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Abstract. We introduce the notion of a star unfolding of the surface P of a three-dimensional
convex polytope with n vertices, and use it to solve several problems related to shortest paths on P.

The first algorithm computes the edge sequences traversed by shortest paths on P in time
O(n6β(n) logn), where β(n) is an extremely slowly growing function. A much simpler O(n6) time
algorithm that finds a small superset of all such edge sequences is also sketched.

The second algorithm is an O(n8 logn) time procedure for computing the geodesic diameter of
P: the maximum possible separation of two points on P with the distance measured along P.

Finally, we describe an algorithm that preprocesses P into a data structure that can efficiently
answer the queries of the following form: “Given two points, what is the length of the shortest
path connecting them?” Given a parameter 1 ≤ m ≤ n2, it can preprocess P in time O(n6m1+δ),
for any δ > 0, into a data structure of size O(n6m1+δ), so that a query can be answered in time
O((

√
n/m1/4) logn). If one query point always lies on an edge of P, the algorithm can be improved

to use O(n5m1+δ) preprocessing time and storage and guarantee O((n/m)1/3 logn) query time for
any choice of m between 1 and n.
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1. Introduction. The widely studied problem of computing shortest paths in
Euclidean space amidst polyhedral obstacles arises in planning optimal collision-free
paths for a given robot. In two dimensions, the problem has been thoroughly explored
and a number of efficient algorithms have been developed; see, e.g., [SS86, Wel85,
Mit93, HS93]. However, the problem becomes significantly harder in three dimen-
sions. Canny and Reif [CR87] have shown it to be NP-hard, and the fastest available
algorithm runs in singly exponential time [RS89, Sha87]. This has motivated re-
searchers to develop efficient approximation algorithms [Pap85, Cla87, CSY94, HS95]
and to study interesting special cases [MMP87, Sha87]. One of the most widely
studied special cases is computing shortest paths on the surface of a convex poly-
tope [SS86, MMP87, Mou90]; this problem was originally formulated by H. Dudeney
in 1903; see [Gar61, p. 36]. Sharir and Schorr presented an O(n3 logn) algorithm
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for this problem; this algorithm was subsequently improved by Mitchell, Mount, and
Papadimitriou [MMP87] to O(n2 logn) and then by Chen and Han to O(n2) [CH90].

In this paper we consider three problems involving shortest paths on the surface P
of a convex polytope in R

3. A shortest path on P is uniquely identified by its endpoints
and by the sequence of edges it encounters. Sharir [Sha87] proved that no more than
O(n7) distinct sequences of edges are actually traversed by the shortest paths on P.
This bound was subsequently improved to Θ(n4) [Mou85, SO88]. Sharir also gave
an O(n8 logn) time algorithm to compute an O(n7) size superset of shortest-path
edge sequences. However, computing the exact set of shortest-path edge sequences
seems to be very difficult. Schevon and O’Rourke [SO89] presented an algorithm
that computes the exact set of all shortest-path edge sequences and also identifies, in
logarithmic time, the edge sequences traversed by all shortest paths connecting a given
pair of query points lying on edges of P. The sequences can be explicitly generated,
if necessary, in time proportional to their length. Their algorithm, however, requires
O(n9 logn) time and O(n8) space.1

In this paper we propose two edge-sequence algorithms. The first is a simple O(n6)
algorithm to compute a superset of shortest-path edge sequences, thus improving the
result of [Sha87]; it is described in section 5. The second computes the exact set
of shortest-path edge sequences in O(n6β(n) logn) time, where β(·) is an extremely
slowly growing function. This second algorithm significantly improves the previously
mentioned O(n9 logn) algorithm. The computation of the collection of all shortest-
path edge sequences on a polytope is an intermediate step of several algorithms [Sha87,
OS89] and is of interest in its own right.

The second problem studied in this paper is that of computing the geodesic diam-
eter of P, i.e., the maximum distance along P between any two points on P. O’Rourke
and Schevon [OS89] gave an O(n14 logn) time procedure for determining the geodesic
diameter of P. In [AAOS90], we presented a simpler and faster algorithm whose
running time is O(n10). Here we improve this to O(n8 logn).

The third problem involves answering queries of the following form: “Given
x, y ∈ P, determine the distance between x and y along P.” Given a parameter
1 ≤ m ≤ n2, we present a method for preprocessing P, in O(n6m1+δ) time, into a
data structure of size O(n6m1+δ) for any δ > 0, so that a query can be answered in
time O((

√
n/m1/4) logn). If x is known to lie on an edge of the polytope, the pre-

processing and storage requirements are reduced to O(n5m1+δ) and the query time
becomes O((n/m)1/3 logn) for 1 ≤ m ≤ n. Constants of proportionality in the above
bounds depend on the choice of δ.

Our algorithms are based on a common geometric concept, the star unfolding.
Let x ∈ P be a point such that the shortest path from x to every vertex of P is
unique. Intuitively, the star unfolding of P with respect to this point is obtained
by removing these n shortest paths from P and embedding the remaining surface
isometrically in the plane. Remarkably, the star unfolding is isometric to a simple
planar polygon and the structure of shortest paths emanating from x on P corresponds
to a certain Voronoi diagram in the plane [AO92]. Together with relative stability of
the combinatorial structure of the unfolding as x moves within a small neighborhood
on P, these properties facilitate the construction of efficient algorithms for the above

1 A preliminary version of this algorithm [SO88] erroneously claimed a time complexity of
O(n72α(n) logn); this claim was corrected in [SO89]. Hwang, Chang, and Tu [HCT89] suggested
a more efficient procedure for solving the same problem, but the key claim (their second Lemma 6)
has yet to be convincingly established [Sch89, Chapter 5].
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three problems. Although all of the algorithms have high polynomial time complexity
as a function of n, they are not so inefficient in relation to the worst-case number of
edge sequences, Θ(n4).

Chen and Han [CH90] independently discovered the star unfolding and used it
for computing the shortest-path information from a single fixed point on the surface
of a polytope. The nonoverlap of the unfolding [AO92], however, was not known at
the time of their work.

This paper is organized as follows. In section 2, we formalize our terminology and
list some basic properties of shortest paths. Section 3 defines the star unfolding and
establishes some of its properties. Section 4 sketches an efficient algorithm to compute
a superset of all possible shortest-path edge sequences, and in section 5 we present an
algorithm for computing the exact set of these sequences; both algorithms are based
on the star unfolding. In section 6 we again use the notion of star unfolding to obtain
a faster algorithm for determining the geodesic diameter of a convex polytope. Section
7 deals with shortest-path queries. Section 8 contains some concluding remarks and
open problems.

2. Geometric preliminaries. We begin by reviewing the geometry of shortest
paths on convex polytopes.

Let P be the surface of a polytope with n vertices. We refer to vertices of P as
corners; the unqualified terms face and edge are reserved for faces and edges of P. We
assume that P is triangulated. This does not change the number of faces and edges
of P by more than a multiplicative constant but does simplify the description of our
algorithms.

2.1. Geodesics and shortest paths. A path π on P that cannot be shortened
by a local change at any point in its relative interior is referred to as a geodesic.
Equivalently, a geodesic on the surface of a convex polytope is either a subsegment
of an edge, or a path that (1) does not pass through corners, though it may possibly
terminate at them, (2) is straight near any point in the interior of a face, and (3) is
transverse to every edge it meets in such a fashion that it would appear straight if one
were to “unfold” the two faces incident on this edge until they lie in a common plane;
see, for example, Sharir and Schorr [SS86]. The behavior of a geodesic is thus fully
determined by its starting point and initial direction. In the following discussion we
disregard the geodesics lying completely within a single edge of P. Given the sequence
of edges a geodesic crosses and its starting and ending points, the geodesic itself can
be obtained by laying out, in order, the faces that it visits in the plane so that adjacent
faces share an edge and lie on opposite sides of it, and then by connecting the (images
of) the two endpoints with a straight-line segment. In particular, the sequence of
traversed edges together with the endpoints completely determine the geodesic.

Trivially, every shortest path along P is a geodesic and no shortest path meets a
face or an edge more than once. We call the length of a shortest path between two
points p, q ∈ P the geodesic distance between p and q, and we denote it by d(p, q).
The following additional properties of shortest paths are crucial for our analysis.

