
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Fig. 4. Results of the RF on the test sample (20% of the entire sample), with optimisation parameters set to M = 40 and dmax = 12. Left panel: M⋆
estimate with the RF compared to M⋆ from the SDSS MPA-JHU DR8 catalogue. Right panel: SFR estimate with the RF compared to SFR from
the SDSS MPA-JHU DR8 catalogue.

Fig. 5. Errors of the RF results obtained for the test sample (same errors as those presented in Fig. 4) as a function of redshift for M⋆ and SFR.

3.6. Results and errors

We train the RF on the training set, with the two parameters
fixed at M = 40 and dmax = 12, and we estimate SFR and M⋆
with the RF on the test set (SFRML and M⋆ML). We then com-
pare these results with their reference values, defined as those
of the SDSS catalogue. We can hence estimate the performance
of the machine-learning algorithm in terms of errors and biases.
Figure 4 shows the comparison on the test set: we directly see an
overall good agreement between the SDSS reference values and
the values estimated with the RF algorithm, both for SFR and for
M⋆. This agreement shows that the RF algorithm is reasonably
well trained.

For the stellar mass values estimated from the RF algorithm
(Fig. 4 left panel), the scatter between the estimated and ref-
erence SDSS values is quantified through the variance: σ2

M⋆
=

0.026. The associated standard deviation of σM⋆ = 0.16 dex
which translates into an error of a factor 10σM⋆ = 1.45 with
respect to the reference value. For the SFR (Fig. 4 right panel),
the scatter is larger and the variance is σ2

SFR
= 0.145. This gives

a standard deviation of σSFR = 0.38 dex, and an error of a factor
10σSFR = 2.40.

3.7. Chasing the biases

It is important to have precise results, with error bars estimated
from the RF for both SFR and the M⋆ values and it is of equal
importance to have accurate, that is, unbiased, results.

We first investigate potential biases induced by the redshift
dependence of the SFR and stellar mass in the redshift range,
0 < z < 0.3, of the training catalogue used in our study. We
display in Fig. 5 the errors (defined as the difference between
machine-learning estimated values and SDSS values), for M⋆
(left panel) and SFR (right panel) for the galaxies of the test
set. No obvious bias on redshift is observed. In the left panel of
Fig. 5 we notice a slight increase of the scatter for M⋆ at very
low redshifts. This is discussed in Sect. 4.2.

Another type of bias can be induced by the galaxy types. As
we want a scatter of the same order for both passive and active
galaxies, we compare the results of the RF algorithm as a func-
tion of the BPT classes provided in the SDSS MPA-JHU cata-
logue. To check that the BPT class is a reliable indicator of the
galaxy type, we show in Fig. 2 the main sequence diagram of
galaxies (SFR vs. M⋆ as provided in the SDSS catalogue) with
their BPT classes from the SDSS catalogue. We see that the red
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Fig. 6. Histograms showing the range of the input data (luminosities and colours) for the sources of the training catalogue.

Fig. 7. SFR and M⋆ obtained with the RF algorithm on the test set compared to the SDSS classification based on the BPT diagram. Colour code
of the contours is the same as in Fig. 2.

contours of passive galaxies, BPT=−1, are well in the cloud of
red and dead galaxies, the blue contours of star-forming galaxies,
BPT= 1, are well along the main sequence, and the transitioning
galaxies, BPT= 2, are well in the green valley. The positions in
the BPT diagram can therefore be taken as a reliable indicator
of galaxy type. In Fig. 7, we show the results of the RF (same
as those displayed in Fig. 4), with the contour colours displaying
the different BPT classes. The RF performs equally well for any
type of galaxy and we do not observe any strong bias induced
by galaxy type. Moreover, the scatter of the results depends only
very slightly on galaxy type. For passive galaxies, BPT=−1, the
scatter on M⋆ tends to be reduced: we find σSFR = 0.38 dex
and σM⋆ = 0.11 dex. For active galaxies, BPT= 1, the inverse
trend is seen and the scatter on the SFR tends to be reduced with
a small increase of the scatter on M⋆: we find σSFR = 0.30 dex
andσM⋆ = 0.23 dex. For transitioning galaxies, BPT= 2, we find
roughly the same scatters as the overall ones on the global set
given in Sect. 3.6, with σSFR = 0.39 dex and σM⋆ = 0.13 dex. A
summary of the different scatters is shown in Table 1.

