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We discuss 4D Lagrangian descriptions, across dimensions IR duals, of compactifications of the
6D (D, D) minimal conformal matter theory on a sphere with arbitrary number of punctures and a particular
value of flux as a gauge theory with a simple gauge group. The Lagrangian has the form of a “star shaped
quiver”with the rank of the central node depending on the 6D theory and the number and type of punctures.
Using this Lagrangian one can construct across dimensions duals for arbitrary compactifications (any,
genus, any number and type of USp punctures, and any flux) of the (D, D) minimal conformal matter
gauging only symmetries which are manifest in the ultraviolet.
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Introduction.—Understanding the dynamics of strongly
coupled systems is one of the most fundamental problems
in theoretical physics. In the context of quantum field
theory (QFT) this often takes a guise of understanding the
low energy properties of an ultraviolet (UV) free system.
Although some of these properties are constrained by
quantities easily computed in the UV, using, e.g.,
‘t Hooft anomaly matching, a general understanding is
still lacking. For example, one can be interested in under-
standing when the low energy theory has an emergent
symmetry or when two different UV systems lead to the
same low energy dynamics. Thus, seeking new methods
and approaches to address such problems is of utmost
importance. One such approach is to utilize renormalization
group flows across different dimensions. In this Letter we
derive in complete detail following this method various low
energy properties of a large class of supersymmetric
strongly coupled theories in four dimensions.
The notion of infrared (IR) dualities across dimensions

describes the situation when two ultraviolet QFTs in
different dimensions flow in the IR to the same QFT.
See [1] for a recent review. As usual, one typically does not
rigorously derive such dualities, as these involve strong
coupling physics, but rather constructs a network of self-
consistent conjectures. For example, one can consider
compactifications of strongly coupled CFTs on Riemann
surfaces on one hand and dual QFTs defined explicitly in
two dimensions less. The latter theories then are naturally

labeled by the geometric data of the compactification. This
geometric labeling often leads to a geometric understanding
of properties, such as in-dimension IR or conformal dual-
ities and emergence of symmetry of the lower-dimensional
theories.
In this Letter we generalize some of the known across

dimensions dualities [2–5] to a large network of such
dualities. In particular, we construct 4D Lagrangian duals
of compactifications of ðDNþ3;DNþ3Þ minimal conformal
matter theories on spheres with punctures. Such theories
are expected to have conformal manifolds with S-duality
groups acting on them exchanging the various punctures.
Our construction has manifest symmetry under exchanging
the punctures and thus describes directly the S-duality
invariant locus of the conformal manifold. Moreover we
obtain duals to sphere compactifications with more than
two maximal punctures with puncture symmetries manifest
in the UV. Using these one can construct across dimensions
duals to compactifications on surfaces of arbitrary genera
with no need to rely on gauging of emergent symmetries,
contrary to other constructions [4,6]. Moreover, for a
general genus, values of flux, and numbers of punctures,
the 4D Lagrangian theory has the structure of a “star
shaped quiver theory,” reminiscent of 3D Lagrangians for
class S compactifications [7]. Contrary to the latter case the
rank of the central gauge node depends not just on the data
of the 6D theory but also on the topology of the compac-
tification surface.
D-type conformal matter on a sphere.—We consider a se-

quence of 6D (1, 0) conformal theories, the ðDNþ3;DNþ3Þ
minimal conformal matter [8], compactified on a Riemann
surface. These 6D theories are engineered by studying the
low energy dynamics of a singleM5-brane probing a DNþ3

singularity in M theory. We refer the reader to [3,6,9] for
discussions of facts about these 6D SCFTs we will quote
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below. We make the following conjecture which we will
next thoroughly explore. The theory across dimensions
dual to the compactification of ðDNþ3;DNþ3Þ minimal
conformal matter on a sphere with s minimal SU(2)
punctures, and certain value of flux to be discussed
momentarily, is the SUðsþ N − 1Þ gauge theory with
2N þ 6 fundamental fields Φi, 2s antifundamental fields
Qa

j (a ¼ 1;…; s − N þ 1, j ¼ 1;…; 2s, two fields in two
index antisymmetric representation A1;2, and a superpo-
tential,