Lemma 2.1 (see Sharir and Schorr [SS86]). Let π1 and π2 be distinct shortest
paths emanating from x. Let y ∈ π1 ∩ π2 be a point distinct from x. Then either one
of the paths is a subpath of the other, or neither π1 nor π2 can be extended past y
while remaining a shortest path.

Corollary 2.2. Two shortest paths cross at most once.
Lemma 2.3. If π1, π2 are two distinct shortest paths connecting x, y ∈ P, each of

the two connected components of P \ (π1 ∪ π2) contains a corner.
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Proof. First, Lemma 2.1 implies that removal of π1 ∪ π2 splits P into exactly two
components. If one of the two components of P \ (π1 ∪ π2) contained no corners, π1

and π2 would have to traverse the same sequence of edges and faces. However, there
exists at most one geodesic connecting a given pair of points and traversing a given
sequence of edges and faces.

2.2. Edge sequences and sequence trees. A shortest-path edge sequence is
the sequence of edges intersected by some shortest path π connecting two points on
P, in the order met by π. Such a sequence is maximal if it cannot be extended in
either direction while remaining a shortest-path edge sequence; it is half-maximal if
no extension is possible at one of the two ends. It has been shown by Schevon and
O’Rourke [SO88] that the maximum total number of half-maximal sequences is Θ(n3).

Observe that every shortest-path edge sequence σ is a prefix of some half-maximal
sequence, namely, the one obtained by extending σ maximally at one end. Thus an
exhaustive list of O(n3) half-maximal sequences contains, in a sense, all the shortest-
path edge-sequence information of P. More formally, given an arbitrary collection of
edge sequences emanating from a fixed edge e, let the sequence tree Σ of this set be
the tree with all distinct nonempty prefixes of the given sequences as nodes, with the
trivial sequence consisting solely of e as the root, and such that σ is an ancestor of σ′

in the tree if and only if σ is a prefix of σ′ [HCT89]. The Θ(n3) bound on the number
of half-maximal sequences implies that the collection of O(n) sequence trees obtained
by considering all shortest-path edge sequences from each edge of P has, in turn, a
total of Θ(n3) leaves and Θ(n4) nodes in the worst case.

2.3. Ridge trees and the source unfolding. The shortest paths emanating
from a fixed source x ∈ P cover the surface of P in a way that can be naturally
represented by “unfolding” the paths to a planar layout with respect to x. This
unfolding, the “source unfolding,” has been studied since the turn of the century. We
will define it precisely in a moment. A second way to organize the paths in the plane
is the “star unfolding,” to be defined in section 3. This is not quite as natural and is
of more recent lineage. Our algorithms will be built around the star unfolding, but
some of the arguments do refer to the source unfolding as well.

Given two points x, y on P, y ∈ P is a ridge point with respect to x if there is
more than one shortest path between x and y. Ridge points with respect to x form
a ridge tree Tx embedded on P,2 whose leaves are corners of P, and whose internal
vertices have degree at least three and correspond to points of P with three or more
distinct shortest paths to x. In a degenerate situation where x lies on the ridge tree
for some corner p, then p will not be a leaf of Tx, but rather will become a degree-2
vertex in Tx; so in general not all corners will appear as leaves of Tx. We define a
ridge as a maximal subset of Tx consisting of points with exactly two distinct shortest
paths to x and containing no corners of P. These are the “edges” of Tx. Ridges are
open geodesics [SS86]; a stronger characterization of ridges is given in Lemma 2.4.
Fig. 1 shows two views of a ridge tree on a pyramid.

We will refer to a point y ∈ P as a generic point if it is not a ridge point with
respect to any corner of P. The maximal connected portion of a face (resp., an edge)
of P consisting entirely of generic points will be called a ridge-free region (resp., an
edgelet); see Fig. 2.

If we cut P along the ridge tree Tx and isometrically embed the resulting set in

2 For smooth surfaces (Riemannian manifolds), the ridge tree is known as the “cut locus” [Kob67].
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Fig. 1. Pyramid, front (a) and side (b) views. Shortest paths to five vertices from source x are
shown solid ; the ridge tree is dashed. Coordinates of vertices are (±1,±1, 0) for p1, p2, p4, p5, and
p3 = (0, 0, 4); x = (0, 3/4, 1). The ridges incident to p2 and p4 lie nearly on the edge p2p4.
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Fig. 2. Ridge-free regions for Fig. 1. Tp1 ∪ · · · ∪Tp5 are shown dashed (e.g., Tp3 is the “X” on
the bottom face). The ridge-free region containing x is shaded darker.

R
2, we obtain the source unfolding of [OS89].3 In the source unfolding, the ridges

lie on the boundary of the unfolding, while x lies at its “center,” which results in
a star-shaped polygon [SS86]; see Fig. 3. Let a peel be the closure of a connected
component of the set obtained by removing from P both the ridge tree Tx and the
shortest paths from x to all corners. A peel is isometric to a convex polygon [SS86].
Each peel’s boundary consists of x, the shortest paths to two “consecutive” corners
of P, p and p′, and the unique path in Tx connecting p to p′. A peel can be thought
of as the collection of all the shortest paths emanating from x between xp and xp′.
(The peel between xp1 and xp5 is shaded in Fig. 3.)

3 The same object is called U(P) in [SS86], “planar layout” in [Mou85], and “outward layout”
in [CH90]. For Riemannian manifolds, it is the “exponential map” [Kob67].
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Fig. 3. Source unfolding for the example in Fig. 1. Shortest paths to vertices are solid, polytope
edges are dashed, and ridges are dotted. One peel is shaded.

We need to strengthen the characterization of ridges from geodesics to shortest
paths, in order to exploit Corollary 2.2. This characterization seems to be new.

Lemma 2.4. Every ridge of the ridge tree Tx, for any point x ∈ P, is a shortest
path.

Proof. An edge π of the ridge tree is an (open) geodesic consisting of points
that have two different shortest paths to x [SS86]. Suppose π is not a shortest path.
Then, since it is composed of segments, it contains shortest paths, and in particular,
a shortest path π′ delimited by two points a, b ∈ π such that there is another shortest
path π′′ connecting them. Refer to Fig. 4. By Lemma 2.1, π′ ∩ π′′ = {a, b}. Let α1

and α2 be the two shortest paths from x to a, and let β1 and β2 be the two shortest
paths from x to b. Notice that, by Lemma 2.1, π′, α1, α2, β1, β2 do not meet except
at the endpoints. In particular, we can relabel these paths so that α2 and β2 lie in
the same connected component of P − (α1∪β1∪π′). There are two cases to consider.

Case 1. x 6∈ π′′. Thus, by Lemma 2.1, π′′ does not meet α1 or α2 except at a.
Similarly, π′′ does not meet β1 or β2 except at b. Thus, without loss of generality, we
can assume that π′′ lies in the portion ∆ of P bounded by π′, α1, and β1, and not
containing α2 or β2. Since α1, β1 are shortest paths from x to a and b, respectively,
their relative interiors do not intersect Tx. Moreover, π′ does not contain a vertex
of Tx, so ∆ does not contain any corner of P, as each corner is a vertex of Tx. On
the other hand, paths π′, π′′ ⊂ ∆ are distinct shortest paths connecting a to b, so
by Lemma 2.3 each of the two connected components of P \ (π′ ∪ π′′) has to contain
a corner of P. However, one of these components is entirely contained in ∆—a
contradiction.

Case 2. x ∈ π′′. As π′′ and α1 can be viewed as emanating from a and having
x in common, and π′′ extends past x, Lemma 2.1 implies that α1 is a prefix of π′′.
Similarly, α2 is a prefix of π′′, contradicting distinctness of α1 and α2.

Remark. Case 2 in the above proof is vacuous if x is a corner, which is the case
in our applications of this lemma.

As defined, Tx is a tree with n vertices of degree less than 3 and thus has Θ(n)
vertices and edges. However, the worst-case combinatorial size of Tx jumps from Θ(n)
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•x

b

π′

π′′

∆

β1

β2

α1
α2

π

a

Fig. 4. Illustration of the proof of Lemma 2.4. Here x is the source, and π a geodesic ridge,
with π′ ⊆ π a shortest path. The region ∆ cannot contain any vertices of P.

to Θ(n2) if one takes into account the fact that a ridge is a shortest path comprised
of as many as Θ(n) line segments on P in the worst case—and it is possible to exhibit
a ridge tree for which the number of ridge-edge incidences is indeed Ω(n2) [Mou85].
For simplicity we assume that ridges intersect each edge of P transversely.

