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ABSTRACT

We present CO(1–0) maps of 12 warm H2-selected Hickson Compact Groups (HCGs), covering 14 individually
imaged warm H2 bright galaxies, with the Combined Array for Research in Millimeter Astronomy. We found a
variety of molecular gas distributions within the HCGs, including regularly rotating disks, bars, rings, tidal tails,
and possibly nuclear outflows, though the molecular gas morphologies are more consistent with spirals and early-
type galaxies than mergers and interacting systems. Our CO-imaged HCG galaxies, when plotted on the
Kennicutt–Schmidt relation, shows star formation (SF) suppression of áS 10 5,ñ =  distributed bimodally,
with five objects exhibiting suppressions of S  10 and depletion timescales 10 Gyr. This SF inefficiency is also
seen in the efficiency per freefall time of Krumholz et al. We investigate the gas-to-dust ratios of these galaxies to
determine if an incorrect LCO–M(H2) conversion caused the apparent suppression and find that HCGs have normal
gas-to-dust ratios. It is likely that the cause of the apparent suppression in these objects is associated with shocks
injecting turbulence into the molecular gas, supported by the fact that the required turbulent injection luminosity is
consistent with the bright H2 luminosity reported by Cluver et al. Galaxies with high SF suppression (S  10) also
appear to be those in the most advanced stages of transition across both optical and infrared color space. This
supports the idea that at least some galaxies in HCGs are transitioning objects, where a disruption of the existing
molecular gas in the system suppresses SF by inhibiting the molecular gas from collapsing and forming stars
efficiently. These observations, combined with recent work on poststarburst galaxies with molecular reservoirs,
indicates that galaxies do not need to expel their molecular reservoirs prior to quenching SF and transitioning from
blue spirals to red early-type galaxies. This may imply that SF quenching can occur without the need to starve a
galaxy of cold gas first.

Key words: galaxies: evolution – galaxies: kinematics and dynamics – galaxies: star formation

1. INTRODUCTION

The present-day galaxy population has a bimodal distribu-
tion, comprised of blue spiral galaxies and red elliptical and
lenticular galaxies (Tinsley 1978; Strateva et al. 2001; Baldry
et al. 2004), with a dearth of galaxies at intermediate optical
colors (Bell et al. 2003). Their rarity suggests that galaxies
transition rapidly in colors. However, Schawinski et al. (2014)
showed that selecting transitioning objects based on color leads
to an overestimation of morphologically transforming objects,
as the majority of green valley objects are not those undergoing

the rapid morphological transformation from spiral to elliptical,

but were mainly spiral galaxies that were undergoing secular

evolution. More recently, Smethurst et al. (2015) supported this

picture of spiral galaxies transitioning at intermediate rates in

the green valley, but also showed that early type galaxies

transition more rapidly.
Many early transitioning scenarios posited that the majority

of molecular gas in galaxies is depleted prior to the quenching

of star formation (SF; Sanders & Mirabel 1996; Hopkins

et al. 2006), through both supernova and active galactic nucleus

(AGN) feedback mechanisms (Springel et al. 2005). However,

recent observations have started to question whether the two-
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stage scenario consisting of (1) the expulsion of star-forming

gas followed by (2) the cessation of SF is the exclusive

evolutionary picture. Studies now show that many poststarburst

galaxies contain substantial reservoirs of molecular gas (French

et al. 2015; Rowlands et al. 2015) and are dustier than normal

galaxies (Yesuf et al. 2014). This shows that removing all star-

forming material before transitioning is not a requirement in a

galaxy’s transformation from blue to red.
With the advent of the Wide-field Infrared Survey Explorer

(WISE; Wright et al. 2010) mission, evidence has accumulated

that mid-infrared (IR) colors can also be used to identify phases

of transitioning galaxies (Ko et al. 2013). Alatalo et al. (2014b)

showed the existence of a prominent bifurcation between star-

forming spiral galaxies and quiescent early-type galaxies in

the WISE [4.6]–[12] μm colors, deeming this the “Infrared

Transition Zone” (IRTZ). Objects within the IRTZ have red

optical colors (also described in Ko et al. 2013), suggesting that

galaxies traverse the optical green valley before the IRTZ.

Assuming that [4.6]–[12] μm WISE colors trace the interstellar

medium (ISM) within the galaxy and optical colors trace the

mean stellar population age (Donoso et al. 2012), which further

supports the idea that a non-negligible number of galaxies

quench SF before shedding their ISMs.
Many plausible mechanisms have been introduced to explain

this transition, including major mergers (Toomre &

Toomre 1972; Springel et al. 2005); experiencing ram pressure

stripping, and strangulation when falling into a galaxy cluster

(Bekki et al. 2002; Blanton & Moustakas 2009; and references

therein); morphological quenching (Martig et al. 2009, 2013);

minor mergers (Qu et al. 2010; Eliche-Moral et al. 2012;

Alatalo et al. 2014c, 2015b); AGN feedback (Hopkins

et al. 2006; Feruglio et al. 2010; Fischer et al. 2010; Alatalo

et al. 2011; Sturm et al. 2011; Aalto et al. 2012; Cicone

et al. 2012, 2014; Alatalo 2015), and tidal disruption and

harassment through group interactions (Hickson et al. 1992;

Zabludoff & Mulchaey 1998; Bitsakis et al. 2010, 2014;

Walker et al. 2010). Given their low galaxy velocity dispersion

and high density, as well as their short-lived nature

(Hickson 1982), compact groups serve as an ideal environment

in which to study galaxy transformation.
Hickson compact groups (HCGs) are defined as “small,

relatively isolated systems of typically four or five galaxies in

close proximity to one another” (Hickson 1982, 1997). They

tend to have a high fraction of early-type galaxies (E/S0),
evidence of tidal interactions, and high density structure with

low velocity dispersion (Hickson 1982, 1997) and deficiencies

in H I compared with isolated galaxies (Verdes-Montenegro

et al. 2001; Borthakur et al. 2010). Compact groups appear to

go through an evolutionary phase that can be traced by neutral

gas depletion (Verdes-Montenegro et al. 2001). In the later

stages of depletion, H I is found less in the galaxies and more in

the intragalactic medium (IGM; Borthakur et al. 2010), with a

rise in the fraction of groups containing extended group-wide

X-ray emission (Ponman et al. 1996). However, the origin of

the extended X-ray emission is still unclear for HCGs in

general (see Rasmussen et al. 2008), with strong starburst

winds being the partial cause in at least one system (O’Sullivan

et al. 2014a, 2014b). The fraction of galaxy types also evolves

in concert with the neutral gas depletion, with spiral-rich

groups at early times and elliptical-rich groups later in the

sequence (Bitsakis et al. 2010, 2011, 2014).

It also appears that the galaxies within the HCG transform
rapidly. No Spitzer color bimodality was reported by Lacy et al.
(2004, 2007) between early-type and late-type galaxies in a
sample of field galaxies, but Johnson et al. (2007) documented
a marked Spitzer IR “gap” in compact group galaxies, with
very few galaxies observed between the star-forming cloud
and the quiescent cloud. Walker et al. (2010) suggested that
compact group galaxies within this “gap” were likely in the
midst of a rapid morphological transformation. Cluver et al.
(2013) showed that the “gap” galaxies in compact groups tend
to have warm hydrogen emission traced by the Spitzer Infrared
Spectrograph (IRS; Houck et al. 2004) that is enhanced beyond
the level that photon-dominated regions powered by SF alone
could explain, termed Molecular Hydrogen Emission Galaxies
(MOHEGs; Ogle et al. 2007). Cluver et al. (2013) suggested
that this enhanced H2 emission might be energized by shocks
caused by collisions with the clumpy intragroup medium.
MOHEG “gap” HCGs therefore represent ideal laboratories to
test the interplay between rapid galaxy transition, SF quench-
ing, and the disruption of the star-forming fuel and ISM.
Evidence that SF might be taking place inefficiently in

transitioning galaxies has started to mount, including in
radio galaxies (Nesvadba et al. 2010; Guillard et al. 2015),
AGN-driven molecular outflow host NGC 1266 (Alatalo
et al. 2015b), as well as in HCGs. Both the shock in Stephan’s
Quintet (Appleton et al. 2006; Guillard et al. 2009, 2012a;
Konstantopoulos et al. 2014) and the HCG galaxy HCG 57a
(Alatalo et al. 2014a) seem to exhibit suppressed SF. In these
cases, the authors suggested that the injection of turbulence
might be causing this SF inhibition, either from collisions with
the radio jets or AGN outflows, or the collisions and
interactions within the group environment.
We present new Combined Array from Research in Milli-

meter Astronomy (CARMA)
23 CO(1–0) observations of

12 HCGs, including multiple galaxies considered “gap” galaxies
and MOHEGs (shown in Table 1). In Section 2, we describe the
sample selection and observations from CARMA, including
reduction and analysis methods. In Section 3, we present the
molecular properties of the sample, including their position
on the Kennicutt–Schmidt (K–S) relation (Kennicutt 1998). In
Section 4, we discuss these results in the context of transitioning
galaxies. In Section 5, we summarize our results. We comment
and present the maps of individual galaxies in the appendix. The
cosmological parameters H0 = 70 km s−1, Ωm = 0.3 and
ΩΛ = 0.7 (Spergel et al. 2007) are used throughout.

2. OBSERVATIONS AND ANALYSIS

2.1. Sample Selection

While single dish observations are able to provide informa-
tion about the CO luminosity, and possibly some information
about the molecular gas kinematics (such as line-width and
line-shape), it is unable to provide spatial information about the
molecular gas. Interferometry is able to provide information
about the extent and distribution of the molecular gas, allowing
for direct comparisons between the CO and stellar mass, or SF.
For this reason, we chose to use CARMA to follow up a subset
of the CO-bright, warm H2-bright HCG galaxies presented in
Lisenfeld et al. (2014).