W ¼
X2
I¼1

hijI Q
a
i Q

b
jA

I
ab; ð1Þ

with hijI being generic coupling constants. See Figs. 1
and 2. The symmetry preserved by this superpotential for
general couplings is Uð1Þu × SUð2N þ 6Þ × SUð2Þs. The
Uð1Þu × SUð2N þ 6Þ part of the symmetry is a subgroup of
the global G6d ¼ SOð4N þ 12Þ symmetry of the SCFT in
six dimensions. Each SU(2) factor will be associated with a
minimal puncture. The minimal punctures are defined by a
5D limit of the 6D SCFT such that the 5D effective field
theory description is a USpð2NÞ gauge theory, in terms of
which we consider boundary conditions at the puncture
preserving SUð2Þ ⊂ USpð2NÞ. The theory has an (s − 3)-
dimensional conformal manifold corresponding to the
complex structure moduli of the compactification surface.
On this conformal manifold there are special loci where the
symmetry enhances to various proper subgroups of
USpð2sÞ. We expect the theory to have an action of
S-duality group exchanging the punctures. We can think
of loci with enhanced symmetry as loci of collision of
punctures. (See [10] for similar effects in class S [11,12].)
Whenever l punctures collide the symmetry is enhanced as
SUð2Þl → USpð2lÞ. Starting with the maximal puncture,
with USpð2NÞ symmetry corresponding to the 5D gauge
group, and partially closing it by Higgs branch flows,
one can obtain punctures with symmetry USpð2nÞ for
n ∈ f1 � � �Ng. In particular thus the above theory can
describe spheres with any number and any types of USp
punctures [13]. For example taking s ¼ 3N it describes the
sphere theory with three maximal punctures. See Fig. 3.
Next we discuss arguments in favor of this conjecture. The
special case of s ¼ 2 and N ¼ 1 was discussed in [2],
s ¼ 2N and general N in [3], s ¼ 3 and N ¼ 1 in [4], and
s ¼ 4 with N ¼ 1 in [5].

The conformal manifold.—Let us analyze the conformal
manifold of the theory in Fig. 1. For this we need to
determine first the superconformal R symmetry as we have
an Abelian factor of global symmetry, Uð1Þu. We start with
the SUðs − N þ 1Þ gauge theory without turning on the
superpotential. This gauge theory is nonanomalous and
asymptotically free,

TrRfreeSUðs − N þ 1Þ2 ¼ sþ 1 − 3N
3

> 0; ð2Þ

given that s ≥ 3N. In particular for a sphere with three
maximal punctures, s ¼ 3N, we have an asymptotically
free theory. The theory has two nonanomalous U(1)
symmetries, Uð1Þu we defined above and Uð1Þv which
can be chosen such that the fundamentals have charge
1=2N þ 6 while antifundamentals have charge −ð1=2sÞ.
One can perform a-maximization [16] and find that the two
symmetries mix with the 6D R symmetry (see Fig. 2 for the
6D R-symmetry assignment). The superconformal R
charges of all the fields are above 1

3
and below 2

3
for all

the relevant ranges of the parameters s and N. In particular
the superpotential (1) is a relevant deformation. These
relevant deformations are in 2A ⊗ ASUð2sÞ, whereASUð2sÞ is
the two index antisymmetric irrep of SUð2sÞ and 2A is the
fundamental irrep of SUð2ÞA symmetry rotating the two
fields in the antisymmetric representation. We turn on first
the superpotential with one antisymmetric field, say A1, and
then the other one. At each step one would need to perform
a-maximization to determine the superconformal R sym-
metry. The first superpotential breaks the Cartan of the
SUð2ÞA and we have two Abelian symmetries which can
admix with the R symmetry. The SUð2sÞ symmetry is
broken to USpð2sÞ and as AdjSUð2sÞ ¼ AUSpð2sÞ þ SUSpð2sÞ
we are left with a relevant operator inAUSpð2sÞ, no marginal
operators, and symmetry Uð1Þ2 × USpð2sÞ × SUð2N þ 6Þ.
Turning on next the relevant operator in AUSpð2sÞ we
necessarily break USpð2sÞ to a subgroup, and generically