3. Star unfolding. In this section we introduce the notion of the star unfolding
of P and describe its geometric and combinatorial properties. Working independently,
both Chen and Han [CH90, CH91] and Rasch [Ras90] have used the same notion, and
in fact the idea can be found in Aleksandrov’s work [Ale58, p. 226], [AZ67, p. 171].

3.1. Geometry of the star unfolding. Let x ∈ P be a generic point so that
there is a unique shortest path connecting x to each corner of P. These paths are
called cuts and are comprised of cut points (see Fig. 1). If P is cut open along
these cuts the result is a two-dimensional complex that we call the star unfolding Sx.
If isometrically embedded in the plane, the star unfolding corresponds to a simple
polygon. That the star unfolding can be embedded in the plane without overlap is by
no means a straightforward claim; it was first established in [AO92] as the following
lemma.

Lemma 3.1 (see Aronov and O’Rourke [AO92]). If viewed as a metric space with
the natural definition of interior metric, Sx is isometric to a simple polygon in the
plane (with the internal geodesic metric).

The polygonal boundary ∂Sx consists entirely of edges originating from cuts. The
vertices of Sx derive from the corners of P and from the source x. An example is
shown in Fig. 5. More complex examples will be shown in Fig. 7.

The cuts partition the faces of P into subfaces, which map to what we call the
plates of Sx. Since we assume the faces of P to be triangles, each plate is a compact
convex polygon with at most six edges; see Fig. 6(b). We consider these plates to be
the faces of the two-dimensional complex Sx. We assume that the complex carries
with it labeling information consistent with P.
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Fig. 5. Construction of the star unfolding corresponding to Fig. 1. Sx is shaded. The superim-
posed dashed edges show the “natural” unfolding obtained by cutting along the four edges incident
to p3. The A, B, C, D, and E labels indicate portions of Sx derived from those faces.
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Fig. 6. (a) Ridge tree, (b) plates, and (c) pasting tree corresponding to Fig. 5.

Somewhat abusing the notation, we will freely switch between viewing Sx as
a complex and as a simple polygon embedded in the plane. In particular, a path
π ⊂ Sx will be referred to as a segment if it corresponds to a straight-line segment
in this embedding. Note that every segment in Sx is a shortest path in the intrinsic
metric of the complex, but not every shortest path in Sx is a segment, as some shortest
paths in Sx might bend at corners.
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For p ∈ P, let U(p) be the set of points in Sx to which p maps; U is the “unfolding”
map (with respect to x). U(p) is a single point whenever p is not a cut point. A non-
corner point y ∈ P distinct from x and lying on a cut has exactly two unfolded images
in Sx. The corners of P map to single points. X = U(x) = {x1, . . . , xn} is a set of n
distinct points in Sx. If |U(p)| = 1, then, with a slight abuse of notation, we use U(p)
to denote the unique image of p as well. We can extend the definition of the map U
to sets in a natural way by putting U(Q) =

⋃
q∈Q U(q). In particular, we have the

following lemma.

Lemma 3.2 (see Sharir and Schorr [SS86]). For a point y ∈ P, any shortest
path π from x to y maps to a segment π∗ ⊂ Sx connecting an element of U(y) to an
element of U(x).

There is also a view of Sx that relates it to the source unfolding: the star unfolding
is just an “inside-out” version of the source unfolding, in the following sense. The
star unfolding can be obtained by stitching peels together along ridges; see Fig. 6(a).
The source unfolding is obtained by gluing them along the cuts; compare this with
Fig. 3. (A “peel” was defined in section 2.3 as a subset of P, but by slightly abusing
the terminology we also use this term to refer to the corresponding set of points in
the source or star unfolding.)

We next define the pasting tree Πx as the graph whose nodes are the plates of Sx,
with two nodes connected by an arc if the corresponding plates share an edge in Sx;
see Fig. 6(c). For a generic point x, Πx is a tree with O(n2) nodes, as it is the dual of
a convex partition of a simple polygon without Steiner points. (If x were a ridge point
of some corner, Sx would not be connected and Πx would be a forest.) Πx has only n
leaves corresponding to the triangular plates incident to the n images of x in Sx. By
Lemma 3.2, any shortest path from x to y ∈ P corresponds to a simple path in Πx,
originating at one of the leaves. Thus, the O(n3) edge sequences corresponding to the
simple paths that originate from leaves of Πx include all shortest-path edge sequences
emanating from x. In fact, there are O(n2) maximal edge sequences in this set, one
for each pair of leaves. This relation between Πx and the shortest-path sequences is
crucial in our sequence algorithms described in sections 4 and 5.

In the following sections we will need the concept of the “kernel” of a star un-
folding. Number the corners p1, . . . , pn in the order in which cuts emanate from
x. Number the n source images (elements of X = U(x)) so that ∂Sx is the cycle
x1p1x2 . . . pnx1 comprised of 2n segments (see Fig. 5). The kernel is a subset of Sx;
here it is more convenient to view Sx as a simple polygon. Consider the polygonal cy-
cle p1p2 . . . pnp1. We claim that it is the boundary of a simple polygon fully contained
in Sx. Indeed, each line segment pipi+1

4 is fully contained in the peel sandwiched be-
tween xi+1pi and xi+1pi+1. Thus, the line segments pipi+1 are segments in Sx, in the
sense defined above, and indeed form a simple cycle. The simple n-gon bounded by
this cycle is referred to as the kernel Kx of the star unfolding Sx. An equivalent way
of defining Kx is by removing from Sx all triangles 4pi−1xipi for i = 1, . . . , n. As
with Sx, we will alternate between viewing Kx as a complex and as a simple polygon
in the plane. Fig. 7 illustrates the star unfolding and its kernel for several randomly
generated polytopes.5 Note that neither set is necessarily star-shaped.

The main property of the kernel that we will later need is described in the following
lemma.

4 Here and thereafter pn+1 = p1, p0 = pn, xn+1 = x1, x0 = xn.
5 The unfoldings were produced with code written by Julie DiBiase and Stacia Wyman of Smith

College.
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Fig. 7. Four star unfoldings: n = 13, 13, 36, 42 vertices, left to right, top to bottom. The
kernel is shaded darker in each figure.

Lemma 3.3. The image of the ridge tree is completely contained within the kernel,
which is itself a subset of the star unfolding: U(Tx) ⊂ Kx ⊂ Sx.

Proof. Since Kx can be defined by subtraction from Sx, Kx ⊂ Sx is immediate.
The ridge tree Tx can be thought of as the union of the peel boundaries that do not
come from cuts. As peels are convex, these boundaries remained when we removed
triangles 4pi−1xipi from Sx to form Kx.

Aronov and O’Rourke [AO92] proved the following theorem.

Theorem 3.4. U(Tx) is exactly the restriction of the planar Voronoi diagram of
the set X = U(x) of source images to within Kx or, equivalently, to within Sx.

3.2. Structure of the star unfolding. We now describe the combinatorial
structure of Sx. A vertex of Sx is an image of x, of a corner of P, or of an intersection
of an edge of P with a cut. An edge of Sx is a maximal portion of an image of a cut
or an edge of P delimited by vertices of Sx. It is easy to see that Sx consists of Θ(n2)
plates in the worst case, even though its boundary is formed by only 2n segments, i.e.,



STAR UNFOLDING OF A POLYTOPE 1699

the images of the cuts. We define the combinatorial structure of Sx as the 1-skeleton
of Sx, i.e., the graph whose nodes and arcs are the vertices and edges of Sx, labeled
in correspondence with the labels of Sx, which are in turn derived from labels on P.
The combinatorial structure of a star unfolding has the following crucial property.

Lemma 3.5. Let x and y be two noncorner points lying in the same ridge-free
region or on the same edgelet. Then Sx and Sy have the same combinatorial struc-
ture.

Proof. Let f be the face containing the segment xy in its interior. The case when
xy is part of an edge is similar.

