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Abstract
Data structure corruptions are insidious bugs that reduce
the reliability of software systems. Constraint-based data
structure repair promises to help programs recover from
potentially crippling corruption errors. Prior work repairs
a variety of relatively small data structures, usually with
hundreds of nodes.

We present STARC which uses static analysis to repair
data structures with tens of thousands of nodes. Given a
Java predicate method that describes the integrity constraints
of a structure, STARC statically analyzes the method to
identify: (1) the recurrent fields, i.e., fields that the predicate
method uses to traverse the structure; and (2) local field
constraints, i.e., how the value of an object field is related to
the value of a neighboring object field. STARC executes the
predicate method on the structure and monitors its execution
to identify corrupt object fields, which STARC then repairs
using a systematic search of a neighborhood of the given
structure. Each repair action is guided by the result of the
static analysis, which enables more efficient and effective
repair compared to prior work. Experimental results show
that STARC can repair structures with tens of thousands of
nodes, up to 100 times larger than prior work.

STARC efficiency is probably not practical for very large
data structures in deployed systems, but opens a promising
direction for future work.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging—Symbolic execution;
D.2.5 [Software Engineering]: Testing and Debugging—
Error handling and recovery

General Terms Reliability

Keywords Static analysis, data structure repair, symbolic
execution
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1. Introduction
As software systems are growing in complexity, reliability
is becoming harder to achieve. Efforts to improve reliabil-
ity are directed toward design, testing, and validation [2].
All these activities are performed before the software is de-
ployed. Such approaches are fundamental for providing a
certain level of confidence in program correctness and ro-
bustness, yet they do not prevent errors and anomalies from
occurring dynamically in deployed software. For example, a
single bit flip, say due to a cosmic ray, can compromise the
safety of a Java Virtual Machine with high probability and
allow an intruder to run arbitrary code [19].

Usually, when an error occurs in a running application,
programmers terminate the application, debug, test, and re-
deploy it. While this halt-on-error approach is sometimes
necessary, e.g., during the execution of a security protocol,
there are situations where alternative approaches are more
desirable. For example, with corruption of persistent data,
such as a file system, a simple reboot is unlikely to help.
As another example, consider an intentional naming server
for service location in a dynamic network [1]. If the server
fails due to a malformed query, a continual subjection to the
query will force perpetual failures. This problem compounds
for deployed software, which cannot be promptly debugged
and re-installed.

An alternative to halt-on-error is to repair the state of the
program and let it continue. In several cases, this alterna-
tive allows systems to resume their correct behavior. For ex-
ample, a server that does not crash on a malformed query
but repairs it, can continue to correctly resolve well-formed
ones. Similarly, repairing a file system or a database can re-
cover valuable data. For deployed software, repair, even if it
degrades performance, is an attractive alternative.

Traditionally, special routines perform repairs [20, 36].
Recently, generic repair techniques have been introduced [10,
11, 12, 13, 28]. These techniques use constraints (given as
first-order logic formulas, imperative predicates, or asser-
tions), which describe desired properties of program states,
as a basis for repairing corrupt states that violate the prop-
erties. While generic techniques repair a variety of complex
data structures, their execution time limits them to relatively
small structures with up to a few hundred nodes.



This paper presents STARC, an assertion-based frame-
work for efficient and effective repair of data structures, that
may consist of tens of thousands of objects. STARC sys-
tematically explores a neighborhood of the given corrupt
structure using a backtracking search [8, 18, 21, 22] and
performs repair actions, i.e., mutations of object fields, to
transform the structure into one that satisfies the desired as-
sertion. STARC draws its key strength from a static analysis
that enables it to perform repair actions that are more likely
to correct the corruption.