2N+6 s-N+1 2s

FIG. 1. The gauge theory across dimensions dual to compactifi-
cation on a sphere with s minimal punctures of the ðDNþ3;DNþ3Þ
minimal conformal matter theory.
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FIG. 2. The 2s antifundamental fields of the theory can be split
into s pairs with SU(2) symmetry. Each pair is associated with a
minimal puncture. In addition we have Uð1Þu × SUð2N þ 6Þ
global symmetry. The values denoted by R are 6D R-charge
assignments.
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to SUð2Þs. After the dust settles we are left with a
conformal manifold of dimension s − 3 on generic locus
of which Uð1Þu × SUð2N þ 6Þ × SUð2Þs symmetry is
preserved. We can, however, preserve a more general
subgroup, ⊗n

i¼1 USpð2siÞ provided
P

n
i¼1 si ¼ s, on sub-

loci of the conformal manifold. Insisting on turning on only
deformations preserving the above symmetries we will end
up with

s − 3 −
Xn
i¼1

ðsi − 1Þ ¼ n − 3; ð3Þ

exactly marginal deformations and marginal deformations
breaking this symmetry which are in antisymmetric irrep
for each factor of ⊗n

i¼1 USpð2siÞ. The number of exactly
marginal deformations preserving the symmetry is what
one would expect from having n punctures [with sym-
metries USpð2siÞ]. In particular note that cases of n ¼ 1 or
n ¼ 2 are special as then the dimension of the conformal
manifold would have become negative. However, this is not
a problem if our theory would be IR free, as happens when
s < 3N. In particular note that taking s ¼ 2N, n ¼ 2, and
s1 ¼ s2 ¼ N the model is an SUðN þ 1Þ gauge theory
suggested to correspond to two punctured spheres in [3].
Let us also note that the symmetries of the puncture above
can be USpð2nÞ with n > N. Let us refer to such punctures
as supramaximal ones [17].
Gluings and flux.—Given the conjecture above first we

can construct across dimensions dual to a sphere with three
maximal punctures by taking s ¼ 3N. The corresponding
theory is depicted in Fig. 3. Using this three punctured
sphere theory we can construct across dimensions duals of
compactifications on surfaces of any topology. Note that
the sphere theory has a natural set ofmoment map operators
[1], M ¼ Q · ϕ, which have the following properties: they
have 6D R charge equal to one; they are in the fundamental
irrep of the puncture symmetry; and they are in the
fundamental irrep of SUð2N þ 6Þ. Each component of
the moment map operator M is charged under a Cartan of
the 6D symmetry G6D ¼ SOð4N þ 12Þ. We can glue
surfaces together along two maximal punctures by gauging
the diagonal combination of the symmetries associated to
the two punctures and turning on a superpotential. There is
a choice of a superpotential,

W ¼
X
i∈S

MiM0
i þ

X
i∉S

ΦiðMi −M0
iÞ: ð4Þ

Here S is a subset of the 2N þ 6 components of the moment
maps, M and M0 are the moment maps of the two glued
punctures, and Φs are chiral fields in the fundamental
representation of USpð2NÞ. When S contains all the
moment maps the gluing is called S gluing and when it
is an empty set we call it Φ gluing. The type of gluing
determines whether the fluxes corresponding to the U(1)

symmetry of a component of the moment map are added (in
the case ofΦ gluing) or subtracted (in the case of S gluing).
S gluing two spheres with gþ 1 maximal punctures

together we obtain a genus g Riemann surface with
vanishing flux.As the following ‘t Hooft anomaly of the
puncture symmetry is