As the shortest paths from any point z ∈ xy to the corners are pairwise disjoint
except at z (cf. Lemma 2.1) and z is confined to f , the combinatorial structure of Sz
is uniquely determined by

(1) the circular order of the cuts around z, and
(2) the sequence of edges and faces of P met by each of the cuts.

We will show that (1) and (2) are invariants of Sz as long as z ∈ xy does not cross a
ridge or an edge of P. First, the set of points of f , for which some shortest path to a
fixed corner p traverses a fixed edge sequence, is convex—it is simply the intersection
of f with the appropriate peel with respect to p—implying invariance of (2).

Now suppose the circular order of the cuts around z is not the same for all
z ∈ xy. The initial portions of the cuts, as they emanate from any z, cannot coincide,
as distinct cuts are disjoint except at z. Hence there can be a change in this circular
order only if one of the vectors pointing along the initial portion of the cuts changes
discontinuously at some intermediate point z′ ∈ xy. However, this can happen only
if z′ is a ridge point with respect to a corner, and is therefore a contradiction.

This lemma holds under more general conditions. Namely, instead of requiring
that xy be free of ridge points, it is sufficient to assume that the number of distinct
shortest paths connecting z to any corner does not change as z varies along xy (this
number is larger than 1 if xy is a portion of a ridge).

Lemma 3.6. Under the assumptions of Lemma 3.5, Kx is isometric to Ky; i.e.,
they are congruent simple polygons.

Proof. Kx is determined by the order of corners on ∂Kx = p1p2, . . . , pnp1 and,
for each i, by the choice of the shortest path pipi+1, if there are two or more such
paths. The ordering is fixed once combinatorial structure of Sx is determined. The
choice of the shortest path connecting pi to pi+1 is determined by the constraint that
4pi−1xipi is free of corners.

Let R be a ridge-free region. By the above lemma, Sx can be embedded in the
plane in such a way that the images of the corners of P are fixed for all x ∈ R, while
the images of x in Sx move as x varies in R ⊆ P. This guarantees that Ky = Kx for
all x, y ∈ R. This is illustrated in Fig. 8. In what follows, we will assume such an
embedding of Sx and use KR to denote Kx for all points x ∈ R. Similarly, define Kε

for an edgelet ε.

3.3. The number of different unfoldings. For the algorithms described in
this paper, it will be important to bound the number of different possible combina-
torial structures of star unfoldings, as we vary the position of source point x, and
to compute these unfoldings efficiently (more precisely, compute their combinatorial
structure plus some metric description, parameterized by the exact position of the
source), as the source moves on the surface of the polytope. Two variants of this
problem will be needed. In the first, we assume that the source is placed on an edge
of P, and in the second the source is placed anywhere on P. In view of Lemma 3.5,
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Fig. 8. The star unfolding when the source x moves to y inside a ridge-free region. The
unfolding Sx (Fig. 5) is shown lightly shaded ; Sy is shown dotted. Their common kernel Kx = Ky

is the central dark region.

it suffices to bound the number of edgelets and ridge-free regions, respectively.

Lemma 3.7. In the worst case, there are Θ(n3) edgelets and they can be computed
in O(n3 logn) time.

Proof. Each edge can meet a ridge of the ridge tree of a corner at most once,
since ridges are shortest paths (recall that we assume that no ridge overlaps an edge—
removal of this assumption does not invalidate our argument but only adds a number
of technical complications). This gives an upper bound of n × O(n) × O(n) on the
number of edge-ridge intersections and therefore on the number of edgelets. An ex-
ample of a convex polytope with Ω(n3) edgelets is relatively easy to construct by
modifying the lower bound construction of Mount [Mou90].

To compute the edgelets, we construct ridge trees from every corner in n×O(n2)
time by n applications of the algorithm of Chen and Han [CH90]. The edgelets are
now computed by sorting the intersections with ridges along each edge.

Lemma 3.8. In the worst case, there are Θ(n4) ridge-free regions on P. They
can be computed in Θ(n4) time.

Proof. The overlay of n ridge trees, one from each corner of P, produces a
subdivision of P in which every region is bounded by at least three edges (cf. Fig. 2).
Thus, by Euler’s formula, the number of regions in this subdivision is proportional to
the number of its vertices, which we proceed to estimate.

By Lemma 2.4 ridges are shortest paths and therefore two of them intersect in
at most two points (cf. Corollary 2.2) or overlap. In the latter case no new vertex of
the subdivision is created, so we restrict our attention to the former. In particular,
as there are n×O(n) = O(n2) ridges, the total number of their intersection points is
O(n4). Refining this partition further by adding the edges of P does not affect the
asymptotic complexity of the partition, as ridges intersect edges in a total of O(n3)
points (cf. Lemma 3.3). This establishes the upper bound.

It is easily checked that there are Ω(n4) ridge-free regions in Mount’s example of
a polytope with Ω(n4) shortest-path edge sequences [Mou90]. Hence there are Θ(n4)
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ridge-free regions on P in the worst case.
The ridge-free regions can be computed by calculating the ridge tree for every

corner and overlaying the trees in each face of P. The first step takes O(n3) time,
while the second step can be accomplished in time O((r + n3) logn) = O(n4 logn),
where r is the number of ridge-free regions in P, using the line-sweep algorithm of
Bentley and Ottmann [BO79]. If computing the ridge-free regions is a bottleneck,
the last step can be improved to O(n4) by using a significantly more complicated
algorithm of Chazelle and Edelsbrunner [CE92]. (See also [CS89, Ba95].)

3.4. Encoding ridge trees. In section 3.1, we proved that the combinatorial
structure of Sx is the same for all points x in a ridge-free region. As x moves in a
ridge-free region, the ridge tree Tx changes continuously (in the Hausdorff metric) as
a subset of P. In this subsection, we prove an upper bound on the number of different
combinatorial structures of Tx as the source point x varies over a ridge-free region or
an edgelet. In fact, we are interested not so much in counting the number of distinct
ridge trees as we are in representing all possible ridge trees compactly to, for example,
extract all vertices that ever occur in the ridge trees. Apart from being interesting in
their own right, these results are needed in the algorithms described in sections 5–7.

Let R be a ridge-free region, and let x be a point in R. By Theorem 3.4, Tx
is the Voronoi diagram Vx of the set X = U(x) of images of x clipped to lie within
KR. Since ridge vertices do not lie on ∂Sx, all changes in Tx, as x varies in R, can
be attributed to changes in Vx. Thus it suffices to distinguish distinct combinatorial
structures of Voronoi diagrams Vx, x ∈ R. Here, by “combinatorial complexity” we
mean an enumeration of vertices, edges, and regions of the Voronoi diagram, together
with incidence relations between them.

Let X = U(x) = {x1, . . . xn}. For each xi = (xi1, xi2), let

fi(y) = d(xi, y) =
√

(xi1 − y1)2 + (xi2 − y2)2 ,

where (y1, y2) are the coordinates of a generic point y in the plane. Let

f(y) = min
1≤i≤n

fi(y)

be the lower envelope of the fi’s. Then Vx is the same as (the 1-skeleton of) the
orthogonal projection of the graph of f(y) onto the y1y2-plane, labeled with the
name(s) of the function(s) attaining the minimum at each point.

We introduce an orthogonal coordinate system in R and let x have coordinates
(s, t) in this system. Then positions of xi are linear functions of s, t of the form

(
xi1
xi2

)
=

(
ai
bi

)
+

(
cos θi sin θi
− sin θi cos θi

)(s
t

)
,(1)

where (ai, bi) are coordinates of xi when x is at the origin of the (s, t) coordinate
system in R, and θi defines the orientation of the ith image of R in the plane.