Given a Java predicate method that represents the struc-
tural integrity constraints, the static analysis identifies two
key characteristics. One, it identifies a set of recurrent fields,
i.e., fields that the Java predicate primarily uses to traverse
its input structure, using a forward data-flow analysis [6].
Two, it identifies a set of local field constraints, i.e., how the
value of an object field is related to the value of a neighbor-
ing object field, using symbolic execution [17]. STARC uses
the result of the static analysis to (1) prioritize the order of
repair actions based on the role of the corrupt field (recur-
rent or not), which makes efficient local repairs of corrupt
fields and (2) monitor field accesses based on their relation-
ship with their neighboring fields, which enables effective
pruning of the search space.

We evaluate our repair algorithm by using STARC to re-
pair a set of complex data structures that violate their struc-
tural integrity constraints. Experiments show that STARC
feasibly repairs faulty structures with tens of thousands of
nodes. These results show that constraint-based data struc-
ture repair is promising and may be able to reach the perfor-
mance required for on-the-fly repair of in deployed systems.

We make the following contributions:

• Static analysis for repair. We use static analysis for
efficient search-based repair.

• Algorithm to repair data structures. We present an
algorithm that builds on previous work, and combines
static analysis with systematic search to enable efficient
and effective repair of structures using imperative predi-
cates.

• Implementation. We present the STARC tool that imple-
ments our repair algorithm.

• Evaluation. We evaluate our implementation using a va-
riety of subjects and present experimental results that
show two orders of magnitude improvement over the pre-
vious work.

2. Examples
In this section, we present two examples to describe the use
of our repair algorithm. The first example is a circular doubly
linked list. This example illustrates how STARC can repair
faults in the structure of the list, and how static analysis
improves the performance of repair. The second example is
an acyclic binary search tree. This example illustrates how

boolean repOk() {
// if the list is empty, size must be 0

L1. if (header == null)
L2. return size == 0 ;
L3. Set visited = new HashSet();
L4. visited.add(header);
L5. Node current = header;

L6. while (true) {
L7. Node n = current.next;

// next fields must not be null
L8. if (n == null)
L9. return false;

// prev must be the transpose of next
L10. if (n.prev != current)
L11. return false;
L12. current = n;
L13. if (!visited.add(n))
L14. break;

}
// reachability constraint

L15. if (visited.size() != size)
L16. return false;
L17. return true;

}

Figure 1. Class invariant for the DoublyLinkedList.

STARC repairs errors in the structure, as well as errors in
the values of the primitive fields of the tree to satisfy its data
constraints.

2.1 Doubly Linked List
Consider the following class declaration of a circular doubly
linked list:
class DoublyLinkedList {

Node header;
int size;

static class Node {
int element;
Node next;
Node prev;

}
}

The inner class Node models the entries in a list. Each list
has a header and a size field, and each node has an integer
element and two node pointers (next and prev). The size
field represents the number of unique node objects reachable
from the header node by following the next (or the prev)
fields of the nodes.

The structural integrity constraints (class invariant) of
DoublyLinkedList are: (1) circular structure along next;
(2) transpose relation between the next and prev fields;
and (3) number of nodes reachable from the header field
following next is cached in size.

The structural constraints of the DoublyLinkedList

can be written as a predicate that returns true if and only
if its input satisfies all the constraints. Following the litera-
ture, we term such a Java predicate repOk and for object-
oriented programs, we term structural invariants, class in-
variants [33]. The class invariant for the DoublyLinkedList
class is displayed in Figure 1.

To repair a doubly linked list, STARC analyzes the repOk
predicate and detects that next is the recurrent field, and that
the prev field is always equal to the transpose of the next
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Figure 2. Repairing a circular doubly linked list. The
dashed lines represent violations of the structural constraints
of a doubly linked list. (a) An erroneous structure with two
corruptions in the next field of node N2 and the prev field
of node N3. (b - g) Mutations that an assertion based repair
algorithm performs to repair the structure.

field. Then, given an erroneous structure STARC mutates
the structure to satisfy the constraints described in repOk.
STARC uses static analysis to scale the performance of pre-
vious assertion based repair algorithms [13, 17, 28, 39].