23
http://www.mmarray.org
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Table 1

HCG CO(1–0) Galaxy Properties

HCG Principal R.A. Decl. Dist.a Morph.b F1.4 GHz
[C II]? MOHEG

c Optical Spitzer WISE Opticald COe

Name Name (J2000) (J2000) (Mpc) t-type (mJy) Sequence gap IRTZ AGN Morph.

HCG 25b PGC012539 03 20 45.41 −01 02 40.9 85.8 0.9 ± 1.3 5.6a ✓ ✓ red ✓ ✓ ✓ D

HCG 40c PGC027508 09 38 53.61 −04 51 36.6 94.1 2.3 ± 2.1 10.3b L L green L L ✓ B+R

HCG 47a UGC05644 10 25 46.26 +13 43 00.7 141 2.4 ± 1.2 13.1a L L blue L L ✓ R, S

HCG 55c PGC035573 11 32 05.69 +70 48 38.7 222 1.3 ± 1.3 K ✓ L green L L L D

HCG 57a NGC3753 11 37 53.90 +21 58 53.0 127f 2.1 ± 0.6 3.8a ✓ ✓ red ✓ ✓ ✓ M

HCG 57d NGC3754 11 37 54.92 +21 59 07.8 127f 3.4 ± 1.1 K ✓ L blue L L L R

HCG 68a NGC5353 13 53 26.69 +40 16 58.9 34.6 −2.0 ± 0.7 40.5a L ✓ green L L ✓ D

HCG 68b NGC5354 13 53 26.70 +40 18 09.9 38.1 −2.1 ± 0.7 8.0a ✓ ✓ K K K K K

HCG 79a NGC6027A 15 59 11.14 +20 45 17.5 64.5 0.3 ± 2.1 9.3a ✓ L red L ✓ ✓ D

HCG 82b NGC6163 16 28 27.91 +32 50 47.0 148 −1.7 ± 1.1 K L ✓ red ✓ ✓ ✓ M

HCG 91a NGC7214 22 09 07.68 −27 48 34.1 92.6 4.5 ± 0.7 29.2c ✓ L blue L L ✓ S

HCG 95c PGC071077 23 19 31.09 +09 30 10.7 158 9.0 ± 2.0 4.10d ✓ ✓ green ✓ L ✓ M

HCG 96a NGC7674 23 27 56.72 +08 46 44.5 116f 3.8 ± 0.6 221.0a ✓ L blue L L ✓ B+R, S

HCG 96c PGC071505 23 27 58.78 +08 46 58.1 116f 5.5 ± 4.7 0.85d ✓ L green L L L D

HCG 100a NGC7803 00 01 19.97 +13 06 40.5 69.5 0.1 ± 1.0 12.3a ✓ L blue L L ✓ D

Notes.
a
Luminosity distance determined using the Nearby Extragalactic Database (NED).

b
Morphological t-type determined by HyperLEDA (Makarov et al. 2014) F1.4 GHz continuum from (a) Condon et al. (1998), (b) Menon & Hickson (1985), (c) Brown et al. (2011), and (d) Becker et al. (1995).

c
MOHEG definition based on H2/7.7 μm 0.04 (Ogle et al. 2006; Cluver et al. 2013), all except 57d are detected in H2.

d
Optical AGN classification from Martińez et al. (2010), counting both transition objects (TO), LINERs, and Seyferts.

e
Morphological class of the molecular gas: D = disk, R = ring, M = mildly disrupted, B+R = bar/ring, and S = spiral, based on the classification scheme from Alatalo et al. (2013).

f
Distance determined by the more massive of the group members.
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The galaxies chosen for the new CARMA imaging were
drawn from the HCGs that were detected in warm H2 using the
Spitzer IRS24 (usually with boosted L LH ,warm 7.7 mPAH2 m ratios;
Ogle et al. 2007; Cluver et al. 2013) as well as detected in
CO(1–0) with the Institut de Radioastronomie Millimétrique
(IRAM) 30 m (Lisenfeld et al. 2014). Only 10% of HCG
galaxies are MOHEGs (Cluver et al. 2013). From this subset of
CO-bright, H2-strong galaxies, we chose a subset that
maximized the overlap with Herschel [C II]-detected objects
(P. N. Appleton et al. 2015, in preparation). These objects also
tended to show early-type morphologies based on their t-types
from HyperLEDA25

(Makarov et al. 2014). Eleven HCGs
altogether were chosen for the CARMA sample, including
eight HCGs with corresponding [C II] and [O I] Herschel
observations. HCG 96, although not observed through the
Spitzer HCG program, had data in both the CARMA and
Herschel archives, and was therefore added to our sample. All
sample galaxies and their properties are listed in Table 1.

2.2. CARMA

The HCGs were observed with CARMA, an interferometric
array of 15 radio dishes (6× 10.4 m and 9× 6.1 m) located in
the Eastern Sierras in California (Bock et al. 2006). Observa-
tions were taken over the course of three semesters between
2013 March 12 and 2014 June 16. One, HCG 96, was taken
from the archive. Thus, we observed a total of 12 HCGs (and
15 individual galaxies, including HCG 68b, detected only in
3 mm continuum).26 The observing strategy and data reduction
were performed in a manner identical to that of the ATLAS3D

galaxies in Alatalo et al. (2013). Table 2 presents the semester,
gain calibrator, bandpass calibrator, total hours on source, and
beam full-width at half-maximum (FWHM) for each of the
HCGs observed with CARMA in the D-array (with baselines
between 11–150 m). Galaxies with new CARMA observations

had a correlator configuration of 8 × 500MHz window in each
sideband,27 with the CO(1–0) line utilizing the highest
resolution 500MHz mode (with channel resolution of ≈15
km s−1). This meant there was a sufficiently large bandwidth to
measure 3 mm continuum, which was successfully detected in
7/15 sources (listed in Table 3). Continuum contributions were
subtracted in uv-space using the MIRIAD task uvlin (Sault
et al. 1995), as detailed in Alatalo et al. (2013).
The resulting channel maps and moment maps were also

constructed in identical fashion to Alatalo et al. (2013).
Figures 7–18 showcase the CARMA data for each individual
HCG, including the channel maps, integrated intensity
(moment0), and mean velocity (moment1) maps, as well as
integrated spectra and position–velocity diagrams (PVD). The
PVD was constructed by creating a slice in the velocity cube at
a certain position angle (shown as a dashed line on the
moment0 figure), and integrating across a slice in space.
The integrated spectrum was constructed by using the

moment0 map to create a clip-mask and integrating the flux
within the moment0-defined (unmasked) aperture. This was
done separately for each galaxy. The root mean square (rms)
noise was then taken by calculating the standard deviation of
all pixels in the cube that were outside of the moment0-aperture
per channel and is listed in Table 3. An additional noise
correction of 30% was also added in quadrature to the rms
noise to account for the oversampling of the maps (see: Alatalo
et al. 2015a for details). The rms noise per channel for the
integrated spectrum was then calculated by multiplying the rms
of the entire data cube by the square root of the total number of
beams in the moment0-aperture.
To calculate an integrated line flux for each galaxy, we

determined the extent of emission within the cube (shaded blue
in the integrated spectrum) and summed across them. The line
flux rms was then calculated by multiplying the rms per
channel of the spectrum by the velocity width (listed in
Table 2) and the square root of the total number of channels
integrated to derive the line flux.
Table 3 lists the properties derived from the imaging data of

the individually detected galaxies, including the rms noise in
the channel maps, the detected continuum levels, and the total
detected CO line fluxes. The spatial extent of the molecular gas

Table 2

CARMA CO(1–0) Observing Parameters

Name Semester Total Gain θmaj × θmin Kelvin ΔV
a

Hoursb Calibrator (″) per Jy (km s−1)

HCG 25 2014a 12.14 0339 – 017 6.1 × 3.6 4.2734 21

HCG 40 2014a 17.67 0825 + 031 5.9 × 3.9 4.0316 21

HCG 47 2014a 12.41 0956 + 252 4.9 × 3.4 5.4678 32

HCG 55 2013b 7.64 1048 + 717 7.4 × 7.1 1.7767 33

HCG 57 2013a 8.61 1224 + 213 4.6 × 3.3 6.0303 31

HCG 68 2013b 16.24 1310 + 323 5.1 × 3.7 4.9006 30

HCG 79 2013b 9.75 1613 + 342 7.4 × 6.4 1.9520 31

HCG 82 2014a 10.83 1635 + 381 4.3 × 3.6 5.9389 21

HCG 91 2013b 8.06 2258–279 8.5 × 4.1 2.6671 21

HCG 95 2013a 13.26 3C454.3 3.9 × 3.0 7.9045 21

HCG 96c 2010b 7.33 −0010 + 109 2.5 × 2.4 15.0203 10

HCG 100 2013b 9.75 3C454.3 4.6 × 3.6 5.5428 21

Notes.
a
Channel width.

b
Total time on-source time.

c
Archival CARMA data.