We now regard f and fi’s as 4-variate functions of s, t, y1, y2, and denote by
MR the (labeled) projection of the graph of f onto the (s, t, y1, y2)-plane. All possible
combinatorial structures of Vx, as x varies over the entire plane, are obviously encoded
in MR, as the diagram for x = (α, β) is simply the (1-skeleton) of the cross section of
MR by the 2-flat s = α, t = β. Let

gi(s, t, y1, y2) = (fi(y1, y2))
2 − (s2 + t2 + y2

1 + y2
2) .(2)
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Using (1) we obtain

gi(s, t, y1, y2) = C
(0)
i + C

(1)
i y1 + C

(2)
i y2 + C

(3)
i s+ C

(4)
i t+ C

(5)
i sy1 + C

(6)
i sy2

+C
(7)
i ty1 + C

(8)
i ty2,(3)

where, for each i, the Ci’s are constants that depend solely on ai, bi, and θi.
Let g(s, t, y1, y2) denote the lower envelope of the gi’s. Since g(s, t, y1, y2) =
(f(s, t, y1, y2))

2 − (s2 + t2 + y2
1 + y2

2), the projection of the graph of g is the same as
MR. Let

v1 = sy1, v2 = sy2, v3 = ty1, v4 = ty2(4)

and set

ḡi(s, t, y1, y2, v1, v2, v3, v4) = C
(0)
i + C

(1)
i y1 + C

(2)
i y2 + C

(3)
i s+ C

(4)
i t

+C
(5)
i v1 + C

(6)
i v2 + C

(7)
i v3 + C

(8)
i v4.(5)

Then every face of the graph of g is the intersection of the lower envelope of ḡi’s with
the surface defined by equation (4). Since each ḡi is an 8-variate linear function, by
the upper bound theorem for convex polyhedra, the graph of their lower envelope
has O(n4) faces of all dimensions (and in fact can be triangulated by using O(n4)
simplices). Hence the number of faces in MR is also O(n4). Using the algorithm of
Brönnimann, Chazelle, and Matoušek [BCM94], all the faces of this lower envelope,
and thus all the edges and vertices of MR, can be computed in O(n4) time. (Using
the triangulation mentioned above, one could compute a representation of all faces
of MR at the same time by intersecting each simplex of the triangulation with the
surface (4). Our algorithms will need only the edges and vertices of MR, however.)
Putting everything together, we conclude with the following lemma.

Lemma 3.9. All the ridge trees for source points lying in a ridge-free region R can
be encoded in a single lower envelope MR whose combinatorial complexity is O(n4).
Moreover, the edges and vertices of MR can be computed in time O(n4).

Remark. The only reason for assuming in the above analysis that x stays away
from the boundary of R was to ensure that the vertices of the Voronoi diagram avoid
the boundary of KR. However, it is easy to verify that when x is allowed to vary over
the closure of R, Voronoi vertices never cross the boundary of KR but may touch it
in limiting configurations. Thus the same analysis applies in that case as well.

If the source point moves along an edgelet ε rather than in a ridge-free region, we
can obtain a bound on the number of different combinatorial structures of ridge trees
by setting t = 0 in (1). Proceeding in the same way as above, each gi now becomes

gi(s, y1, y2) = C
(0)
i + C

(1)
i y1 + C

(2)
i y2 + C

(3)
i s+ C

(5)
i sy1 + C

(6)
i sy2 .

Again, we define g as the lower envelope of gi’s, and the subdivision Mε as the labeled
projection of the graph of the lower envelope g. Let v1 = sy1, v2 = sy2, and set

ḡi(s, y1, y2, v1, v2) = C
(0)
i + C

(1)
i y1 + C

(2)
i y2 + C

(3)
i s+ C

(5)
i v1 + C

(6)
i v2 .(6)

Since ḡi is now a 5-variate linear function, by the upper bound theorem, the number
of faces in Mε is O(n3). A similar bound was proved earlier in [GMR91]. Since the
lower envelope of ḡi’s can be computed in O(n3) time [BCM94], the vertices and edges
of Mε can also be computed in time O(n3). Hence we obtain the following.
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Lemma 3.10. All the ridge trees that occur as the source point moves on an
edgelet ε can be represented as an envelope Mε of n trivariate functions; its complexity
is O(n3), and its edges and vertices can be computed in O(n3) time.

Remark. Only a portion of MR (resp., Mε) is relevant to our analysis of ridge
trees. Recall that it encodes the diagrams Vx for all x. However, we are interested
only in x ∈ R (resp., x ∈ ε) and not all of Vx but just the portion contained in KR

(resp., Kε). Hence only those points (s, t, y1, y2) ∈ MR (resp., (s, y1, y2) ∈ Mε) are
relevant for which (s, t) ∈ R (resp., s ∈ ε) and (y1, y2) ∈ KR (resp., (y1, y2) ∈ Kε).
When we make use of the information stored in MR and Mε at a later point in the
computation, we will have to “filter out” irrelevant features. This issue is addressed
later in section 5.

4. Edge sequences superset. In this section we describe an O(n6) algorithm
for constructing a superset of the shortest-path edge sequences, which is both more
efficient and conceptually simpler than previously suggested procedures, and which
produces a smaller set of sequences.

Observe that all shortest-path edge sequences are realized by pairs of points lying
on edges of P—any other shortest path can be contracted without affecting its edge
sequence so that its endpoints lie on edges of P. Let x be a generic point lying on an
edgelet ε. As mentioned in section 3.1, the pasting tree Πx contains all shortest-path
edge sequences that emanate from x. Moreover, by Lemma 3.5 Πx is independent of
choice of x in ε; therefore we will use Πε to denote Πx for any point x ∈ ε. The set
of O(n3) pasting trees {Πε | ε is an edgelet}, each of size O(n2), contains an implicit
representation of a set of O(n6) sequences (O(n5) of which are maximal in this set),
which includes all shortest-path edge sequences that emanate from generic points.

Algorithm 1. Sequence trees.

for each edge e of P do
Σe = ∅.
for each edgelet endpoint v ∈ e do

Compute shortest-path edge sequences Σv emanating from v.
Σe = Σe ∪ Σv.

for each edgelet ε ⊂ e do
Compute Πε.
for each maximal sequence σ ∈ Πε do

Σe = Σe ∪ {σ}.
Te = the trivial sequence tree consisting of just e.
for each sequence σ ∈ Σe do

Traverse σ, augmenting Te.
Stop if σ visits the same edge twice.

Te is the sequence tree containing shortest-path edge sequences
emanating from e.

Hence we can compute a superset of shortest path edge sequences in three steps:
First, partition the points on the edges of P into O(n3) edgelets in time O(n3) as
described in Lemma 3.7. Second, compute shortest-path edge sequences from the
endpoints of each edgelet, using Chen and Han’s shortest-path algorithm. Next,
compute the star unfolding from a point in each edgelet, again using the shortest-



1704 P. AGARWAL, B. ARONOV, J. O’ROURKE, AND C. SCHEVON

path algorithm. The total time spent in the last two steps is O(n5). Finally, this
representation of edge sequences is transformed into O(n) sequence trees, one for
each edge (cf. section 2.2); see Algorithm 1 for pseudocode. For each pasting tree Πε,
we separately traverse Πε from each of its leaves, so we spend O(n3) time per pasting
tree. Hence the total time spent is O(n6). We thus obtain Theorem 4.1.

Theorem 4.1. Given a convex polytope in R
3 with n vertices, one can construct,

in time O(n6), O(n) sequence trees that store a set of O(n6) edge sequences, which
include all shortest-path edge sequences of P.

Remarks. (i) Note that our algorithm uses nothing more complex than the algo-
rithm of Chen and Han for computing shortest paths from a fixed point, plus some
sorting and tree traversals. It achieves an improvement over previous algorithms
mainly by reorganizing the computation around the star unfolding.

(ii) The sequence-tree representation for just the shortest-path edge sequences
is smaller by a factor of n2 than our estimate on the size of the set produced by
Algorithm 1 (cf., section 2.2), but computing it efficiently seems difficult. In addition,
it is not clear how far the actual output of our algorithm is from the set of all shortest-
path edge sequences. We have a sketch of a construction for a class of polytopes that
force our algorithm to produce Ω(n5) non–shortest-path edge sequences.

5. Exact set of shortest-path edge sequences. In this section, we present
an O(n3β(n) logn) algorithm for computing the exact set of maximal shortest-path
edge sequences emanating from an edgelet. Here β(·) is an extremely slowly growing
function asymptotically smaller than log∗ n. Running this algorithm for all edgelets
of P, the exact set of maximal shortest-path edge sequences can be computed in time
O(n6β(n) logn), which is a significant improvement over Schevon and O’Rourke’s
O(n9 logn) algorithm [SO89].