To illustrate, consider the DoublyLinkedList instance
in Figure 2(a). This list violates both the transpose constraint
between next and prev fields of nodes N2 and N3, as well
as the reachability constraint where the next field of node
N2 points to the node N1 rather than node N3. Figure 2(b-g)
shows the steps and mutations that an assertion-based repair
tool, Juzi [28], performs to repair the structure. To repair
the corruption in the next field of node N2, Juzi first sets
the field to null (Figure 2(b)). If null does not repair the
corruption, Juzi tries all the previously visited node during
traversal, (Figure 2(c,d)). Finally, Juzi tries one new non-
visited node (Figure 2(e)) which in this example repairs the
corruption in the next field. Juzi applies the same procedure
to repair the prev field, and thus, performs a total of 7 repair
actions in order to repair the corrupt list.

STARC, on the other hand, only performs 2 mutations,
Figures 2(e) and 2(h), to repair the corrupt structure. STARC
uses the static analysis result to prioritize the order of the
mutations on the corrupt field. For a recurrent field, STARC
gives a higher priority for selecting a new non-visited node
rather than a visited one or null, since recurrent fields are
used for traversal, and are highly likely to point to a new
node. For this example, STARC first sets the next field of
node N2 to the new non-visited node N3, and thus, repairs
the next field in one try. STARC also detects the transpose
relation between the prev and the next field using static
analysis. Using this information, STARC directly sets the
prev field of node N3 to node N2, and repairs the structure.
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Figure 3. Repairing a binary search tree. The dashed lines
represent violations of the structural constraints of a binary
search tree. (a) An erroneous tree with four faults in the
structure, and faults in the data. (b-d) The steps that STARC
takes to repair the structure of the tree, i.e., break all the
cycles. (e) The constraints on the order of the data computed
using symbolic execution. (f) Resulting tree after applying
our repair algorithm.

2.2 Binary Search Tree
The DoublyLinkedList example illustrates the use of
STARC to repair faults that violate the structural constraints
of a list. We now present an example that illustrates the use
of STARC in generating primitive values that satisfy the data
constraints of a data structure.

Consider the following class declaration of a binary
search tree, i.e., an acyclic graph that satisfies the search
constraints on the values of its nodes:
class BinarySearchTree {

Node root;
int size;

static class Node {
int elem;
Node left;
Node right;

} }

Each BinarySearchTree object has a root node and
stores the number of nodes in the field size. Each Node



object has an integer value called elem and has a left and
a right child. The class invariant of BinarySearchTree
can be formulated as follows.
boolean repOk() {

if (!isAcyclic()) return false;
if (!sizeOk()) return false;
if (!searchConstraintsOk()) return false;
return true;

}

When invoked on a BinarySearchTree object o, the
predicate repOk traverses the object graph rooted at o
and checks all the constraints that characterize a binary
search tree. If any constraint is violated the predicate returns
false; otherwise, it returns true. The implementation of
the helper methods is presented elsewhere [14].

To collect constraints on the order of the data in a binary
search tree, STARC uses symbolic execution [31]. After
repairing the faults in the structure of the tree, STARC solves
the data constraints and generates values that complete the
repair of the binary search tree.

To illustrate, consider the binary search tree in Fig-
ure 3(a). The dashed lines represent fields that violate the
acyclicity constraints. Figures 3(b-d) show the steps that
STARC takes to break the cycles in the structure. Follow-
ing a depth first traversal which accesses the left field
before the right field, STARC breaks a cycle each time
it encounters an already visited node. Figure 3(e) shows
the path condition after symbolically executing repOk on
the repaired structure. The path condition contains the con-
straints on the order of the data values. Figure 3(f) shows
the repaired structure after solving the path condition and
reordering the values in the tree.

This example illustrated how STARC repairs faults in
the structure as well as data. However, STARC could be
configured not to alter the data values, if the developers
preferred to only repair the structure (Section 6.5).