24
One galaxy, HCG 57d, was not included in the original Spitzer IRS

footprint.
25

http://leda.univ-lyon1.fr/
26

HCG 40e was also tentatively detected, but below a signal-to-noise ratio of
3, and only a small subset of the velocity structure was recovered.
27

The observations of HCG 96 were taken with a correlator configuration of
5 × 250 and 3 × 500 MHz per sideband, totalling 5500 MHz of bandwidth.
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was determined by summing the total number of unmasked
pixels (the moment0-aperture) in the moment maps. CO
luminosities (shown in Table 3) were calculated using the
luminosity distance to the source (listed in Table 1). The H2

mass was determined using the LCO–M(H2) relation:

M
S vD

v c
MH 1.05 10

1
, 12

4 CO L
2

sys

( ) ( )= ´
D
+



which assumes XCO = 2 × 1020 cm−2 (K km s−1)−1 (the mean

conversion factor presented in Bolatto et al. 2013). SCOΔv is

the CO(1–0) flux (in Jy km s−1), DL is the luminosity distance

(in Mpc), vsys is the optically defined systemic velocity (in

km s−1), and c is the speed of light (in km s−1). The time

variability of flux calibrators at 3 mm continuum adds an

additional ≈20% uncertainty to the CO(1–0) flux, and the LCO–

M(H2) conversion also carries a 30% uncertainty (Bolatto

et al. 2013), imposing an additional 35% absolute flux

uncertainty to the measured CO masses.28

2.3. Comparison of the CARMA and IRAM Data

Thirteen of the 14 CO-imaged HCG galaxies presented in
this paper were also observed by Lisenfeld et al. (2014) using
the IRAM 30 m (only HCG 96c was not observed). Figure 1
compares the CO(1–0) luminosities derived from both sets of
data. The measured CO(1–0) luminosities from CARMA and
the IRAM 30 m are in good agreement, confirming that the CARMA observations do not resolve out substantial flux, and

are therefore a reasonable representation of the molecular gas in
these systems. HCG 57d, for which CARMA detected only half
of the flux detected with the IRAM 30m (possibly due to

Table 3

CARMA Derived Properties

Name vsys zco Vel. Range F100 GHz
a rmsb Fluxa LCO

M(H2)
a,c Area Σ(H2)

a,c

(km s−1) (km s−1) (mJy) (mJy/bm) (Jy km s−1) (104 Le) (109 Me) () (kpc2) (Me pc−2)

25b 6371 0.02125 6037–6684 <0.525 4.83 21.16 ± 2.37 1.83 ± 0.20 1.60 ± 0.18 191 30.4 52.7 ± 5.9

40c 6419 0.02141 6085–6753 <0.634 6.69 93.32 ± 2.97 9.70 ± 0.31 8.49 ± 0.27 563 107.7 78.9 ± 2.5

47a 9637 0.03215 9429–9844 <0.307 3.25 64.56 ± 1.89 14.91 ± 0.44 13.06 ± 0.38 992 408.4 32.0 ± 0.9

55c 15760 0.05257 15394–16125 <0.595 3.97 10.09 ± 1.33 5.67 ± 0.74 4.96 ± 0.65 247 233.1 21.3 ± 2.8

57a 8723 0.02910 8214–9231 <0.391 3.85 59.16 ± 3.94 11.12 ± 0.74 9.74 ± 0.65 487 164.6 59.1 ± 3.9

57d 8944 0.02983 8753–9134 <0.391 3.85 7.50 ± 0.33 1.41 ± 0.06 1.23 ± 0.05 176 59.3 20.8 ± 0.9

68a 2249 0.00750 1457–3040 6.687

± 0.198

5.07 23.65 ± 2.16 0.34 ± 0.03 0.30 ± 0.03 152 4.2 71.1 ± 6.5

68bd K K K 1.597

± 0.243

K K K K K K K

79a 4149 0.01384 3841–4457 0.756

± 0.172

5.02 25.42 ± 1.91 1.25 ± 0.09 1.10 ± 0.08 382 35.4 31.0 ± 2.3

82b 10415 0.03474 10181–10652 0.483

± 0.126

3.69 12.92 ± 1.28 3.28 ± 0.32 2.87 ± 0.28 99 44.5 64.6 ± 6.4

91a 6857 0.02287 6543–7171 <0.991 9.53 173.54 ± 4.80 17.44 ± 0.48 15.28 ± 0.42 2050 377.4 40.5 ± 1.1

95c 11540 0.03849 11270–11831 0.710

± 0.169

4.15 24.74 ± 1.66 7.13 ± 0.48 6.25 ± 0.42 173 87.3 71.6 ± 4.8

96a 8638 0.02881 8482–8793 3.911

± 0.383

7.74 121.75 ± 1.59 19.09 ± 0.25 16.72 ± 0.22 533 150.5 111.1 ± 1.5

96c 8809 0.02938 8592–9025 <1.150 7.74 9.61 ± 0.13 1.59 ± 0.02 1.39 ± 0.02 18 5.3 260.3 ± 3.5

100a 5220 0.01741 4888–5551 0.429

± 0.090

4.32 36.99 ± 2.34 2.11 ± 0.13 1.84 ± 0.12 343 36.3 50.7 ± 3.2

Notes.
a
Does not include 20% absolute flux calibration uncertainty.

b
rms noise per channel.

c
Does not include 30% conversion uncertainty (Bolatto et al. 2013) in αCO, assuming XCO = 2 × 1020 cm−2(K km s−1)−1.

d
Detected only in 3 mm continuum; in the CARMA observations, see Lisenfeld et al. (2014) for its detected CO properties based on IRAM data.

Figure 1. Comparison between the total CO luminosity measured by
CARMA and IRAM. Errors for CARMA include both the rms and the 20%
millimeter flux calibration uncertainty. For IRAM, the range of values consists
of the luminosity measured in the central pointing as a lower limit and the
extrapolated total luminosity as the higher estimate. Overall, the CO
luminosities derived from CARMA and IRAM are in good agreement.

28
Errors reported in Table 3 do not include the 35% uncertainty, though it is

included in error bars in all figures.
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resolving out flux, and sensitivity), is an outlier (Alatalo
et al. 2014a).

3. RESULTS

3.1. Molecular Gas Morphologies of the HCG Galaxies

Following the morphological classification used by Alatalo
et al. (2013) for ATLAS3D early-type galaxies, we have
morphologically classified the molecular gas in all of the CO-
imaged HCGs (listed in Table 1; detailed discussion can be
found in Appendix B). We classify each galaxy as being either
a disk (D), spiral (S), bar+ring (B+R), ring (R), mildly
disrupted (M), or a combination of multiple distinct classifica-
tions. Details of the morphological classifications can be found
in Alatalo et al. (2013). The morphologies seen in our HCGs
tend to be a mix of regular rotation and dynamically excited
structures, with a lack of strongly disrupted objects, which are
quite prevalent in Ultraluminous Infrared Galaxies (ULIRGs;
Sanders & Mirabel 1996) and interacting galaxies (Wilson
et al. 2008). Overall though, our CO-imaged galaxies have
appearances comparable to field galaxies, including both spirals
(Helfer et al. 2003) and early-types (Alatalo et al. 2013).

3.2. The K–S Relation in Warm, H2-bright HCG Galaxies

Figure 2 displays the molecular gas surface density of each
HCG compared with its star formation rate (SFR) surface
density (calculated assuming the SF and gas are co-spatial), and
using the SFR derived in Bitsakis et al. (2014). SFRs calculated
by MAGPHYS (da Cunha et al. 2008) seem to have a scatter of

0.38 dex (Lanz et al. 2013), which we have included in our SF

rate uncertainty. To test whether the SF histories assumed in

Bitsakis et al. (2014) could significantly alter our conclusions,

we input varying SF histories (including continuous and

truncated models) and derived SF rates using CIGALE (Ciesla

et al. 2015). The SF rates derived from CIGALE did not vary by

more than the assumed scatter reported in Lanz et al. (2013).
ΣSFR for the HCGs is compared with ΣSFR of the Milky Way

(Yusef-Zadeh et al. 2009), normal galaxies (Kennicutt 1998;

Fisher et al. 2013), high redshift galaxies (Genzel et al. 2010),

luminous infrared galaxies (LIRGs; Kennicutt 1998), radio

galaxies (Ogle et al. 2010; Alatalo et al. 2015b), and CO-

imaged early-type galaxies (Davis et al. 2014). The HCGs are

color-coded based on their L LH ,warm 7.7 mPAH2 m ratios from

Cluver et al. (2013), with MOHEGs represented by red squares,

and non-MOHEGs represented by blue circles. Overall, most

HCG galaxies fall within the scatter of the K–S relation

(Kennicutt 1998), but HCG galaxies as a group are more likely

to be found in the lower half of the scatter than the upper half

(although a larger sample will be required to determine whether

this is statistically significant). This result is consistent with the

single-dish results from Lisenfeld et al. (2014), and there are

some objects (in particular HCG 25b, 40c, 57a, 79a, and 82b)

that exhibit a much more substantial scatter off of the K–S

relation. We define the degree of SF suppression, S, as the

ratio between the expected SFR surface density (ΣSFR) from

the measured molecular gas surface density Σmol using the K–S

relation (Kennicutt 1998), and the observed ΣSFR. Values of S

for each HCG are listed in Table 4.

Figure 2. (Left) SFR and gas surface density in our HCG sample are shown in comparison on the Kennicutt–Schmidt relation (Kennicutt 1998). The SFRs were taken
from Bitsakis et al. (2014), normalized to a Salpeter Initial Mass Function (IMF; Salpeter 1955). The HCGs are compared to the Milky Way (Yusef-Zadeh et al. 2009),
normal galaxies or LIRGs (Kennicutt 1998; Fisher et al. 2013), CO-imaged early-type galaxies (Davis et al. 2014), high redshift objects (Genzel et al. 2010), and radio
galaxies (Ogle et al. 2010; Alatalo et al. 2015b), all renormalized to a Salpeter IMF. The solid black line represents the Kennicutt–Schmidt relation, and dashed lines
represent levels of 1/10 and 1/100 suppression (below) and enhancement (above). The shapes and colors of the HCG points are based on whether they meet the
MOHEG criterion from Ogle et al. (2007), with red squares for HCGs with L LH 7.7 mPAH2,warm m > 0.04, considered confirmed MOHEGs, and blue circles representing

those below this threshold. The SFR error bars include the 10% errors quoted in Bitsakis et al. (2014), and the 0.38 dex scatter in MAGPHYS-derived SFRs from Lanz
et al. (2013), added in quadrature. (Right) The SF laws from Krumholz et al. (2012) are plotted for nearby and high-z galaxies (black dots and gray diamonds,
respectively; Krumholz et al. 2012 and references therein), and early-type galaxies (indigo squares; Davis et al. 2014), all normalized to a Salpeter IMF
(Salpeter 1955). The axes of panel (b) were chosen to match the axes shown in Krumholz et al. (2012). Dotted lines represent suppressions and enhancements of 10
and 100. The HCGs found to be suppressed in panel (a) are also suppressed in panel (b).
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The molecular gas depletion (the molecular gas mass divided
by the SFR) timescales associated with the HCG galaxies are
also shown in Table 4. As expected, objects with normal S

appear to have depletion timescales similar to those found in
normal, star-forming galaxies (∼1 Gyr; Bigiel et al. 2008;
Saintonge et al. 2011b), and early-type galaxies (Davis
et al. 2014). The objects with S > 10 tend to have depletion
timescales that are of order a Hubble time or longer, with
HCG 57a and HCG 82b having depletion timescales of
>30 Gyr. These depletion timescales suggest that these systems
will nearly indefinitely contain molecular gas, if the suppres-
sions present are continuous (rather than discrete and sporadic)
processes. Given the timescale for galaxies within HCGs to
transform (∼1 Gyr; Bitsakis et al. 2010, 2011; Walker et al.
2010), it is likely that the suppression is also a transient
phenomenon.