Let ε be an edgelet. For the purposes of this section we consider Sx embedded in
the plane so that Kx = Kε does not move as x varies along ε. So on the one hand, Kε

is a fixed simple n-gon in the plane and on the other hand it is a complex constructed
of O(n2) convex pieces of faces of P. By analogy with Sx, we call these pieces plates
of Kε. A plate of Kε is fully contained in a plate of Sx for any x ∈ ε. This latter
plate may change its shape as x moves in ε but always corresponds to the same node
of the pasting tree Πx = Πε. Moreover, there is at most one plate of Kx in a plate
of Sx, as a plate of Kx is obtained from a convex set (a plate of Sx) contained in a
simple polygon (Sx) by cutting off n triangles (4xipi−1pi, for i = 1, . . . , n), each by
a chord (pi−1pi).

We are interested in computing the set Σε of those shortest-path edge sequences
(corresponding to paths emanating from points on ε) which are maximal over all points
in ε. In other words, given a sequence σ ∈ Σε, there is a point x ∈ ε and a shortest
path starting from x that traverses σ, and there is no point on ε from which there is
a shortest path that traverses an edge sequence that is an extension of σ. Recall that
each sequence in Σε corresponds to a path in the pasting tree Πε, originating from
one of its leaves. Each leaf of Πε corresponds to a triangular plate incident to one of
the n images of x. Let Σε,i ⊆ Σε denote the set of edge sequences that originate from
the ith leaf of Πε. If a sequence σ ∈ Σε,i is realized by a shortest path π emanating
from x ∈ ε, then π leaves x between xpi−1 and xpi, and it corresponds to a segment
in Sx emanating from xi, the ith image of x. The area swept by all of these segments
(for a fixed x) is exactly the ith peel Px,i. Px,i consists of the triangle 4xipi−1pi and

the “remainder” P̂x,i, which is the portion of the ith peel that lies in Kx = Kε. If we
concentrate on maximal shortest paths contained in Px,i, it is sufficient to consider
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those paths that end in P̂x,i, as any path that ends in 4xipi−1pi can be extended to

a point in P̂x,i while remaining a shortest path. Put Ci =
⋃

x∈ε P̂x,i; see Fig. 9a.

pi-1pi

xi

ε

Ci

χi

(a) (b)

Γi

pi-1pi

z

z'

ξ

η

K1
θ

Fig. 9. (a) Ci is the union of the peel remainders P̂x,i. Γi comprise the arcs traced by the
ridge vertices (shown dark). (b) γi is the θ-monotone upper envelope (solid) of Γi with respect to
pi; several key radial lines from pi are shown (dashed). γi is a superset of the “outer” envelope χi
(dark); here the arc η ∈ γi \ χi. A covering triangle 4zpi−1pi whose apex z covers z′ ∈ (∪Γi) ∩ ξ
is shown (solid).

Lemma 5.1. Let p, p′ ∈ Ci be two points lying in the same plate of Kε. Suppose
p ∈ P̂x,i and p′ ∈ P̂x′,i for some x, x′ ∈ ε. Then the edge sequences corresponding to
the segments xip and x′ip

′ are the same. The edge sequences are different if p, p′ ∈ Ci

are contained in different plates of Kε.

Proof. Let v be the node of Πε corresponding to the plate of Kε that contains p
and p′. Since there is a unique path from the ith leaf to v in Πε, the lemma follows.
Different plates of Kε, as observed above, correspond to different nodes of Πε, and
thus to different sequences of edges, essentially by definition of Πε.

By the above lemma, each point of Ci determines a unique shortest-path edge
sequence of Σε,i, and all points of Ci lying in the same plate of Kε determine the
same shortest-path edge sequence of Σε,i. We mark a node of Πε if the corresponding
plate of Kε intersects Ci. Let Πε,i be the minimal subtree of Πε rooted at the ith leaf
and containing all marked nodes. Then there is a one-to-one correspondence between
the sequences of Σε,i and the paths in Πε,i from its root to its leaves.

Lemma 5.2. Let σ be an edge sequence in Σε,i realized by a shortest path orig-

inating from point x ∈ ε. Then there is vertex p of P̂x,i such that the segment xip
realizes the sequence σ.

Proof. By Lemma 5.1, σ is realized by all points in the intersection of a unique
plate ξ of Kε with Ci. Choose a point p ∈ P̂x,i ∩ ξ such that |xip| is maximum among
all such points, where | . . . | denotes the Euclidean length of a segment. (Notice that
the maximum must be achieved, for otherwise there is a shortest path from xi whose
sequence extends that of σ.) If p is not a vertex of P̂x,i, then we can choose a point
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p′ ∈ P̂x,i ∩ ξ in a sufficiently small neighborhood of p such that |xip′| > |xip|, which

is a contradiction. Hence we can assume that p is a vertex of P̂x,i, as desired.

In view of this lemma, we can restrict our attention to the points of Ci that
correspond to the vertices of P̂x,i, for any x ∈ ε. Recall that each vertex of P̂x,i is
the image of a ridge vertex. A typical ridge vertex v is incident to three open peels
cj , ck, c`; if v has degree more than three and exists at more than just a discrete set
of positions of x ∈ ε, replace the triple of incident peels with a larger tuple in the
following discussion. As x moves along ε, the vertex traces an algebraic curve v = v(x)
in Kε. Let a lifetime of a ridge vertex v be a maximal connected interval ε′ ⊆ ε for
which x ∈ ε′ implies that v is a vertex of Tx. Let Γi be the set of arcs traced out
by ridge vertices that appear on the boundary of P̂x,i during their lifetimes (Fig. 9a);
set ni = |Γi|. It can be verified that the arcs in Γi corresponding to a ridge vertex,
defined by the triple cj , ck, c`, are the projections onto the xy-plane of those edges
of the subdivision Mε, defined in section 3.4, along which gj , gk, g` simultaneously
appear on the lower envelope g. (As we mentioned in section 3.4, Mε may contain
“irrelevant” features. In particular, we must first truncate each aforementioned arc
so that it corresponds to positions of the source on ε. Second, we must verify that
the Voronoi diagram vertex corresponding to the arc indeed yields a ridge vertex. It
is sufficient to check, for a single point of the curve traced out by the vertex as x
ranges over ε, that it lies inside Kε, as a ridge vertex cannot leave Kε. This is easily
accomplished by one point-location query per arc.)

We have previously observed that the maximal sequences of Πε,i are necessarily
realized by points on ∂Ci \ pi−1pi. In particular, points that lie in the interior of
Ci can be safely disregarded. We will now apply a similar procedure to points of
∪Γi. If we introduce polar coordinates with pi as the origin, each arc ηj ∈ Γi can be
regarded as a univariate (partial) function r = ηj(θ) (split ηj into a constant number
of θ-monotone arcs if it is not θ-monotone; this is possible since ηi is a portion of
an algebraic curve of small degree). Consider the graph of the upper envelope γi of
the functions ηj(θ) (Fig. 9b). Since each arc in Γi is algebraic of constant degree,
the upper envelope γi has O(niβ(ni)) breakpoints [ASS89]; here β(k) = 2α

s(k), s is
a constant depending on the maximum degree of arcs in Γi, and α(·) is the inverse
Ackermann function. Using a divide-and-conquer approach, the upper envelope can
be computed in time O(niβ(ni) logni); see [SA95].

We will now show that tracing γi through Kε is sufficient for computing Πε,i—
there is no need to examine the entire ∪Γi.

Lemma 5.3. Each sequence in Σε,i is determined by a point on γi.

Proof. We will show in fact that points on a subset χi of γi suffice to determine
all sequences. Say a point z “covers” a point z′ 6= z if the triangle 4zpi−1pi contains
z′. Call the set of points of ∪Γi not covered by any point of ∪Γi its outer envelope
χi. It is evident that χi ⊆ γi; see Fig. 9b.

Suppose there is a sequence σ ∈ Σε,i not realized by any point on χi. Let ξ be
the plate of Kε corresponding to σ. Thus some arc of Γi meets ξ, but χi does not.
Hence every point of (∪Γi) ∩ ξ is covered by a point of χi. Pick a point z ∈ χi that
covers some point z′ ∈ (∪Γi) ∩ ξ; see Fig. 9b. By the choice of z′, there is an x ∈ ε
such that the segment xz′ corresponds to a shortest path on P. Consider Kε \ ξ. It
consists of two or three simple polygons, one of which, say K1, is incident to pi−1pi
(the case when ξ touches pi−1pi is slightly different and can be handled by an easier
argument). We claim that z does not lie in K1. Indeed, 4z′pi−1pi is such that both
pi−1z

′ and piz
′ enter ξ and remain there. As 4zpi−1pi contains 4z′pi−1pi, removal
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of ξ separates Kε, and z 6∈ ξ and both pi−1z and piz must cross ξ and exit it. As
z ∈ χi, there is an x′ ∈ ε so that the segment x′z is (the image of) a shortest path.
However, since z 6∈ K1, this path crosses ξ, so the edge sequence it traverses is an
extension of σ, contradicting maximality of σ.