3. Background
This section gives a brief description of forward symbolic
execution and search-based repair.

3.1 Forward Symbolic Execution
Forward symbolic execution is a technique for executing a
program on symbolic values [31]. There are two fundamen-
tal aspects of symbolic execution: (1) defining semantics of
operations that are originally defined for concrete values and
(2) maintaining a path condition for the current program path
being executed. A path condition specifies necessary con-
straints on input variables that must be satisfied to execute
the corresponding path. As an example, consider the follow-
ing program that returns the absolute value of its input:
int abs(int i) {
L1. int result;
L2. if (i < 0)
L3. result = -1 * i;
L4. else result = i;
L5. return result; }

boolean repair(Object s, Pred repOk) throws Exception {
Search.initialize(s);
PathCondition.initialize();
boolean done = false;
do {

try {
if (repOk.invoke(s)) {

if (!PathCondition.isFeasible())
continue;

done = true;
break;

}
} catch (Exception e) {

if (e.getClass() != BacktrackException.class)
throw e;

}
} while (Search.incrementCounter());
return done;

}

Figure 4. Search-based repair algorithm.

To symbolically execute this program, we consider its be-
havior on a primitive integer input, say I . We make no as-
sumptions about the value of I (except what can be deduced
from the type declaration). So, when we encounter a condi-
tional statement, we consider both possible outcomes of the
condition. To perform operations on symbols, we treat them
simply as variables, e.g., the statement on L3 updates the
value of result to be −1 ∗ I . Of course, a tool for symbolic
execution needs to modify the type of result to note updates
involving symbols and to provide support for manipulating
expressions, such as−1∗I . Symbolic execution of the above
program explores the following two paths:
path 1: [I < 0] L1 -> L2 -> L3 -> L5
path 2: [I >= 0] L1 -> L2 -> L4 -> L5

Note that for each explored path, there is a corresponding
path condition (shown in square brackets). While execution
on a concrete input would have followed exactly one of these
two paths, symbolic execution explores both.

3.2 Search Based Repair
This section describes Juzi [13, 17, 28, 39], a search based
algorithm for assertion-based repair. Given a structure s

and a repOk method that represents desired structural in-
tegrity constraints such that !s.repOk(), Juzi performs
mutations on s to transform it into a structure s’ such that
s’.repOk().

Figure 4 gives an overview of the repair algorithm, which
performs a systematic search and uses symbolic execu-
tion. The class Search represents the backtracking engine;
PathCondition represents integer constraints that arise
during symbolic execution. The algorithm repeatedly in-
vokes repOk. Each invocation results in a repair on s. The
algorithm terminates when s is repaired, i.e., s.repOk()
returns true and the corresponding path condition is satis-
fiable, or when the search is exhausted.

The do-while loop performs a systematic search by im-
plicitly enabling non-deterministic field assignments within
a standard Java Virtual Machine: the repeated invocations
of repOk inside the loop body systematically tries different
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Figure 5. STARC framework for automatic data structure repair. The bold rectangles are the components that STARC adds on
previous work on assertion-based repair. The static analysis guides the search of the dynamic repair framework.

values for fields that repOk accesses. The first invocation
of repOk uses the original values for all fields. Each subse-
quent invocation modifies the value of the field that was ac-
cessed last by repOk according to the ordering of fields by
their first access. If all values for the current field have been
exhausted, the algorithm backtracks by resetting the original
value for the current field, and modifying the value of the
field accessed before the current one in the ordering.

Let repOk read field f of object o such that o.f == v
for some value v. There are two cases to consider: reference
and primitive field accesses.

References. Let f be a reference field of type T . The
algorithm non-deterministically assigns o.f :

• v, i.e., its current value;
• null, if v 6= null;
• value w of a type T , such that v 6= w and w has already

been encountered during repOk’s invocation;
• a new value of type T , if v is not different from all

values of type T already encountered during repOk’s
invocation.