In order to compare to early-type galaxies, another
suppressed set of objects, we have calculated S for CO(1–0)
imaged ATLAS3D galaxies (Young et al. 2008; Crocker
et al. 2011; Alatalo et al. 2013; Davis et al. 2014). We
calculated the total SFRs of these objects using the (uncor-
rected) WISE 22 μm emission,29 assuming that the majority of
the 22 μm emission originates from SF in most CO-bright
objects without strong AGNs (Calzetti et al. 2007; Nyland et al.
2015). In the CO-imaged subsample ATLAS3D galaxies from
Davis et al. (2014), we find S≈ 2.6, consistent with the
predictions of Martig et al. (2013) that the bulges in early-type
galaxies can stabilize molecular disks, creating suppressions
of 2–5.

For the HCGs in this work, we find the mean áSHCGñ≈ 10 ±
5. There also appears to be a marked bimodality seen between
galaxies forming stars at normal efficiency, and a few that are
extremely inefficient (with S >10), including HCG 25b, 40c,

57a, 79a, and 82b. Given the compact nature of the molecular
gas and strong X-ray emission in HCG 68a (Liu 2011), it is
quite possible that a non-negligible fraction of its far-infrared
emission originates from the AGN, rather than from SF, similar
to NGC 1266 (Alatalo et al. 2015b). The contributions of
AGNs to the spectral energy distributions of individual galaxies
is discussed in Appendix A.
We have also plotted the SF relation following the procedure

in Krumholz et al. (2012). These authors claim that the SF rate
in normal (non-LIRG) molecular configurations is dependent
on the local freefall time of each individual molecular cloud,
converting about 1% of the molecular mass to stars per freefall
time. Krumholz et al. (2012) argue that since the majority of
stars form in giant molecular clouds (GMCs), their individual
properties are the dominant determinant of the SF efficiency in
the molecular gas of a galaxy, and thus the local GMC freefall
time is more important than the global dynamical time (as is
used by Kennicutt 1998). Assuming that the GMC distribution
within swathes of galaxies is fairly consistent, Krumholz et al.
(2012) use this framework to universalize SF laws, across
normal, star-forming galaxies and interactions. Davis et al.
(2014) have also been able to show that this also applies
successfully to early-type galaxies, while Utomo et al. (2015)
have shown that the GMCs within example early-type galaxy,
NGC 4526, matches the distributions of late-type local
galaxies. We use the Krumholz et al. (2012) relation to see if
our SF suppression can be reconciled by examining the GMC-
scale efficiencies, rather than the global scales. This framework
was able to link Milky Way, local group galaxies, starburst, and
high-redshift galaxy scales. The free-fall time for each HCG
was calculated using Equation (4) from Krumholz et al. (2012):

t
G8

, 2ff

1 4

GMC
3

gas
1 4

( )
( )

p s
=

S S

where G is the gravitational constant, ΣGMC is the average

surface density of the GMCs within the system (estimated to be

Table 4

Star Formation Suppression Values

Name t aff S
b
KS S

c
ff t ddep

e
norm SFs Q

f
1s = E g

turb L h
turb L L i

H ,warm turb2

(Myr) (Gyr) (km s−1) (km s−1) (1055 erg) (1039 erg s−1)

25b 10.3 12.2 9.1 10.0 91 51 7.2 31 0.34

40c 11.4 18.2 10.4 12.7 104 62 57 303 0.36

47a 9.1 3.8 3.9 3.8 39 40 35 120 0.50

55c 8.2 3.2 4.3 3.8 43 32 9.0 25 2.15

57a 10.6 38.9 26.8 30.4 268 54 49 226 0.82

57d 8.2 0.6 0.8 0.7 8 32 2.2 6.0 K

68a 11.1 1.0 0.6 0.8 6 59 1.8 9.0 0.75

79a 9.0 15.4 16.2 15.7 162 39 2.9 9.6 1.32

82b 10.8 42.2 27.4 31.9 274 56 16 76 0.34

91a 9.7 1.4 1.3 1.3 13 44 52 200 0.33

95c 11.1 3.6 2.2 2.6 22 59 37 193 0.57

96a 12.4 1.6 0.7 1.0 7 74 158 997 0.14

96c 15.4 3.4 0.9 1.5 9 113 31 297 0.22

100a 10.2 1.1 0.8 0.9 8 50 7.9 34 0.95

Note. Derived SF suppression parameters for the molecular gas in HCGs including (a) the free–free timescale using Equation (2), assuming that σgas = 10 km s−1, (b)

S (the deviation from the K–S relation, (c) the star formation suppression from the Krumholz et al. (2012) law using tff (and assuming σgas = 10 km s−1) and (d) the

depletion timescale (Mmol/SFR) for each of the CO-imaged HCG galaxy. (e) The necessary molecular velocity dispersion ( gas,normSFs ) of the giant molecular clouds

within the galaxies in order for each galaxy to have normal SF efficiency from Krumholz et al. (2012). (f) The required global molecular gas velocity dispersion to

stabilize the molecular gas against collapse (Toomre Q > 1). (g) The corresponding total turbulent energy injection required to stabilize the molecular disk. (h) The

turbulent luminosity (the total turbulent energy injected per rotational period). (i) The ratio of the total warm H2 luminosity from Spitzer IRS (Cluver et al. 2013) to the

required turbulent luminosity.

29
The scatter associated with the Ks-band based factor used to correct the

22 μm emission for aged stars from Davis et al. (2014) is almost as large as the
observed inefficiency.
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85Me pc−2; Bolatto et al. 2008). Σgas for each object is

presented in Table 3, and σ is the velocity dispersion of the

molecular gas within the individual GMCs, which we have

assumed to be 10 km s−1 (consistent with the 8 km s−1 assumed

in Krumholz et al. 2012). σgas does not appear to vary by more

than a factor of two in disk galaxies (Dib et al. 2006; Walter

et al. 2008; Chung et al. 2009), though σgas ≈ 10 km s−1 might

be an underestimate given the disrupted kinematics seen in

some HCGs (Alatalo et al. 2014a). Figure 2(b) shows that some

HCGs do not appear to fall on the typical efficiency (molecular

mass converted into stars per free-fall time), ò≈ 0.01 relation

with the other galaxies, and those that are suppressed in the

original K–S plot (Figure 2(a)) continue to appear suppressed

in SF efficiency space as well. The least efficient galaxy,

HCG 82b, is 27 times less efficient than the mean efficiency

from Krumholz et al. (2012). A larger sample of objects with

suppressions at this level is needed to be able to constrain a

duty cycle and determine how long objects are observed with

these large depletion times.

3.3. Gas-to-dust Ratios in H2-bright HCG Galaxies

Could the observed suppression in these HCGs be the result

of using an incorrect LCO–M(H2) conversion? Downes &

Solomon (1998) were able to show that ULIRGs did not follow

the standard Milky Way relation. The molecular gas in

ULIRGs is not distributed in discrete GMCs, instead being a

more continuous distribution of molecular gas, and the velocity

widths associated with the additional gas motions boosted the

CO luminosity per unit gas mass. Anomalous LCO–M(H2)

conversion factors have also been identified in other MOHEGs,

including NGC 4258 (Ogle et al. 2014) and 3C 293 (Lanz

et al. 2015), and thus is an important factor to check in our

sample.
In order to determine whether our observations overestimate

the molecular gas mass in the suppressed HCG galaxies, we

turn to the gas-to-dust ratio as a test. Figure 3 shows the gas-to-

dust ratios of the CO-imaged HCG sample using dust masses

calculated by Bitsakis et al. (2014) using full UV-to-sub-mm

SED fitting in MAGPHYS (da Cunha et al. 2008). Data points are

color-coded based on the galaxy’s S value. The mean gas-to-

dust ratio seen in our sample is ≈170, within the range found

for solar metallicity nearby galaxies (Sandstrom et al. 2013)

and the Key Insights on Nearby Galaxies: a Far-infrared Survey

with Herschel sample (Rémy-Ruyer et al. 2014). The HCG

galaxies show a relationship between their dust mass and gas

mass that both matches the standard value and has little–to–no

dependence on S or classification of MOHEG. This seems to

indicate that the enhanced S values are due in part to a

physical mechanism within the molecular gas, rather than an

issue with converting CO luminosities into molecular gas

masses. Additional observations in 12CO isotopologues (e.g.,
13CO and C18O), as well as dense gas (e.g., HCN, HCO+, and

CS), are necessary to confirm whether these systems require a

different conversion factor, but the consistent gas-to-dust ratio

appears to support a standard conversion factor.