TrUð1ÞRUSpð2NÞ2 ¼ 1

2

�
s − 2N

s − N þ 1
− 1

�
ðs − N þ 1Þ

¼ −
N þ 1

2
; ð5Þ

the gauging is not anomalous. As we glue two copies of the
same theory together we also do not have aWitten anomaly.
Since the charges under the U(1) symmetry of the two
glued spheres are opposite, the Uð1Þu symmetry does not
mix with the R symmetry. The conformal anomalies are
then simply determined from the 6D R symmetries of the
various fields,

a¼ 3

16
ðg− 1ÞNð16N þ 9Þ; c¼ 1

8
ðg− 1ÞNð25Nþ 18Þ;

which matches perfectly with anomalies of ðDNþ3;DNþ3Þ
conformal matter compactified on genus g surface with no
flux [3,6,9]. Let us next analyze the dynamics of S gluing.
Taking a sphere with sminimal punctures and performing a
maximization, we obtain the following mixing of Uð1Þu
with the R symmetry,

Rsc ¼ R − qu
N þ 3

3ðN − s − 1Þð4N − sþ 8Þ
×
� ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

38N2 − 25Nsþ 44N þ 5s2 − 5sþ 8
p

þ 6N − 3s
�
:

The anomaly TrRscUSpð2NÞ2 is less than −ðN þ 1=2Þ for
s < 10N þ 2, vanishes for s ¼ 10N þ 2, and larger than
−ðN þ 1=2Þ for s > 10N þ 2. This means that the gauging
of USpð2NÞ is relevant for s < 10N þ 2, marginal for

2N+1 2N2N

2N+6

x y

2N
z

x

y

z

FIG. 3. An across dimensions dual of compactification on a
three punctured sphere.
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s ¼ 10N þ 2, and irrelevant for s > 10N þ 2. On the other
hand the R charge of the moment maps is bigger than 1 for
s < 10N þ 2, exactly 1 for s ¼ 10N þ 2, and smaller than
1 for s > 10N þ 2. This means that turning on the S-gluing
superpotential coupling the moment maps is irrelevant for
s < 10N þ 2, marginal for s ¼ 10N þ 2, and relevant for
s > 10N þ 2. Thus for s < 10N þ 2 we can first perform
the gauging, after which the superpotential will become
exactly marginal and then turn it on. For s > 10N þ 2 we
first turn on the superpotential after which the gauging
becomes exactly marginal and we perform it. For s ¼
10N þ 2 turning on the superpotential and the gauging
together makes them exactly marginal: note that the
superpotential and the gauge coupling are charged under
the same anomalous symmetry with opposite signs [19].
The dynamics of S gluing always leads to an SCFT. After S
gluing a pair of punctures of the two spheres the gaugings

and superpotentials involved in gluing the remaining
punctures become exactly marginal.
Finally, we would want also to Φ-glue two spheres

together to obtain the value of flux one should turn on
compactifying on a punctured sphere to obtain the theory in
Fig. 1. Φ gluing two spheres with gþ 1 maximal punctures
one obtains genus g surfacewith the flux being twice the flux
of the spheres. Here the charges of the moment maps of the
glued punctures are identified and thus there is a need to
perform a-maximization to determine the superconformal R
symmetry. Doing so one obtains that the anomalies are con-
sistent with the genus g surface having one unit of flux pre-
serving Uð1Þ×SUð2Nþ6Þ subgroup of the SOð4N þ 12Þ
symmetry of the six-dimensional theory [20].
We can compute the superconformal index [25] both for

S gluing andΦ gluing and we find the following result: say
for N ¼ 2 and genus g building the surface from 2g − 2
three punctured spheres,