3.8. Learning from the learning

One advantage of the RF algorithm is that we can learn about
the importance of the inputs during the training. An example of

learning from the learning is to train the RF algorithm to esti-
mate either SFR alone, M⋆ alone, or both SFR and M⋆ and to
compare the importance of the features in each training (the left,
middle, and right panel in Fig. 8, respectively). From the five
input features, the first obvious tendency is the low impact of the
redshift (only on the dependence on distance, as the redshift is
also hidden in the luminosities LW1 and LW3) and of the colour
W1–W2 on the training, whatever the outputs. For the estimation
of M⋆ alone, it is clear that the luminosity LW1, as expected, is
the main feature used to train the RF, with a very slight contribu-
tion from the colour W2–W3. For the SFR estimation alone, two
main features are used to train the RF, as expected: the lumi-
nosity LW3 and the colour W2–W3 used to segregate the two
main populations of galaxies. The case where we train the RF to
estimate both SFR and M⋆ shows that the two main features are
the luminosity LW1 and the colour W2–W3, with a slight con-
tribution (of approx. 5%) of the luminosity LW3. This indicates
that the two quantities LW1 and W2–W3 are the most efficient to
classify and segregate galaxy populations (see also Fig. 9 where
the two population of galaxies, i.e. red and blue, are very well
separated.).

The estimated SFR and stellar mass from RF method rely on
the redshift information. Redshifts are used to compute the lumi-
nosities and they impact the evolution of the mean global SFR
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Table 1. Summary of the different scatters obtained on the same test set with different methods.

ML with z ML without z Analytical

All Passive (BPT=−1) Active (BPT= 1) Green (BPT= 2) All All

σM⋆ 0.16 0.11 0.23 0.13 0.32 0.23
σSFR 0.38 0.38 0.30 0.39 0.43 0.47 (active only)

Fig. 8. Feature importance during the RF training. Left panel: RF trained to perform M⋆ estimates only. Middle panel: RF trained to perform SFR
estimates only. Right panel: RF trained to estimate both SFR and M⋆.

Fig. 9. 1σ and 3σ iso-densities of the test set in the WISE colour-
luminosity W2–W3/LW1 diagram. The line styles are the same as in
Fig. 2.

over time. The need for redshifts to compute the M⋆ and the SFR
is very restrictive, as spectroscopic redshifts are hard to obtain
and photometric ones are not always precise. We have tested the
performance of the RF method without any redshift information.
This implies that we do not perform any k-correction on the mag-
nitudes and we do not compute the luminosities. The inputs are
thus only the two magnitudes W1 and W3 and the two colours
W1–W2 and W2–W3. In Fig. 10, we show the results on the
test set. We find a scatter of σM⋆ = 0.32 dex for the M⋆ and a
scatter of σSFR = 0.43 dex for the SFR estimation (compared
to σM⋆ = 0.16 dex and σSFR = 0.38 dex with the information
about the redshift; see also Table 1). The accuracy of the method
is highly degraded and we then keep the redshift in our prior
inputs.

3.9. Applying to photometric redshift catalogues

The machine-learning algorithm is trained on a spectroscopic-
redshift catalogue and can be applied to high-accuracy

photometric-redshift catalogues. In order to test this, we add an
error σz(1 + z), illustrative of errors from photometric redshifts,
to the redshifts of the test sample. We then estimate the two prop-
erties, SFR and M⋆. In Fig. 11, we show in blue the evolution of
the scatter of SFR and M⋆ estimates as a function of σz(1 + z).
We see a large increase of the scatter for both properties with
decreasing redshift accuracy. This trend has two origins. On the
one hand, the increase in redshift errors obviously impacts the
SFR and M⋆ estimates. On the other hand, an additional bias
increases the errors on the estimates SFR and M⋆. This is illus-
trated in the left panel of Fig. 12 showing the error on SFR for
σz(1 + z) = 0.015. This bias can be corrected for. We have mod-
elled it with a simple exponential a × exp−z/z0 and show its
evolution in Fig. 13. In Fig. 11, we show in orange the scatter
on the bias-corrected properties. The scatters are significantly
reduced, but still of σM⋆ = 0.35 dex and σSFR = 0.44 dex at
σz(1+z) = 0.03. If we focus on the SFR and M⋆ estimates in the
range 0.1 < z < 0.3, the scatters (shown in green) are reduced
down to more reasonable values such as σM⋆ = 0.24 dex and
σSFR = 0.42 dex at σz(1 + z) = 0.03 (the accuracy expected
for the photometric-redshift catalogue of Euclid). In this way,
one could apply the present approach to the whole sky based on
present or future photometric-redshift catalogues like WISExS-
COS, DES, LSST, Pan-Starrs, or Euclid.