4. DISCUSSION

4.1. AGNs in the HCG Sample

Table 1 lists the properties of each of the CO-imaged

galaxies in our sample, including optical and radio signatures

of AGNs. The detection of unresolved significant 3 mm

continuum in 43% of the CARMA-imaged HCGs indicates

the presence of AGNs, as the SFRs in these HCGs would not

produce sufficient free–free emission at 3 mm continuum to be

detectable by CARMA. Of the seven HCGs detected in 3 mm

continuum, six have 1.4 GHz radio detections as well (see

Table 1 for fluxes and sources). HCG 82b is the only object

detected in 3 mm continuum but not 1.4 GHz. The optical

nuclear spectra of the 3 mm-detected HCGs all show signatures

of AGNs (Table 1), either in the form of Seyfert-like spectra,

low ionization nuclear emission line-region (LINER), or

composite spectra (Martińez et al. 2010; Cluver et al. 2013).

However, in many of these cases, slow and fast shocks might

be mimicking these nuclear line ratios (Allen et al. 2008; Rich

et al. 2011; Cales et al. 2015).
There is an abundance of dynamically excited features

among our sample of warm H2 bright HCG galaxies, especially

among galaxies with large values of S (although HCG 91a

seems to also show signs of a broad blue line wing in its

spectrum), which might be a sign that some of the AGNs

seen are interacting with the nuclear molecular gas, possibly

adding to the suppression (as is seen in NGC 1266; Alatalo

et al. 2015b). Deeper analyses of these systems might reveal

molecular outflows, as evidence is mounting that outflows are a

common feature in objects with molecular reservoirs near an

AGN (García-Burillo et al. 2014; Garcia-Burillo et al. 2015).

A detailed analysis to determine whether these line wings and

central broad lines are indeed due to molecular outflows would

require higher resolution, higher sensitivity observations and is

therefore beyond the scope of this paper.

Figure 3. Molecular gas-to-dust ratios of the HCGs in this sample, using the
molecular gas mass determined in this work, and the dust masses from Bitsakis
et al. (2014), with an uncertainty of 0.5 dex (da Cunha et al. 2010). The dust
mass of HCG 55c is an upper limit. Red and blue dotted lines represent factors
of two of the average gas-to-dust ratio. The colors of the points represent the
suppression of SF in the molecular gas in each galaxy. The gas-to-dust ratios of
the HCGs appear consistent across a large range in molecular gas masses, as
well as values of S.
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4.2. S and Its Connection to Turbulence

Martig et al. (2013) used simulations to predict that in a set
of early-type galaxies with resolved molecular gas and SF, it
was possible that massive bulges served to stabilize the
molecular disks in these systems against gravitational collapse,
reducing the SF efficiency of the molecular gas and thus
suppressing SF. For our sample, S does not correlate with the
stellar mass of the system, the molecular gas fraction,
(M Mmol. gas star), or the visually derived morphological type of
the galaxy, suggesting that an alternative driver of suppression
must be at play in these systems. HCGs that fall off of the K–S
relation in Figure 2(a) show similar behavior in Figure 2(b),
suggesting that gravitational shears are not the main driver of
the observed suppression in our sample (as was the case in
early-type galaxies; Davis et al. 2014). Alternatively, the
derived properties for these objects might be inaccurate. We
could be underestimating tff, for instance, because the
molecular gas is not distributed in standard (Milky Way-like)
molecular clouds, or because we have underestimated the
molecular gas velocity dispersion (given the gas disruption that
is common in HCGs). In fact, in these systems, it is possible
that both diverge from the norm.

Johnson et al. (2007) noted that a fraction of galaxies within
HCGs seem to undergo a rapid transition between star-forming
and quiescence, with a notable lack of galaxies with
intermediate infrared colors. Figure 4 plots the Spitzer Infrared

Array Camera (IRAC; Fazio et al. 2004) colors of the CO-
imaged HCGs originally plotted in Lacy et al. (2004), overlaid
with results from the Spitzer local volume legacy survey (Dale
et al. 2009), as well as the HCGs from Bitsakis et al. (2011).
Figure 4 shows that those of our galaxies located in the Spitzer
IR gap tend to also have a high degree of SF suppression.
Cluver et al. (2013) showed that the HCG galaxies that lie

within the gap (and thus are rapidly transitioning; Walker
et al. 2010) also tend to be those with prominent warm H2

signatures that required mechanisms in addition to photon-
dominated regions. Objects with S  10 might be able to be
reconciled with normal SF of Krumholz et al. (2012) by
revising our estimate of σgas upward in the free-fall time
equation, given that observations of high-z galaxies show σgas
with values up to 50 km s−1 (Cresci et al. 2009). Table 4 shows
what each galaxy requires to be reconciled with a normal SF
efficiency. Shocks heat the gas, injecting turbulence into the
system, and boosting the molecular gas velocity dispersion by
factors of a few to an order of magnitude (Guillard et al. 2009).
HCG 25b, 40c, 57a, 79a, and 82b have S > 10, too high to
reconcile with normal SF by applying a much higher σgas.
SF requires gravitational binding energy to be greater than

turbulent and radiative energies. If additional energy is
introduced into the system, this balance is disrupted, leading
to SF becoming inefficient (Krumholz et al. 2012). One
example of turbulence-induced SF suppression in the Milky
way is the galactic center cloud G0.253+0.016. This object
shows evidence for a recent collision with another cloud
(Longmore et al. 2012) and has a lower SFE compared to
similar objects, especially in regions with high velocity
dispersion (Kauffmann et al. 2013). The shock in Stephan’s
Quintet is detected in CO(1–0), but appears to have extremely
weak associated SF (Konstantopoulos et al. 2014). Guillard
et al. (2012a) suggest that S in this region could be a factor of
75 or higher, a result of the turbulence that has been generated
by the shocks from the colliding galaxies. In fact, an increasing
number of objects with strong turbulence have been shown to
exhibit inefficient SF, including the AGN-driven molecular
outflow host NGC 1266 (Alatalo et al. 2015b), and the radio
galaxy 3C 326N (Guillard et al. 2015). In this sample of
objects, which are known to be in collisional systems, large
turbulent motions are observed associated with the suppression.
The suppressed HCG galaxies in our sample seem to share
some similarities with these systems, since many of them also
contain gas exhibiting peculiar motions.
How much energy injection is be required in order to

suppress SF? If we assume that the molecular gas in the HCG
galaxies are mainly rotationally supported, we can use the
Toomre criterion (Q> 1; Toomre 1964), which describes the
balance between rotation and turbulence, and gravitational
binding energy, to determine the required energy budget
necessary to stabilize the molecular gas against collapse,
effectively inhibiting SF. To derive the necessary energy for
stability (Q = 1), we use Equation (7) in Krumholz et al.
(2012):

Q
G

2 1

mol

( )b s
p

=
+ W
S

where σ is the global gas velocity dispersion, Ω is the rotation

frequency, G is the gravitational constant, Σmol is the molecular

gas surface density, and β = 0 for the flat part of the rotation

curve. We then use force balance to determine the rotation

Figure 4. S S5.8 m 3.6 mm m vs. S S8.0 m 4.5 mm m Spitzer IRAC colors of a sample of

HCGs (blue squares; Bitsakis et al. 2011; Cluver et al. 2013) compared to the
Spitzer local volume legacy sample (gray dots; Dale et al. 2009), with the
so-called Lacy wedge (circumscribing the AGN region in the plot) shown in
light gray (Lacy et al. 2004, 2007, 2013). This plot shows the gap seen for
HCGs described by Johnson et al. (2007) and Walker et al. (2010), highlighted
as a yellow and black dashed line. The CO-imaged HCGs are overplotted with
the color of the point representing the level of SF suppression, the size of the
points representing the mass of the molecular reservoir in each HCG galaxy,
and the shapes indicating whether the galaxy is a MOHEG from Cluver et al.
(2013). Among the labeled HCG galaxies, squares represent MOHEGs
(L LH ,warm 7.7 mPAH2 m > 0.04) and circles non-MOHEGs. HCGs with the

strongest suppression tend to be those that occupy the infrared gap in Spitzer

color space.
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frequency, Ω. If we assume that all disks have equivalent

scale heights to the Milky Way (300 pc; Burton 1971;

Malhotra 1995), the rotation frequency, Ω, simplifies to:

G
H

3

4

mol

p
W =

S

where H is the disk scale height. In order for the disk to be

stable against collapse (Q = 1), assuming flat rotation, the

global molecular gas velocity dispersion must be
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Table 4 lists these values for each of the HCG galaxies in our
sample. Overall, the required gas velocity dispersions to
stabilize the disk of the suppressed systems are reasonable,
with the total injected turbulent energy representing ∼1% of
the total molecular kinetic energy (similar to what is seen in
radio galaxies; Guillard et al. 2012b). Comparing the required
turbulent injection to stabilize the disk to the extrapolated warm
H2 luminosity from Cluver et al. (2013), we find that in most
cases, LH ,warm2

is within a factor of 3 of the required turbulent
injection energy (save for HCG 96a and 96d, which is a known
LIRG and star-bursting system, which likely has a gravitation-
ally unstable disk). Many of the largest L LH ,warm turb2

values
being found in galaxies with the largest suppressions, though
there is also uncertainty in the extrapolation from the Spitzer
IRS footprint to the galaxy. The fact that the H2 luminosity,
which is likely driven by turbulence (Appleton et al. 2006;
Guillard et al. 2009, 2012a, 2012b; Cluver et al. 2013) is
comparable to the turbulent luminosity seems to indicate that
turbulence could indeed be the driver of the SF suppression that
we are seeing in these systems, especially given the large
contribution we expect from [C II] cooling (up to a factor of
2 larger than L ;H ,warm2

Guillard et al. 2015), which will be
discussed in detail in an upcoming paper (P. N. Appleton et al.
2015, in preparation).