Primitives. Let f be a primitive field of type T . The
algorithm non-deterministically assigns o.f :

• v, i.e., its current value;
• if T == int, a new symbolic value I , and adds the

constraint I 6= v to the current path condition;
• if T 6= int, a primitive value w (6= v) non-deterministically

chosen from domain(t)

Notice that a primitive field access may introduce sym-
bolic integer values. For these values, invocation of repOk
follows forward symbolic execution [29, 31], and satisfiabil-
ity of path conditions is checked using CVC Lite [3]. Since
reference as well as non-integer primitive fields initially have
concrete values, the first execution of repOk follows stan-
dard Java semantics for these values.

4. STARC
This section describes STARC, an efficient engine for per-
forming data structure repair. STARC incorporates both
static and dynamic analysis to provide an efficient frame-
work for automatic data structure repair. Figure 5 shows
the repair framework. STARC has two main modules, a
static analyzer and a dynamic search-based repair frame-
work. STARC takes two inputs: (1) the class declaration of
the desired structure, and (2) a predicate method repOk that
describes the structural integrity constraints. The repair pro-
cess is performed in three phases. First, STARC performs
static analysis on the structure declaration and repOk to de-
tect the recurrent fields of the structure (Section 4.1) and to
extract constraints on references that can be solved statically
(Section 4.2). Then, STARC uses the results of the static
analyzer to instrument the structure declaration. Structure
instrumentation includes replacing field access with invoca-
tions of ”get” methods, adding boolean variables to monitor
the initialization of the fields, and inserting calls into the
repair routines. Details are available elsewhere [29, 39]. Fi-
nally, STARC monitors the execution of the predicate and,
if necessary, triggers the repair framework which uses (1)
symbolic execution [31] to populate the constraints of prim-
itive values, (2) systematic search to repair the faults in the
structure [5], and (3) integer constraint solver to solve the
constraints on primitives (Section 4.3).

We next describe each of the components of STARC in
detail, and illustrate the performance advantage of STARC
over Juzi with an example (Section 4.4).

4.1 Detecting recurrent fields of a structure
The performance of Juzi depends on the number of repair
actions1 that are required to repair a structure. To scale the
performance of the search algorithm, STARC first imple-
ments a static analyzer that detects the recurrent fields of
the data structure. A key observation behind finding the re-

1 We use the term repair action to indicate a mutation that the algorithm
tries when exploring the space for repairing a field



current fields is that such fields satisfy the reachability con-
straint of the structure. A recurrent field is more likely to
point a new un-visited object rather than an already visited
one. STARC uses this information to prioritize the repair ac-
tions, as well as prioritizing fields to repair when exploring
the neighborhood of the faults.

Cahoon and McKinley [6, 7] proposed a data flow analy-
sis framework for detecting the recurrent fields for prefetch-
ing of linked structures. We use this analysis to prioritize the
repair actions. The problem is modeled as a forward data
flow analysis problem. We first define some terms that we
use to describe the components of the framework, then we
describe the data-flow framework and illustrate how STARC
uses the recurrent field information to prioritize repair ac-
tions.

4.1.1 Terminology
We start by defining the following terms:

• Information unit (IU): An information unit is the left
hand side of an assignment operation on objects or object
fields. An information unit is used to save and propagate
information in the data flow framework.

• Object field (F): An object field is a reference field in the
data structure.

• Recurrent status (RS): The recurrent status of an object
field can have one of three values: non recurrent (nr),
possibly recurrent (pr), and recurrent (r), where the el-
ements are ordered such that nr ≤ pr ≤ r.

• Information site (IS): An information site is a program
statement of interest.

For example, consider the repOk method for the doubly
LinkedList class (Section 2.1). The information units are
the local variables visited, current, n, and the implicit
variable this. The object fields are the header field of the
variable this, and the next and prev fields of the variables
current and n respectively. The information sites are lines
L3, L5, L7, L12, and L0, the entry of the method.

4.1.2 Data-flow framework
The basic data unit in the data flow framework is the infor-
mation tuple T :

T ⊂ (IU × F × IS ×RS)

The data flow framework includes:

Initialization: When initializing an information tuple, all
the components of the tuple are initialized to the bottom
element of their lattices. For an information unit, iu, the
bottom element is iu, for an object field, the bottom element
is null, for an information site, the bottom element is L0,
and for the recurrent status, the bottom element is nr.