4. Discussion

4.1. Comparison

Determination of SFR and M⋆ is an active topic, and other stud-
ies have provided analytical formulae, some of them also based
on the WISE luminosities (e.g. Wen et al. 2013; Jarrett et al.
2013; Cluver et al. 2014, 2017). We compare the estimates of
SFR and M⋆ derived from the RF algorithm with those com-
puted using different approaches but based on the same observ-
ables (WISE luminosities: LW1 and LW3). We focus on the
M⋆ estimates with the relation from Wen et al. (2013), using
LW1:

log (M⋆Wen) = 1.12 × log (LW1) − 0.04, (2)
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Fig. 10. Results of the RF on the test sample (20% of the entire sample), with only W1, W3, W1–W2 and W2–W3 in input and without information
about the redshift. Left panel: M⋆ estimate with the RF compared with M⋆ from the SDSS MPA-JHU DR8 catalogue. Right panel: SFR estimate
with the RF compared with SFR from the SDSS MPA-JHU DR8 catalogue.

Fig. 11. Evolution of the scatters of the estimated properties with the RF as a function of the redshift error. Left panel: scatter for M⋆ estimation.
Right panel: scatter for SFR estimation. The blue lines correspond to the scatters corresponding to the whole sample, regardless of the induced
bias. The orange lines correspond to the scatters of bias-corrected properties following the laws in Fig. 13. The green lines correspond to the
scatters in the redshift range 0.1 < z < 0.3.

Fig. 12. Example of bias induced by the redshift error. Left panel: for σz(1 + z) = 0.015 we show the errors on the SFR estimated values as a
function of redshift. The blue line corresponds to the modeled bias. Right panel: same errors as in the left panel but corrected for bias.
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Fig. 13. Evolution of the bias seen as a function of redshift, for different redshift errors (indicated by the colours). Left panel: bias to correct for
M⋆ estimations. Right panel: bias to correct for SFR estimations.

Fig. 14. Comparisons on the test set. Left panel: M⋆ computed with the method of Wen et al. (2013), using the luminosity in W1, compared with
the SDSS masses. The contours show the 1, 3, and 5σ isodensities of the RF results (Fig. 4). Right panel: SFR computed only for star-forming
galaxies with the method of Cluver et al. (2014), using the luminosity in W3, compared to SFR from the SDSS catalogue. The blue contours
represent the results of the RF for the same population (blue contours in Fig. 7), and the red contours represent the SFR estimation for passive
galaxies computed with Cluver’s formula. In both panels, the dashed line represents the one-to-one correlation.

and on the SFR estimates from Cluver et al. (2014) using LW3,
for star-forming galaxies:

log (SFRCluver) = 1.13 × log (LW3) − 10.24. (3)

We compute M⋆ with Eq. (2) for all galaxies and compare
with the masses reported in the SDSS MPA-JHU catalogue (left
panel of Fig. 14). We also show the 1, 3, and 5σ contours of
the RF estimates for the same galaxies. This comparison shows
the smaller scatter of the masses estimated with the RF algo-
rithm, which is not surprising considering that we have five
inputs compared to only one. For these specific sources, we find
σM⋆Wen

= 0.23 dex and σM⋆ML
= 0.16 dex (see Table 1).

The SFR values are computed only for star-forming galax-
ies (BPT= 1, to satisfy the conditions of Cluver et al. 2014) fol-
lowing Eq. (3) and are compared with the SFR in the SDSS
MPA-JHU catalogue (right panel of Fig. 14). The blue contours
represent the results of the RF for the same population (blue con-
tours in Fig. 7), and the red contours represent the SFR estimates
for passive galaxies (BPT=−1) computed with the Cluver et al.
(2014) formula (Eq. (3)). We find a smaller scatter for the SFR
estimations from RF; this is again expected since we use five

inputs compared to one. We also show the limitation of the appli-
cation domain of a linear relation between a luminosity and an
SFR, in terms of its dependence on galaxy type (huge bias of
the red contours). We find σSFRCluver

= 0.47 dex and σSFRML
=

0.30 dex for active galaxies (see Table 1), while for passive
galaxies we have σSFRCluver

= 0.49 dex and σSFRML
= 0.38 dex

and a bias (defined as the absolute difference of the means) of
bCluver = 0.93 dex compared with bML = 0.04 dex.