Other mechanisms than turbulence could be responsible for
the suppression of SF in those groups, like alternative gas
heating or tidal disruption processes. The cosmic ray heating of
the ISM may be increased in interacting galaxies (Scalo &
Elmegreen 2004), but even in systems showing extreme H2 line
emission and SF suppression like Stephan’s Quintet and other
groups or galaxy interactions, this heating mechanism would
require an extremely high cosmic ray flux (Guillard
et al. 2009, 2012a; Peterson et al. 2012; Cluver et al. 2013).
Alternatively, the tidal field induced by the galaxy interaction
can be responsible for some expansion of the gas on the
external regions of the merger, and lower the average ISM

pressure (Struck 1999; Palouš 2005; Renaud et al. 2009), which
could reduce the SF efficiency locally. However this effect,
which depends on the geometrical configuration of the tidal
field and the relative position of the galaxy with respect to this
field, is difficult to quantify without a proper numerical
simulation of the interaction, and is generally thought to
globally increase the compressive mode of turbulence (e.g.,
Renaud et al. 2014).
Major mergers share many properties with HCGs, including

the presence of violent interactions. In particular, the violent
interactions that these galaxies are experiencing result in shocks
and turbulent gas (Cresci et al. 2009). Rather than suppressing
SF, most of these objects exhibit super-efficient (but short
timescale) SF (Sanders et al. 1991; Sanders & Mirabel 1996; U
et al. 2012; Lanz et al. 2013). The reason HCGs, which share
many of these properties, have been found with suppressed SF
rather than enhanced SF is possibly the result of the different
interaction timescales, larger scale environments, and gas
properties. The CO(1–0) imaged HCG galaxies in our sample
are not observed during a major merger, and they are gas-poor
relative to ULIRGs.
The observed HCG galaxies have molecular gas masses and

surface densities an order of magnitude smaller than what is
typically seen in interacting galaxies (Downes & Solomon 1998;
Iono et al. 2009). The molecular gas in many ULIRGS is more
compact compared to HCG galaxies as well (Bryant &
Scoville 1999; Wilson et al. 2008; Ueda et al. 2014). This likely
means that although turbulence can be a disruptive force, it is
also transient (∼1Myr; Guillard et al. 2009). Without a
continuous input of energy, cooling lines are able to dissipate
the turbulent energy rapidly, allowing the molecular gas in
ULIRGS to restart forming stars quickly, due to the higher gas
densities and shorter free-fall times.
The timescale over which the violent interaction is taking

place in major mergers is also short (≈108 year; Hopkins
et al. 2008; Lanz et al. 2014) compared to the total time in
which gravitational forces within the compact group impact
the individual galaxies (≈3 Gyr; Plauchu-Frayn et al. 2012).
In major mergers, the gravitational encounters taking place
involve only the two merging galaxies (Toomre &
Toomre 1972; Privon et al. 2013). The dynamics within
groups are much more complicated. HCG galaxies are
interacting with the intragroup medium, and their low density
gas is being ram pressure stripped (Rasmussen et al. 2008).
Unlike the coalescence timescale in major mergers, galaxies in
HCGs are undergoing sustained gravitational encounters with
the other group members, in which collisions do not necessarily
result in coalescence. This extends the timescale of turbulent
injection, possibly resulting in the differences observed
between major mergers and HCGs.
An in-depth analysis by Alatalo et al. (2014a) of one of the

most suppressed systems, HCG 57a, suggested that an ongoing
shock from a recent direct collision with HCG 57d has
continuously pumped turbulence into the system. H2 and far-
IR cooling lines have been unable to completely dissipate the
extra energy, leading to the observed SF suppression. Once the
shock has traversed the system (and thus is no longer pumping
energy into the molecular gas), H2, [C II], and other far-IR
cooling lines should efficiently cool the gas, allowing SF to
return to normal efficiency. It is possible that the group
environment will extend this timescale as the group members
continue to interact, shocking and expelling the interstellar
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media and ultimately transforming into early-type galaxies.

This would be consistent with the compact group evolution

picture suggested by Bitsakis et al. (2010) that older groups

contain a higher fraction of early-type galaxies.
While it appears we have identified a sample of galaxies

where turbulent energy has suppressed SF, the exact driver of

this turbulence remains undetermined. Herschel data of far-IR

cooling lines such as [C II] and [O I] will be able to advance our

understanding on the interplay between the molecular gas, SF

suppression, and cooling mechanisms, potentially providing us

with a deeper understanding of how turbulence can impact the

way in which galaxies form stars (P. N. Appleton et al. 2015, in

preparation).

4.3. SF Suppression in Warm H2-bright HCGs:
A Connection to Transition?

Figure 5 plots the stellar mass—SF main sequence for

normal star-forming galaxies (Wuyts et al. 2011), compiled

from the MAGPHYS-derived SFRs from SDSS DR7 (Abazajian

et al. 2009; Chang et al. 2015), with our CO-imaged objects

overplotted and color-coded by S. In this phase space, the

HCGs with the most SF suppression fall the farthest from

the main sequence, suggesting they are transitioning. Many

of the other (non-suppressed) galaxies sit on the relation,

including MOHEGs. In fact, the location of objects on the main

sequence seems to mirror the situation for Spitzer infrared

colors (Figure 4), strongly suggesting that the most suppressed

objects are also the ones that are currently transitioning

between the star-forming spiral and quiescent early-type

populations.

Figure 6 plots the CARMA-imaged HCG galaxies on

the optical and IR color–magnitude diagrams presented in
Alatalo et al. (2014b). The HCGs we have studied span a large

range of optical and IR colors, although they are generally

more massive than the underlying Galaxy Zoo distributions

(Lintott et al. 2008; Schawinski et al. 2014). One would expect

that the total molecular mass or molecular gas fraction might

be the determining factor of the position of the HCGs on
the color–magnitude diagrams, but that is not the case.

HCG 40c and 57a both contain large reservoirs of molecular

gas, while appearing in the optical green valley or red sequence

(compared to HCG 91a and 96a with equivalent molecular

mass, which are quite blue). In fact, Figure 6 shows that the

mass of the molecular reservoir does not determine the color of

the galaxy. Spearman rank tests were used to search for
correlations between S and other galaxy properties.The only

galaxy property significantly correlated with S was color.

Including HCG 68a, a Spearman correlation of −0.71 with a

p-value = 0.0044 was found when investigating S and u–r

color. If HCG 68a is removed, we find a S–(u–r) Spearman

correlation of −0.71 (equal to the test with HCG 68a included)

with a p-value = 0.0011. Without HCG 68a, S–([4.6]–
[12] μm) also shows a Spearman correlation of 0.80 with

a p-value = 0.0067. With or without HCG 68a, the optical

and IR colors were the only galaxy properties shown to

significantly correlate with S. The extreme IR colors of

HCG 68a might be due to a buried AGN.
These results seem to suggest that a galaxy does not need to

shed its ISM to then quench SF (the standard galaxy transition

picture; Hopkins et al. 2006) to morphologically transform.

Instead, changing the state of the molecular gas can act to

quench SF before the ISM has been completely shed. It is
thus possible that in many of our CO-imaged galaxies, the

molecular gas has been rendered infertile due to shocks

pumping turbulence into the system. The quenching of SF, and

the beginning of the transition across the green valley, occurs

before the galaxy loses the majority of its molecular ISM.

This is consistent with the findings of Leon et al. (1998) and

Martinez-Badenes et al. (2012) that HCG galaxies contain
comparable molecular gas reservoirs to isolated galaxies

(Lisenfeld et al. 2011; Saintonge et al. 2011a). Alatalo et al.

(2014b) posited that the IRTZ was a manifestation of evolution,

representing the stage in which a galaxy is actively shedding

its ISM, and that this phase follows SF quenching (traced by the

u–r colors). In this scenario, first the galaxies move toward

the elbow in Figure 6(b), where SF is suppressed, and then
they move into the IRTZ, where they quench SF and move to

the optical red sequence. The H I findings of Serra et al. (2012)

of that 40% of field early-type galaxies still contain non-

negligible reservoirs of neutral gas. New work on poststarburst

galaxies found that many poststarburst galaxies still contain

non-negligible molecular reservoirs (French et al. 2015;

Rowlands et al. 2015), confirming the suggestion that SF
quenching can take place before galaxies expel their molecular

interstellar media. It is currently unclear how often galaxies

transition in this fashion, but further observations of IRTZ and

poststarburst galaxies, combined with our new observations

of at least some HCG galaxies (certainly those that are warm

H2-bright and CO-bright), have shown that this “quenching

first” path contributes to the population of transitioning
galaxies.

Figure 5. Galaxy mass—star formation relation of a large sample of SDSS
galaxies (gray contours), with SFRs and stellar masses derived using MAGPHYS

(da Cunha et al. 2008; Chang et al. 2015), showing the so-called “star
formation main sequence” (Wuyts et al. 2011). Early-type galaxies are seen as
the tail of high mass, low SFR. The CARMA-imaged HCGs are also overlaid,
with colors coded based on their SF suppressions and symbol sizes based on
their molecular gas masses. It is clear from this plot that the HCG galaxies with
the most SF suppression are also the ones that are found to be farthest from the
star formation main sequence.
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The presence of suppressed objects within the IRTZ points
to a possible new method for identifying galaxies most likely to
be in a phase of inefficient SF, before the exhaustion of their
molecular gas. By directly imaging the CO in molecular gas-
rich galaxies that also appear in the IRTZ, we can pinpoint a
population of galaxies likely to exhibit SF suppression. This
result suggests that future studies might identify larger samples
of suppressed galaxies by selecting galaxies based on their
optical and IR colors. A larger sample of suppressed systems
thus allows us to study how the injection of turbulence not only
impacts the energy balance that dictates our SF laws (Krumholz
et al. 2012), but also allows us to study how the neutral ISM is

exhausted as a galaxy transforms from a spiral into an early-
type galaxy.