The data-flow functions: The propagation of informa-
tion in the framework occurs at the information sites. We

consider two types of information patterns: equality patterns
and access patterns. Given an input set of information tuples,
Rin, we compute:

Equality patterns: Equality patterns take the form:
〈information unit〉 = 〈information unit〉′

GEN(iu = iu′, Rin) = {(iu, f, is, rs)|(iu′, f, is, rs) ∈ Rin}
KILL(iu = iu′, Rin) = {(iu, f, is, rs)}

Access patterns: Access patterns take the form:
〈information unit〉 = 〈information unit〉′.〈object field〉

GEN(iu = iu′.f, Rin) =

{
if {(iu′, null, L0, nr)} ∈ Rin

(iu, f, is, pr)
if {(o, f, is, pr)} ∈ Rin

(iu, f, is, r)

}

KILL(iu = iu′.f, Rin) = {(iu, f, is, pr), (iu, null, L0, nr)}

The meet operation: The meet operation (t) is defined
on sets of tuples. Given two sets T1 and T2, the meet opera-
tion is defined as follows:

T1 t T2 = {t|t ∈ T1 ∧ t 6∈ T2} ∪ {t|t 6∈ T1 ∧ t ∈ T2}
∪{(iu, f, is, rs1 t rs2)|(iu, f, is, rs1) ∈ T1
∧(iu, f, is, rs2) ∈ T2}

The transfer functions: The transfer functions are:

Ain(ip) =
⊔

p∈pred(ip)
Aout(p)

Aout(ip) = (Ain(ip)/KILL(ip, Ain(ip))) tGEN(ip, Ain(ip))

Starting at the entry of the analyzed method (repOk),
all the tuples are initialized. The algorithm proceeds by
propagating information and iterating until a fixed point is
reached. To illustrate, the first three iterations of the data
flow analysis for the DoublyLinkedList’s repOk are dis-
played in Table 1. The framework converges in the fourth
iteration.

At the end of the analysis, the field objects in the tu-
ples that have a recurrent status r are considered the recur-
rent fields of the class as used by repOk. For example, as
expected, in Table 1 all the tuples that have r as a recur-
rent status have next as an object field. Thus, next is the
field used for traversing a list in the repOk method of the
DoublyLinkedList class. The prev field is not reported
by the analysis as a recurrent field since it is not used by
repOk to traverse the structure.

Note that interprocedural analysis is performed similarly.
At the call site, information is propagated to the entry of
the called method by following a set of equality patterns for
each argument in the method signature. At the return site,
information is propagated from called method to the caller
by following an equality pattern at the caller side.

4.1.3 Prioritizing repair actions
STARC uses the information about the reference fields to
prioritize the candidates for repairing the structure fields. Re-
call that Juzi follows the same search pattern (Section 3.2)



stmt RA Iteration 1 Iteration 2 Iteration 3
L5 in (current, null, L0, nr) (current, null, L0, nr) (current, null, L0, nr)

(n, null, L0, nr) (n, null, L0, nr) (n, null, L0, nr)

L5 out (current, header, L5, pr) (current, header, L5, pr) (current, header, L5, pr)

(n, null, L0, nr) (n, null, L0, nr) (n, null, L0, nr)

L7 in (current, header, L5, pr) (current, header, L5, pr) (current, header, L5, pr)

(current, null, L0, nr) (current, next, L12, pr) (current, next, L12, r)
(n, null, L0, nr) (n, null, L0, nr) (n, null, L0, nr)

(n, next, L7, pr) (n, next, L7, r) (n, next, L7, r)

L7 out (current, header, L5, pr) (current, header, L5, pr) (current, header, L5, pr)

(current, null, L0, nr) (current, next, L12, pr) (current, next, L12, r)

(n, next, L7, pr) (n, next, L7, r) (n, next, L7, r)