As a second comparison, we use a catalogue of galaxies
with estimated SFRs calculated using an alternative method.
An example is the extended version of the COLD GASS
(CO Legacy Database for GASS) catalogue of nearby galax-
ies, xCOLD GASS10 (Saintonge et al. 2017). The sample con-
tains 532 galaxies from SDSS selected in mass (M⋆ >
109 M⊙) that span a large range of SFR values and galaxy
types, with IRAM-30m CO(1–0) observations, and as they say,
“because the COLD GASS sample is large and unbiased, it
serves as the perfect reference for studies of particular galaxy

10 Publicly avaible at http://www.star.ucl.ac.uk/xCOLDGASS/
index.html
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Fig. 15. Comparison with the xCOLDGAS catalogue from Saintonge et al. (2017) for the sources that match only once with the AllWISE catalogue
in a 6 arcsec radius. Left panel: M⋆ computed with the RF compared with the M⋆ provided by the catalogue (SDSS MPA-JHU values). Middle
panel: SFR computed by the RF compared with the SFR provided by xCOLDGAS, computed with combined UV and IR data. Right panel: SFR
given by the SDSS MPA-JHU DR8 catalogue compared with the SFR from xCOLDGAS, computed with combined UV and IR data.

populations”. Saintonge et al. (2017) provide ancillary informa-
tion such as the SFR and M⋆ which is computed with the method
in Janowiecki et al. (2017), using a combination of UV from the
Galaxy Evolution Explorer11 (GALEX) and IR from WISE. We
show in Fig. 15 the results of the RF compared with the values
of the xCOLDGASS catalogue (shown as S17), for the galax-
ies with only one association (no multiple source blending) with
the AllWISE catalogue within a radius of 6 arcsec. Good overall
agreement is seen, and a small bias is seen in the SFR estimation,
especially for passive galaxies. This bias is partially due to the
way SFR is estimated. Here, we take the SDSS MPA-JHU cata-
logue estimation as reference to train the model, and we compare
to their SFR computed with both IR and UV data. The relia-
bility of the values estimated with the RF is directly correlated
with the reliability of the values chosen as outputs, that is, the
SDSS MPA-JHU values. We can also see the bias between the
SDSS MPA-JHU values and the UV+IR estimation in the panel
right of Fig. 15, and show that maybe unobscured UV SFR is not
seen in WISE or in SDSS. The method could be applied to any
other value-added catalogue of galaxies chosen as outputs of the
machine-learning training, if more robust SFR or M⋆ estimators
(via multi-wavelength proxies, i.e. IR+UV) were to teach more
accurate predictions (see Fig. 15).

4.2. Limitation

The results of the RF algorithm agree well with previous works,
in particular those of Wen et al. (2013) and Cluver et al. (2014).
The domain of application of all three studies in terms of galax-
ies and more precisely in terms of redshifts is similar (mean
redshift at around z = 0.15). Comparison with other available
catalogues providing SFR and M⋆ cannot be possible when the
sources under consideration are too different from the domain of
application of the RF algorithm, that is, its learned model. We
focus on two extreme cases of domains of application where the
machine learning cannot provide reasonable estimates. On the
one hand, we consider nearby galaxies with redshifts z < 0.01
and on the other hand high-redshift galaxies, up to z = 8.

A sample of nearby (z < 0.01) star-forming galax-
ies was constructed combining a Spitzer catalogue SINGS
(Kennicutt et al. 2003) and a Herschel Space Observatory
catalogue KINGFISH (Kennicutt et al. 2011). This
SINGS/KINGFISH catalogue of 79 sources was used by
Cluver et al. (2017) to successfully fit the relation between SFR
and LW3. In this catalogue, the redshift domain (z < 0.01)

11 http://www.galex.caltech.edu

implies that the galaxies are resolved and therefore the use of the
WISE Atlas Images is needed to accurately measure the fluxes
of the objects (Saintonge et al. 2017; Cluver et al. 2017). The
effect of a miscomputation of the IR fluxes for very-low-redshift
resolved galaxies can be seen in Fig. 5 as a higher scatter in M⋆
estimations for very-low-redshift galaxies (z < 0.01).

An example of distant galaxies is the COSMOS2015 cat-
alogue12 (Laigle et al. 2016), which provides apparent magni-
tudes in 30 bands for approximately half a million objects up
to redshifts z = 8. It also provides photometric redshifts, SFRs,
and stellar masses all computed using the code LEPHARE13. Here
again we cannot directly apply our RF algorithm, that is, its
learned model, and compare our estimates with those of the
COSMOS catalogue. The main issue here is the resolution of
WISE of 6 arcsec; too many COSMOS sources are associated
with a WISE galaxy inside the WISE beam and therefore correct
association with the AllWISE catalogue is impossible.

Finally, as the RF algorithm has been trained on galaxies up
to z = 0.3, using it beyond this redshift limit will lead to strong
biases as the training did not include such sources. We conclude
that the application domain of the method is 0.01 < z < 0.3.