We have shown that each sequence is realized by a point of χi and, therefore, of
γi.

If a plate of Kε is intersected by an edge of γi, we call the corresponding node of
Πε visited by γi. The above lemma implies that the minimal subtree containing the
node corresponding to xi and all nodes visited by γi is the same as Πε,i. It is thus
sufficient to determine the nodes of Πε visited by γi.

Algorithm 2. Exact edge sequences.

Form edgelets.
for each edgelet ε do

Compute Mε.
Γ := Set of projections of edges in Mε.
Eliminate irrelevant features from Γ.
for each image xi do

Γi := Arcs of Γ at which gi appears on the lower envelope.
Compute upper envelope γi of Γi.
Compute and triangulate Kε[pi].
Compute the connected arcs ξ1, . . . , ξu.
for each 4 in the triangulation do

Compute Π4 := Πε ∩4.
Compute Π1

4,Π
2
4.

for each arc ξj ⊂ 4 do
Find nodes of Π1

4,Π
2
4 visited by ξj .

Note that γi is θ-monotone with respect to pi, and therefore γi lies in the portion
Kε[pi] of Kε visible from pi. Compute Kε[pi], in linear time [EA81], and triangulate
Kε[pi] into a linear number of triangles all incident to pi. Now partition γi into
connected portions ξ1, . . . , ξu, each fully contained in one of these triangles. This can
be done in time proportional to the number of breakpoints in γi and the number of
triangles involved and produces at most O(n) extra arcs, as γi is θ-monotone (with
respect to pi) and thus crosses each segment separating consecutive triangles in at
most one point. Since each triangle 4 is fully contained in Kε and thus encloses no
images of a vertex of P, the set of plates of Πε met by 4 corresponds to a subtree
Π4 of Πε of linear size, with at most one vertex of degree 3 and all remaining vertices
of degree at most 2. Hence Π4 can be covered by two simple paths Π1

4,Π
2
4 ⊆ Π4,

and they can be computed in linear time. For each ξj ⊂ 4, we determine the furthest
node that ξj reaches in Π1

4,Π
2
4 by binary search. Recall that ξj consists of a number

of algebraic arcs of constant degree. An intersection between ξj and a plate of Kε

can be detected in O(1) time per such arc, so the binary search requires only O(logn)
time per arc. The total time spent is thus O(niβ(n) logn + n2) over all triangles
of Kε[pi]. Repeating this procedure over all n leaves of Πε, the total time spent
in computing Σε is O(n3β(n) logn), as

∑
i ni = O(n3) by Lemma 3.10. The above

processing is repeated for each of the O(n3) edgelets ε. This completes the description
of the algorithm. It is summarized in Algorithm 2.

Theorem 5.4. The exact set of all shortest-path edge sequences on the surface
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of a 3-polytope on n vertices can be computed in O(n6β(n) logn) time, where β(n) =
o(log∗ n) is an extremely slowly growing function.

6. Geodesic diameter. In this section we present an O(n8 logn) time algorithm
for computing the geodesic diameter of P. As mentioned in the introduction, this
question was first investigated by O’Rourke and Schevon [OS89] who presented an
O(n14 logn) time algorithm for computing it. Their algorithm relies on the following
proposition.

Lemma 6.1 (see O’Rourke and Schevon [OS89]). If a pair of points x, y ∈ P
realizes the diameter of P, then either x or y is a corner of P, or there are at least
five distinct shortest paths between x and y.

Lemma 6.1 suggests the following strategy for locating all diametral pairs. We first
dispose of the possibility that either x or y is a corner in n×O(n2) = O(n3) time just
as in [OS89]. Next, we fix a ridge-free region R and let MR be the subdivision defined
in section 3.4. We need to compute all pairs of points x ∈ cl (R) and y∗ ∈ Kx such
that there are at least five distinct shortest paths between x and y, with U(y) = y∗.
By a result of Schevon [Sch89], such a pair x, y can be a diametral pair only if it is the
only pair, in a sufficiently small neighborhood of x and y, with at least five distinct
shortest paths between them. Such a pair of points corresponds to a vertex of MR.
Hence we use the following approach.

We first compute, in O(n4) time, all ridge-free regions of P (cf. Lemma 3.8).
Next, for each ridge-free region R, we compute KR, vertices of MR, and f(v) for all
vertices of MR (recall that f(v) is the shortest distance from v to any source image; cf.
section 3.3). Next, for each vertex v = (s, t, y1, y2) of MR, we determine whether (s, t)
lies in the closure of R and (y1, y2) ∈ KR. If the answer to both of these questions is
“yes,” we add v to the list of candidates for diametral pairs. (This step is exactly the
elimination of “irrelevant features” mentioned at the end of section 3.4. Once the two
conditions are verified, we know that (s, t) and (y1, y2) correspond to actual points
x, y on P and f(v) is exactly d(x, y).)

Finally, among all diametral candidate pairs, we choose a pair that has the largest
geodesic distance. See Algorithm 3 for the pseudocode.

For each ridge-free region R, KR can be computed in time O(n2) and preprocessed
for planar point location in additional O(n logn) time using the algorithm of Sarnak
and Tarjan [ST86]. (Once again, recall that we treat KR as a simple polygon and
use (y1, y2)-coordinate system there.) By Lemma 3.9, vertices of MR and f(v), for all
vertices of MR, can be computed in time O(n4). We spend O(logn) time for point
location at each vertex of MR, so the total time spent is O(n8 logn).

Theorem 6.2. The geodesic diameter of a convex polytope in R
3 with n vertices

can be computed in time O(n8 logn).

7. Shortest-path queries. In this section we discuss the preprocessing needed
to support queries of the following form: “Given x, y ∈ P, determine d(x, y).” We
assume that each face φ of P has its own coordinate system (e.g., a vertex of φ
is regarded as the origin and the two edges of φ incident to it are regarded as the
two axes), and that a point p ∈ P is specified by the face φ containing p and by
the φ-coordinates of p. Two variants of the query problem are considered: (1) no
assumption is made about x and y, and (2) x is assumed to lie on an edge of P.

Our data structure is based on the following observations. Let x, y ∈ P be two
query points. Suppose x = (s, t) is a generic point lying in a ridge-free region R and
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Algorithm 3. Geodesic diameter.

for each corner c of P do
Construct the ridge tree Tc with respect to c.
for each vertex v of Tc do

Add d(c, v) to the list of diameter candidates.

Compute the ridge-free regions.

for each ridge-free region R do
Compute MR and f(v) for all vertices v ∈MR.
Compute Sx for some x ∈ R.
Construct KR = Kx.
Preprocess KR for point location queries.
Preprocess cl (R) for point location queries.
for each vertex v = (s, t, y1, y2) of MR do

if (s, t) ∈ cl (R) and (y1, y2) ∈ Kx then
Add f(v) = d((s, t), (y1, y2)) to the list of diameter candidates.

Find a diametral candidate pair with the maximum geodesic distance.

y∗ = (y1, y2) is an image of y in Sx. If y∗ lies in the kernel KR, then

d(x, y) = f(s, t, y1, y2) = (g(s, t, y1, y2) + (s2 + t2 + y2
1 + y2

2))1/2 ,

where

g(s, t, y1, y2) = min
1≤i≤n

ḡi(s, t, y1, y2, v1, v2, v3, v4) ,

as defined in equations (2), (4), and (5). Let HR be the set of hyperplanes in R
9

corresponding to the graphs of ḡi’s (cf. equation (5))

(7)

hi : v5 = C
(0)
i + C

(1)
i y1 + C

(2)
i y2 + C

(3)
i s+ C

(4)
i t+ C

(5)
i v1 + C

(6)
i v2 + C

(7)
i v3 + C

(8)
i v4.