5. SUMMARY

1. We have used CARMA to map CO(1–0) of galaxies
within 12 HCGs, many with elevated warm H2 emission,
detecting molecular gas in 14 galaxies, and unresolved
3 mm radio continuum in 7 (consistent with the presence
of AGNs). Figures 7–18 show the molecular gas data for
each galaxy, including the moment0 map, moment1 map,
channel maps, PVDs, and integrated spectra. A

Figure 6. Early-type (red contours) and late-type (blue contours) galaxies from the Galaxy Zoo (Lintott et al. 2008; Alatalo et al. 2014b; Schawinski et al. 2014) are
compared to the HCGs. The color of the points represent the level of SF suppression, the size of the points correspond to the size of the molecular reservoir, and the
shapes indicate whether the galaxy is a MOHEG from Cluver et al. (2013). Squares represent MOHEGs and circles non-MOHEGs. (Top left) The stellar mass vs.
WISE [4.6]–[12] μm colors, overlaid with indigo lines defining the IRTZ. (Top right) The u–r vs. [4.6]–[12] μm sequence identified by Alatalo et al. (2014b), with
HCGs overplotted. (Bottom) The stellar mass vs. u–r colors of the Galaxy Zoo galaxies from Schawinski et al. (2014), overlaid with the segment defining the optical
green valley. The HCGs that are overplotted had both optical and IR colors derived from Bitsakis et al. (2014). The most suppressed galaxies are the most likely to be
in the WISE IRTZ and on or near the optical red sequence.
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comparison to the single-dish data from Lisenfeld et al.
(2014) shows that our observations have not resolved out
large fractions of the flux.

2. The molecular gas morphologies of our HCG galaxies
(using the metric set for the ATLAS3D galaxies in Alatalo
et al. 2013) indicate that HCGs are consistent with the
distribution of gas morphologies found in early-type and

spiral galaxies rather than ULIRGs (Wilson et al. 2008;
Ueda et al. 2014).

3. We have shown that a large proportion of our CO-imaged
HCG galaxies exhibit SF suppression (S) when plotted
relative to both the K–S relation (Kennicutt 1998) as well
as the universal SF law from Krumholz et al. (2012). The
mean SF suppression for this sample is áSñ ≈ 10 ± 5,

Figure 7. HCG 25. Channel map contours are in 1σ steps. Elements of this figure are described in Appendix C.
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and exhibits a bimodality. The most extreme objects
(HCG 25b, 40c, 57a, 79a and 82b) exhibit S  10, and
have molecular gas depletion timescales tdep � 10 Gyr.

4. The mean gas-to-dust ratio for the CO-imaged HCGs is
around 170, within the range found in normal galaxies
(Sandstrom et al. 2013; Rémy-Ruyer et al. 2014). We do
not believe that the observed S is due to an incorrect
LCO–M(H2) conversion factor (which would appear as a
highly discrepant gas-to-dust ratio in suppressed galaxies).

5. A non-negligible fraction of our CO-imaged HCG
galaxies contained substantial warm H2 emission (Cluver
et al. 2013), consistent with there being shocks injecting
substantial turbulence into these systems, and the
turbulent energy required to stabilize the molecular gas
against collapse appears to agree within an order of
magnitude with the warm H2 luminosity. As has been
seen in the Milky Way (Kauffmann et al. 2013),
NGC 1266 (Alatalo et al. 2015b), and 3C 326N (Guillard
et al. 2015), the additional turbulence could upset the
energy balance that dictates the rate of SF (Krumholz
et al. 2012), thereby suppressing SF.

6. HCGs with the most SF suppression are usually located
within the transition regions of optical and IR color space,
independent of the mass of the molecular reservoir. This
ties in well with work that indicates that galaxies are able
to transition in colors and quench SF before they have
shed their ISMs (Alatalo et al. 2014b; French et al. 2015;
Rowlands et al. 2015), showing how galaxies might
render their molecular reservoirs infertile before expelling
them. This could play an important role in understanding
the blue to red galaxy transition.

7. The u–r and WISE IRTZ colors, combined with a CO
detection, are also able to select the objects most likely to
exhibit SF suppression, providing an ideal sample
selection criterion with which to study this phenomenon.
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(Spain) grants P08-FQM-4205 and TIC-114.

Support for CARMA construction was derived from the
Gordon and Betty Moore Foundation, the Kenneth T. and
Eileen L. Norris Foundation, the James S. McDonnell
Foundation, the Associates of the California Institute of

Technology, the University of Chicago, the states of California,
Illinois, and Maryland, and the National Science Foundation.
This publication makes use of data products from the Wide-
field Infrared Survey Explorer, which is a joint project of the
University of California, Los Angeles, and the Jet Propulsion
Laboratory/California Institute of Technology, funded by the
National Aeronautics and Space Administration. The work is
also based, in part, on observations made with Herschel, a
European Space Agency Cornerstone Mission with significant
participation by NASA. This research has made use of the
NASA/IPAC Extragalactic Database (NED) which is operated
by the Jet Propulsion Laboratory, California Institute of
Technology, under contract with the National Aeronautics
and Space Administration. We acknowledge the usage of the
HyperLeda database (http://leda.univ-lyon1.fr).
Facilities: CARMA, Herschel, WISE.

APPENDIX A
DETERMINING THE AGN CONTRIBUTIONS WITHIN

CO(1–0) IMAGED HCG GALAXIES

In Table 1, we presented the AGN classifications of the
galaxies in our sample, based both in optical emission line
diagnostics as well as radio continuum. Such sources can
significantly contribute to the infrared emission of the galaxies,
leading to an overestimation of their SFRs, if they are not
accounted for. To disentangle the fraction of AGN contribution
in the total infrared luminosity we have fitted the galaxy
observed infrared (8–500 μm; purely dust emission) spectral
energy distributions with DECOMPIR (Mullaney et al. 2011).
This code simply fits the observed fluxes with sets of host-
galaxy + AGN component templates, and estimates the
contribution of the AGN to the total infrared luminosity. The
AGN templates are described by broken power-laws at around
40 μm that fall steeply above that. From this analysis we
find that only three of our sources have significant AGN
contribution at the infrared bands, HCG 68a with 9%, and
HCG 91a with 35%.

APPENDIX B
COMMENTS ON INDIVIDUAL GALAXIES

HCG 25b: Figure 7 shows that HCG 25b is an edge-on galaxy.
Deep optical imaging by Eigenthaler et al. (2015) also showed
that HCG 25b is interacting strongly with HCG 25f. A tidal tail
connects the two, and the polyaromatic hydrocarbon (PAH)

emission shows a small tidal feature. HCG 25b is also a MOHEG
(Cluver et al. 2013) and is a transitioning galaxy in the IR (i.e., it
lies in the optical red sequence as well as the Spitzer IR gap and
the WISE IRTZ). HCG 25b also likely contains an AGN,
classified through optical emission line diagnostics (Martińez
et al. 2010), and the presence of 1.4 GHz nuclear emission.30 The
molecular gas is morphologically classed as a disk.
HCG 40c: Figure 8 shows that HCG 40c is an edge-on

galaxy strongly detected with CARMA. While HCG 40c lies in
the red part of the WISE IRTZ, it is found in the optical green
valley, though near the red sequence. It also has a radio core
and optically identified AGN (Martińez et al. 2010). Two
Micron All-sky Survey (2MASS) imaging also shows that

30
Nuclear 1.4 GHz emission can also be due to SF (Condon 1992). Thus,

detecting 1.4 GHz emission in these objects does not confirm the presence of
an AGN without morphological confirmation (Best et al. 2005) and thus are
just suggestive of their presence.
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HCG 40c is tidally interacting with HCG 40e (Skrutskie
et al. 2006). The PVD of HCG 40c (Figure 8) also shows a
significant bar (seen as the large velocity structure with very
little position shift), similar to what was seen by Alatalo et al.
(2013) in several ATLAS3D early-type galaxies. This is likely
what is responsible for the slight appearance of broad wings
in the CO spectrum. Given the frequency with which bars
arise during gravitational encounters (Athanassoula 1996;

Athanassoula & Bureau 1999), it is unsurprising that HCG 40c
is morphologically classed as a bar+ring.
HCG 47a: Figure 9 shows that HCG 47a is an oblong spiral

(in both PAH and optical images from SDSS; York et al. 2000)
that is tidally interacting with HCG 47b. HCG 47a is also on
the cusp of being considered a MOHEG (L LH ,warm 7.7 mPAH2 m
= 0.035; Cluver et al. 2013). The center, while void of
molecular gas, contains a spectrally classified AGN (Stern &

Figure 8. HCG 40. Channel map contours are in 3σ steps.
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Laor 2012) as well as 1.4 GHz emission. The CO(1–0)

emission traces the oblong spiral, and so the molecular gas is

morphologically classified as both a ring and a spiral.
HCG 55c (Figure 10) is part of the chain of galaxies

VV 172/Arp 239.31 HCG 55 is the most distant HCG that we

have imaged with CARMA. The emission in this galaxy is

resolved and spans approximately 3 beam widths. HCG 55c

was not detected in 1.4 GHz or 3 mm continuum, and does not

have a published optical spectrum (to determine the presence

of an AGN). However, HCG 55c is at the edge of the Spitzer

gap, and is in both the optical green valley and the WISE

IRTZ. The molecular gas in HCG 55c is morphologically

classified as a disk.

Figure 9. HCG 47. Channel map contours are in 3σ steps.