4.3. Application

As shown in statistical studies of galaxy populations in large
galaxy surveys (e.g. SDSS (York et al. 2000), VIMOS Public
Extragalactic Redshift Survey (VIPERS; Scodeggio et al. 2018),
most galaxies residing in dense environments of the cosmic web
(galaxy clusters or inner parts of cosmic filaments) are passive
and red and dead (Malavasi et al. 2017a,b; Kraljic et al. 2018).
The information about the activity of galaxies is indeed used to
detect galaxy clusters using their red sequence, originally exhib-
ited by Gladders & Yee (2000; e.g. Rykoff et al. 2014 who devel-
oped the RedMapper algorithm).

Similarly to estimating the activity of galaxies by comput-
ing specific SFR (which illustrates the efficiency of a galaxy in
forming stars), the distance to the main sequence on an SFR vs.
M⋆ plot (translated into the colours on the Fig. 1) informs us
about the activity of a galaxy. Since this distance, called d2ms, is
directly related to how far galaxies are from being star-forming,
we prefer to introduce the term passivity rather than activity. The
more red the point, the more distant from the main sequence of
star-forming galaxies and the more passive the galaxies are. This

12 http://cosmos.astro.caltech.edu
13 http://www.cfht.hawaii.edu/~arnouts/LEPHARE/lephare.

html
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Fig. 16. Example of application of our method for galaxy populations in a 10◦ × 10◦ field centred on the Coma cluster at z = 0.0231. We have
estimated SFR and M⋆ on 2MPZ union WISExSCOS galaxies with 0.01 < z < 0.05. Based on the “passivity” cut (d2ms parameter) to segregate
population, we select blue, green, and red galaxies corresponding to d2ms> 0.4, 0.4> d2ms> 1.25, and d2ms> 1.25, respectively. The galaxies
are overlaid on the thermal Sunyaev-Zel’dovich MILCA map from Planck (Planck Collaboration XXII 2016).

quantity (quite efficiently estimated by our method) can be a very
useful property to segregate populations of star-forming, green,
or passive galaxies. We already successfully used this estimate
in Bonjean et al. (2018) to characterise the properties of galaxies
in a cosmic bridge between two galaxy clusters.

We show in Fig. 16 another simple illustration with the case
study of galaxy population in the field of the Coma cluster at z =
0.0231. As in Bonjean et al. (2018), we used the union between
the 2MPZ and the WISExSCOS catalogues of photometric red-
shifts as a basis of galaxy catalogues. Extracting a region of
15◦ around the Coma cluster, we select galaxies in the range
0.01 < z < 0.05, and separate their population by performing
cuts in the distance to the main sequence d2ms (see Fig. 1), com-
puted from the SFR and M⋆. The cuts in the d2ms correspond to
d2ms< 0.4, 0.4< d2ms< 1.25, and d2ms> 1.25 for blue, green,
and blue galaxies, respectively (defined using Fig. 1). We clearly
see the overdensity of red galaxies, as expected, clustered in
the centre of the Coma cluster, and a more uniform distribu-
tion of blue galaxies around the Coma cluster and in the field.
The galaxies are overlaid on the thermal Sunyaev-Zel’dovich
MILCA map from Planck (Planck Collaboration XXII 2016).
This illustrates well the complexity of the galaxy dynamics
inside the Coma cluster.

5. Summary

Determining star-formation activity proxies such as the SFR and
M⋆ from UV, optical, or IR luminosities relies on complex mod-
elling and on priors on galaxy properties, and does not accurately
describe the passive galaxies, which are of particular interest
in studying large-scale structures. We have developed a method
based on machine learning to estimate the SFR and M⋆ of galax-
ies, in the redshift range 0.01 < z < 0.3, over the whole usable
sky when their redshifts are known. The algorithm is trained on
the redshift z, the luminosities LW1 and LW3, and the colours
W1–W2 and W2–W3. These input properties permit a very
efficient segregation between the different galaxy types and com-
putation of the stellar masses and SFR. As outputs to train the
algorithm, we have chosen the SDSS MPA-JHU DR8 values of
SFR and M⋆ as reference values. However, the method can be
adapted to any catalogue of value-added SFR and M⋆ cross-
matched with the AllWISE catalogue. With our method, we
obtain typical errors of σSFR = 0.38 dex and σM⋆ = 0.16 dex,
independently of galaxy type, and unbiased with respect to red-
shift in the range z < 0.3.

In future works, we will extend the redshift range of the
application up to z ∼ 0.5, and possibly beyond. In doing so,
our method will be useful to characterise cosmic structures, and
can therefore be applied, for example, to studies of the depen-
dence of galaxy populations on environments or galaxy clus-
ter/cosmic filament detection in the context of future large galaxy
surveys.
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