S∶ 1þ qpð3g − 3þ ðg − 1Þð1þ 99þ 45u2 þ 45u−2ÞÞ þ � � � ;
Φ∶ 1þ qpð3g − 3þ ðg − 1Þð1þ 99Þ þ ðg − 1þ 2g − 2ÞÞ45u−2 þ ðg − 1 − 2gþ 2Þ45u2ÞÞ þ � � � ; ð6Þ

which is consistent with the S gluing having flux zero and
Φ gluing having flux 1 − g [26,27]. In particular we
observe that in S gluing the Uð1Þu × SUð2N þ 6Þ sym-
metry of the Lagrangian enhances to G6D ¼ SOð2N þ 12Þ
as expected. Let us also comment on the dynamics of the Φ
gluing of two spheres. We need to add 2N þ 6 fields Φ in
fundamental irrep of USpð2NÞ for each puncture and turn
on a cubic superpotentials coupling these to moment maps.
As the moment map R charges are close to one, the
superpotential is always relevant and we first turn it on.
The superpotentials identify all the symmetries of the two
glued theories and then the gaugings becomes exactly
marginal.
RG flows and dualities.—In addition to gluing surfaces

along punctures we can consider closing punctures. The
field theoretic procedure corresponding to closing a min-
imal puncture is as follows, see, e.g., Ref. [6]. First, we give
a VEV (vacuum expectation value) to a component of the
moment map operator, Ma

i ¼ ΦiQa which is a bifunda-
mental of SUð2N þ 6Þ × USpð2sÞ where i and a are the
indices for the fundamentals of SUð2N þ 6Þ and USpð2sÞ,
respectively. The VEV breaks the flavor symmetry down
to USpð2ðs − 1ÞÞ and also the gauge symmetry to
SUðs − N þ 1Þ → SUðs − NÞ. At the end of the RG flow,
we will have the theory of a sphere with s − 1 minimal
punctures together with extra gauge singlet fields corre-
sponding to Goldstone modes for the broken symmetries
which need to be removed by adding certain flip fields.
Along the RG flow, the flavor symmetry SUð2N þ 6Þ is
restored as the antisymmetric fields A1;2 decompose into
two antisymmetric fields and two fundamentals for the IR

SUðs − NÞ gauge symmetry and one combination of these
two fundamentals provides an additional fundamental field,
i.e., Φ2Nþ6, while the other combination of the two
fundamentals becomes massive due to the superpotential
(1) with nonzero VEV of the field Qs. Thus, the RG flow
indeed closes a minimal puncture leaving the sphere theory
with s − 1 minimal punctures. See Supplemental Material
[21] for more details.
The theory across dimensions dual to spheres with

punctures should possess conformal dualities exchanging
the positions of punctures on the surface. Note that the field
theory we constructed is manifestly invariant under such
exchanges of the SU(2) symmetry factors and thus it flows
to the locus on conformal manifold invariant under the
duality. In particular, all the supersymmetric partition
functions computed for this theory will be manifestly
invariant under exchanging the SU(2) factors. We can take
a sphere with s ¼ 2gN þ n and Φ-glue pairs of punctures
to form a surface of arbitrary genus g and arbitrary number
of minimal punctures n. This quiver theory will be “star-
shaped” and the central node is SUðð2g − 1ÞN þ s − 1Þ.
Moreover, we can change the value of flux by gluing in two
punctured spheres. Again we obtain a Lagrangian descrip-
tion manifestly invariant under the dualities exchanging
punctures which is reminiscent of 3D “star-shaped”
Lagrangians of [7].
Summary.—We have constructed here explicit across-

dimensions duals to all compactifications of a sequence of
6D SCFTs. In our construction of duals for general surfaces
we do not need to gauge emergent symmetries. Various
expected dualities are manifest. It would be interesting to
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understand whether similar 4D “star-shaped” construc-
tions can be obtained for across dimensions duals of
compactifciations of other examples of 6D SCFTs.
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