31
It contains a galaxy with a highly discrepant redshift (HCG 55e,

v = 36,880 km s−1; Sargent 1968).
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Figure 10. HCG 55. Channel map contours are in 1σ steps.
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HCG 57a is found to have some of the most complex

molecular gas dynamics in the sample, including three distinct

kinematic components (Figure 11), and is interacting with

HCG 57d. HCG 57a is also a MOHEG (Cluver et al. 2013), and

an in-depth discussion of both HCG 57a and HCG 57d can be

found in Alatalo et al. (2014a). The molecular gas in HCG 57a

is morphologically classified as mildly disrupted.
HCG 57d (Figure 11) was not within the Spitzer IRS

footprint, and thus we do not have warm H2 information on this

source. An in-depth discussion of both HCG 57a and HCG 57d

Figure 11. HCG 57. Channel map contours start at ±2.5σ and are in 1σ steps. The PVD of 57d can be found in Figure 13.
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Figure 12. HCG 68. Channel map contours are in 1σ steps.
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can be found in Alatalo et al. (2014a). The molecular gas in
HCG 57d is morphologically classified as a ring.

HCG 68a (Figure 12) was previously un-detected by the
IRAM 30 m in the ATLAS3D survey (Young et al. 2011),

but was later detected by Lisenfeld et al. (2014). The
CARMA observation helps shed light on why this was
the case. The molecular gas in HCG 68a is not only
compact (unresolved by the CARMA beam), but also

Figure 13. HCG 79. Channel map contours are in 3σ steps.
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very broad (Δv ≈ 2000 km s−1). HCG 68a also appears to

have rotation velocities in its CO emission that makes it an
outlier on the Mgal–vrot,CO relation (Davis et al. 2011).
HCG 68a and HCG 68b were also both detected in 3 mm

continuum emission. DECOMPIR (Mullaney et al. 2011)

suggests that about 9% of the far-IR emission (Bitsakis
et al. 2014) originates from the AGN in this system. The
AGN in HCG 68a has an 2–10 keV X-ray luminosity of

Figure 14. HCG 82. Channel map contours are in 3σ steps.
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LX = 1.6 × 1040 erg s−1 (Evans et al. 2010), which could
account for the majority of the far-IR emission if the

obscuring column of molecular gas is sufficiently high
(which the CARMA observations suggest might be the

case). HCG 68a is also one of the strongest MOHEGs, with
L LH ,warm 7.7 mPAH2 m = 0.741, and is an outlier in IR color

space among the CO-imaged HCG galaxies. HCG 68a has
Spitzer colors corresponding to an early-type galaxy, though

Figure 15. HCG 91. Channel map contours are in 3σ steps.
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these colors might also be due to a buried AGN with very

few intermediate aged stars. HCG 68a is also the only

galaxy that is found with WISE colors completely consistent

with the elliptical sample (Alatalo et al. 2014b), but sits

within the optical green valley. The molecular gas in

HCG 68a is morphologically classified as a disk.

Figure 16. HCG 95. Channel map contours are in 3σ steps.
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HCG 79a (Figure 13), a member of Seyfert’s Sextet

(Seyfert 1951),32 is a near edge-on red early-type galaxy with

a prominent dust lane. HCG 79a is optically classified as

having an AGN and is found in the WISE IRTZ. The molecular

gas in HCG 79a is morphologically classified as a disk.

HCG 82b (Figure 14) is the only CO-imaged HCG that was

successfully detected in 3 mm continuum but not in 1.4 GHz

continuum. Despite this, there is an optically identified AGN

(Martińez et al. 2010), so the 3 mm continuum is most likely

due to an AGN. HCG 82b is a MOHEG (Cluver et al. 2013)

located in the red sequence, as well as the Spitzer gap and the

WISE IRTZ. Figure 14 shows HCG 82b contains a stellar bar,

Figure 17. HCG 96. Channel map contours are in 3σ steps. Channel maps and a PVD of 96c can be found in Figures 20 and 19, respectively.

32
Although HCG 79c later identified to be a background galaxy.
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Figure 18. HCG 100. Channel map contours are in 3σ steps.
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where the molecular gas does not appear aligned with the bar.

The lip seen at the edge of the molecular disk seems consistent

with a warp, and thus the molecular gas in this galaxy is

morphologically classified as mildly disrupted.
HCG 91a (Figure 15) is a nearly face-on spiral galaxy that is

blue in optical and IR colors, with the CO(1–0) being brightest

in the northeast quadrant of the galaxy. Deep Hα imaging from

Eigenthaler et al. (2015) seems to indicate that this might be the

location of a bow shock. It is the only galaxy in this survey

classified as a Seyfert 1 (Cluver et al. 2013). The deep optical

imaging of HCG 91a also indicates that it is undergoing a

significant interaction with HCG 91c (Eigenthaler et al. 2015),

showing multiple tidal tails, including one connecting the two

interacting galaxies. Vogt et al. (2015) also showed that the CO

and optical line velocities were offset from that of the H I.

HCG 91a has many different kinematic components but appears

to have a blueshifted line wing that runs directly north-to-south

from the nucleus of the galaxy. DECOMPIR (Mullaney et al. 2011)

suggests that up to 35% of the far-IR (Bitsakis et al. 2014) from

the center is due to an AGN. The molecular gas in HCG 91a is

morphologically classified as a spiral.
HCG 95c (Figure 16) mainly shows regular rotation, but the

CO(1–0) emission extends into the tidal tail between HCG 95a

and 95c, which is also seen prominently in the 8 μm non-stellar

emission in the channel map of Figure 16. Shells are also

present in the optical light. Spitzer IRAC colors place this

galaxy on the edge of the Spitzer IR gap closer to those of dusty

spirals, but its H2/PAH ratio indicates that it is a MOHEG

(Cluver et al. 2013). Unlike other transition galaxies, this one

has a high specific SFR. HCG 95c contains radio emission, and

is spectrally classified as an AGN (Martińez et al. 2010). The

molecular gas in HCG 95c is morphologically classified as

mildly disrupted.
HCG 96a (Figure 17) is the only CO-imaged HCG galaxy

that could be identified as containing an AGN solely from its

mid-IR spectrum (Cluver et al. 2013), that is also classified as

an AGN by optical spectroscopy (Martińez et al. 2010). Deep

optical imaging (Eigenthaler et al. 2015) shows that HCG 96a

is undergoing an interaction with HCG 96c, with multiple

tidal tails present, including stellar light connecting HCG 96a

and 96c (Verdes-Montenegro et al. 1997). Optical and WISE

IR colors are all consistent with a star-forming galaxy,

though this object is located in the AGN wedge in Spitzer

colors (Lacy et al. 2004). Figure 17 shows that the molecular

gas contains multiple components, including spiral structure,

a bar component and a ring. Thus the molecular gas in

Figure 19. PVDs of HCG 57d (top) and HCG 96c (bottom). The molecular gas in HCG 57d appears to be consistent with a ring (seen in PAH emission in Figure 11
and described in Alatalo et al. 2014a). The molecular gas in HCG 96c seems to be consistent with a rotating disk.

26

The Astrophysical Journal, 812:117 (29pp), 2015 October 20 Alatalo et al.



HCG 96a is morphologically classified as both a spiral and a
bar+ring.

HCG 96c (Figure 17) is interacting with HCG 96a, as
mentioned above, and appears in the optical green valley,
and has Spitzer and WISE colors consistent with star-forming
galaxies. The 1.4 GHz emission indicates that HCG 96c might
contain a radio-bright AGN. HCG 96c also has a broad
CO(1–0) spectrum, but that is possibly due to its edge-on
orientation. The molecular gas in HCG 96c is morphologically
classed as a disk.

HCG 100a (Figure 18) exhibits prominent spiral structure,
with prolific SF activity in its center (seen in optical light and
PAH emission in Figure 18). HCG 100a does not exhibit any
outward signs of interaction, such as tidal tails, and is identified
as star-forming in both optical and IR colors. HCG 100a is
spectrally identified as containing an AGN (Martińez
et al. 2010), consistent with its detection in 3 mm continuum
and 1.4 GHz emission. The majority of the molecular gas in
HCG 100a seems to be undergoing regular rotation, but there
also seems to be a minor-axis component that includes higher
velocities (seen as wings in the CO(1–0) spectrum), possibly
due to a bar or an outflow. Despite the presence of a putative
minor axis component of the molecular gas in HCG 100a, we
morphologically classify this molecular gas as a disk.

APPENDIX C
COMPLETE FIGURES FOR EACH HCG

Figures for each individual HCG are shown in Figures 7–18.
For each HCG, we show five figures, as well as an additional
figures for HCGs where CARMA detected two galaxies:
HCG 57d (Figure 19(a)) and 96c (Figures 19(b) and 20). The
outlined box in the image (white dotted line) represents the area
of the corresponding moment1 map. North is up and east is left
in all images.

Top left: The CO(1–0) integrated intensity (moment0) map
(white contours) overlaid on an optical 3-color image, either g,
r, i from the Sloan Digital Sky Survey (HCG 25, HCG 47,
HCG 57, HCG 68, HCG 79, HCG 82, HCG 95, HCG 96,
HCG 100), the Digitized Sky Survey (HCG 40, HCG 55), or
the Swift archive (HCG 91).
Top right: The CO(1–0) mean velocity (moment1) map,

overlaid with the moment0 map (white contours). The
velocities are relative to the systemic velocity of each source.
Middle left: The integrated CO(1–0) spectrum, which was

constructed by summing all pixels in each channel using the
moment0 mask as a clip mask.
Middle center and right: The PVD, taken by slicing the

CO(1–0) cube in a plane and summing over a specific region.
The moment0 map (middle center) outlines the PVD integra-
tion area (dashed black line for the center, dotted gray lines for
the boundaries), and the corresponding PVD shows the velocity
structure tangent to the velocity slice (middle right).
Bottom: The CO(1–0) channel maps are overlaid on the

Spitzer8 μm nonstellar emission. The Spitzer 8 μm nonstellar
maps were created by subtracting a scaled 3.6 μm map from
IRAC from the 8.0 μm IRAC map using the scale factor of
0.232 for late-type galaxies (Helou et al. 2004). The shading
corresponds to a signal-to-noise ratio of 3 in each channel
(except where noted otherwise), with additional contours in
either 1σ or 3σ steps. The panel that corresponds to the
systemic velocity has its velocity labeled in red.
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