Then, computing the value of g(s, t, y1, y2) is the same as determining the first hyper-
plane of HR intersected by the vertical ray emanating from the point

(s, t, y1, y2, sy1, sy2, ty1, ty2,−∞)

in the positive v5-direction. The desired value is (v5 + s2 + t2 + y2
1 + y2

2)1/2, where v5

is the v5-coordinate of the intersection point.
On the other hand, if y∗ 6∈ Kx, then it lies in one of the triangles 4pi−1xipi and

d(x, y) = |xiy∗|. For a ridge-free region R, let κR denote the preimage of ∂KR on
P, i.e., U(κR) = ∂KR. The following lemma is crucial in answering queries when
y 6∈ U−1(KR).

Lemma 7.1. Let R be a ridge-free region or an edgelet, let φ be a face of P,
and let ∆ be a connected component of φ \ κR whose image is not contained in KR.
Then the sequence of edges traversed by the shortest-path π(x, y) is independent of the
choice of x ∈ R and y ∈ ∆.

Proof. For the sake of contradiction, suppose there are two points y, y′ ∈ ∆ such
that the sequences of edges traversed by π(x, y′) and π(x, y′′) are distinct. Then there
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must exist a point y ∈ y′y′′ with two shortest paths to x—to obtain such a point,
move y from one end of y′y′′ to the other and observe that the shortest path from x
to y changes continuously and maintains the set of edges of P that it meets, except at
points y with more than one shortest path to x. Thus y ∈ Tx, so U(y) ⊂ U(Tx) ⊂ KR.
However, the segment y′y′′ ⊂ ∆ as ∆ is convex, implying U(y) ⊂ U(∆) ⊂ Sx \KR,
which is a contradiction.

Similarly, if x′, x′′ ∈ R are such that the paths connecting these two points to
y ∈ ∆ traverse different edge sequences, there must exist x ∈ x′x′′, which is connected
to y by two shortest paths, again forcing y onto Tx and yielding a contradiction. The
lemma follows easily.

Data structure Based on the above observations, we can preprocess P as follows.
We partition every face φ of P into ridge-free regions in time O(n4) (see Lemma 3.8),
and preprocess the resulting subdivision of φ for planar point-location queries using
any standard algorithm [ST86]. The queries would use φ-coordinates. The total time
spent in this step is O(n4 logn).

Let R be a fixed ridge-free region. We construct the following data structures for
R. Choose an arbitrary point x ∈ R. Compute Kx = KR and the connected compo-
nents of φ\κR for each face φ of P. Again, we preprocess the resulting subdivision of
each face for planar point-location queries in φ-coordinates. We label each component
∆ of φ \ κR as to whether it lies in U−1(KR). If it does not, we choose a point y ∈ ∆
and compute the edge sequence σ for the shortest path from x to y. By Lemma 7.1,
σ is the same for all pairs x ∈ R and y ∈ ∆. We also compute the transformation,
corresponding to the edge sequence σ, which maps the φ-based coordinates of points
in ∆ to φ′-coordinates of the face of P containing R. This corresponds to laying
out in the plane the faces prescribed by σ from φ′ to φ so that d(x, y) becomes the
length of the straight-line segment connecting x and y. All transformations for re-
gions ∆ 6⊂ U−1(KR) can be computed in O(n2) time by a single depth-first traversal
of the shortest-path sequence tree from x, computed by the algorithm of Chen and
Han. If, on the other hand, ∆ lies in U−1(KR), the exact sequence of edges traversed
by a shortest path from x ∈ R to y ∈ ∆ depends on the choice of x and y; the
structure for determining it is described below. (Note that such sets ∆ correspond
exactly to “plates of KR” as in section 5.) However, in this case any y ∈ U−1(KR)
has a unique image y∗ ∈ KR, so for each ∆ ⊂ U−1(KR) we compute the coordinate
transformation U from the φ-coordinates, where φ is the face of P containing ∆, to
the coordinates in the planar embedding of KR (they were referred to as (y1, y2)-
coordinates in section 3.4). The sequences σ and the coordinate transformations U ,
for all ∆ ⊂ U−1(KR), can be computed in O(n2) time, by performing a depth-first
search on Πx (each node of Πx corresponds to a connected component ∆).

Next, let HR be the set of hyperplanes defined in (7). We preprocess HR into
a data structure, so that the first hyperplane of H intersected by a vertical ray em-
anating from a point with v5 = −∞ can be computed efficiently. Matoušek and
Schwarzkopf [MS93] (also see [AM92]) have proposed such a data structure, which,
given a parameter n ≤ u ≤ n4, can preprocess HR, in time O(u1+δ), into a data
structure of size O(u1+δ), so that a ray-shooting query can be answered in time
O( n

u1/4 logn). This completes the description of the data structures for R. We con-
struct these data structures for each ridge-free region R.

Since there are O(n4) ridge-free regions, the total time spent in constructing the
data structures is O(n4(n2 + u1+δ)).
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Answering a query. Let x, y ∈ P be a query pair. Let φx, φy be the faces
of P containing x and y, respectively. Assume first that x is a generic point. By
locating x in the point location data structure for φx, we identify in O(logn) time the
ridge-free region R that contains x. Next, we determine the connected component ∆
of φy \ κR that contains y by point location in φy. If ∆ ∩ U−1(KR) = ∅, we can use
the transformation stored at ∆ to compute d(x, y) in O(1) time. If ∆ ⊂ U−1(KR),
using the second data structure we compute the first hyperplane h of H hit by the ray
emanating from (ax, bx, ay, by, axay, axby, bxay, bxby,−∞) in the +v5-direction, where
(ax, bx) and (ay, by) are the coordinates of x and y, respectively. The coordinates
of x are in the φx-coordinate system and the coordinates of y are in the coordinates
system associated with the unfolding ofKR—the coordinate transformation from φy to
(y1, y2) is stored at ∆. Once we know h, d(x, y) = (g(ax, bx, ay, by)+a2

x+a2
y+b2x+b2y)

2

can be computed in O(1) time. The total time required is O((n/u1/4) logn).

Finally, if x is not a generic point then, as mentioned in the remark following
Lemma 3.9, we can use the data structures of any of the ridge-free regions whose
boundaries contain x. It is easy to see by a continuity argument that all shortest
paths from such a point are encoded equally well in the data structures of all of the
ridge-tree regions touching x.

Hence setting u = n2m, we can conclude with the following theorem.

Theorem 7.2. Given a polytope P in R
3 with n vertices and a parameter 1 ≤

m ≤ n2, one can construct, in time O(n6m1+δ) for any δ > 0, a data structure of
size O(n6m1+δ), so that d(x, y) for any two points x, y ∈ P can be computed in time
O((

√
n/m1/4) logn). Constants of proportionality depend on δ.

If x always lies on an edge, then H is a set of hyperplanes in R
6, so the query

time of the analogous vertical ray-shooting data structure in six dimensions is
O(n/u1/3 logn) for n ≤ u ≤ n2. Moreover, we have to construct only O(n3) dif-
ferent data structures, one for each edgelet, so we can conclude with the following
theorem.

Theorem 7.3. Given a polytope P in R
3 with n vertices and a parameter 1 ≤

m ≤ n, one can construct, in time O(n5m1+δ) for any δ > 0, a data structure of size
O(n5m1+δ), so that for any two points x, y ∈ P such that x lies on an edge of P one
can compute d(x, y) in time O((n/m)1/3 log2 n).

8. Discussion and open problems. We have shown that use of the star un-
folding of a polytope leads to substantial improvements in the time complexity of
three problems related to shortest paths on the surface of a convex polytope: find-
ing edge sequences, computing the geodesic diameter, and distance queries. Moreover,
the algorithms are not only theoretical improvements, but also, we believe, conceptual
simplifications. This demonstrates the utility of the star unfolding.

We conclude by mentioning some open problems:

1. Can one obtain an upper bound on the number of different combinatorial
structures of ridge trees better than O(n4)? Such an improvement would
yield a similar improvement in the time complexities of diameter and exact
shortest-path edge sequences algorithms.

2. Can one answer a shortest-path query faster if both x and y lie on some
edge of P? This special case is important for planning paths among convex
polyhedra (see Sharir [Sha87]).
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