L9 in (current, header, L5, pr) (current, header, L5, pr) (current, header, L5, pr)

(current, null, L0, nr) (current, next, L12, pr) (current, next, L12, r)

(n, next, L7, pr) (n, next, L7, r) (n, next, L7, r)

L9 out (current, next, L12, pr) (current, next, L12, r) (current, next, L12, r)

(n, next, L7, pr) (n, next, L7, r) (n, next, L7, r)

Table 1. The first three iterations of the data flow framework. The bold tuples indicate an update in the tuple information during
successive iterations. The tuples for the information unit this and visited are never updated and thus they are omitted for
brevity. The fields of the tuples that have a recurrent status r are recurrent fields of the structure.

when taking repair actions to fix an error in a reference field.
The recurrent fields of a linked data structure are used to
traverse the structure starting from a given root node. For
traversing a structure, recurrent fields are more likely to
point to new (non visited) nodes or null rather than pointing
to previously visited nodes. STARC orders its repair candi-
dates based on the type of the faulty field (recurrent or not).
For recurrent fields, STARC gives higher priority for choos-
ing a new (non-visited) candidate over choosing a visited
one or null. For the non-recurrent fields, STARC chooses
the same order presented in Section 3.2; STARC gives higher
priority to choosing a visited node over a new node. This op-
timization not only improves performance (Section 4.4) but
also guarantees that the reachability of the structure is pre-
served by repair.

4.2 Detecting constraints on references
Structural properties often constrain aliasing possibilities,
e.g., o.f == p⇔ p.g == o for objects o and p, and fields f
and g. Solving such constraints can be efficiently performed
symbolically without enumerating the search space.

STARC implements a static constraint solver that re-
pairs particular fields instantaneously; without triggering the
search algorithm. Some of the imperative constraints on ref-
erence fields take the following pattern:

if (iu != iu’) {
...
return false; }

For example, the transpose relation between the next and
prev fields of the DoublyLinkedList class takes the fol-
lowing form:

Node n = current.next;
if (n.prev != current)

return false;

The solution of such constraints is embedded in the nega-
tion of the condition. STARC performs static analysis on the
control flow graph of the repOk method to detect these pat-
terns. Once these patterns are detected, the solver injects the
solution of the constraint into the repOk method.

All the analysis that STARC performs is at the Java byte-
code level. To detect patterns in a method, STARC builds
the control flow graph (CFG) and searches for basic blocks
where the entry instruction is a conditional branch and the
exit instruction is an integer return. To detect the items be-
ing compared in the conditional statement, STARC uses the
JVM specification [32] to trace the last two items produced
on the stack. For example, consider the bytecode example of
the transpose constraint of the DoublyLinkedList as de-
scribed in repOk lines L10 and L11 in Section 2.1:

// compare prev to current
42: aload_3
43: getfield #32; //Field DoublyLinkedList\$Node.prev;
46: aload_2
47: if_acmpeq 52
// return false
50: iconst_0
51: ireturn

STARC detects the parameters of the conditional state-
ment by following the consumer/producer chain of the pre-
vious instruction until two items are produced in the stack.
In the above example, the instructions used to produce the
comparison objects are:

42: aload_3 // consume: 0 produce: 1
43: getfield #32; // consume: 1 produce: 1
and
46: aload_2 // consume: 0 produce: 1
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Figure 6. Data constraint graph for the BinarySearch

Tree in Figure 3(e). The dotted lines are the edges from the
newly added root. (a) Before solving the constraints, all the
dotted edges are labeled with ‘?’. (b) Solution for the dif-
ference constraints; each ‘?’ has been replaced with a value
that satisfies the constraints.

These instructions are then used to produce the solution
for the constraint and add the solution to the byte code as
follows:

42: aload_3
43: getfield #32; //Field DoublyLinkedList\$Node.prev;
46: aload_2
47: if_acmpeq 57
// set the field of prev to current
51: aload_3
52: aload_2
53: putfield #32; //Field DoublyLinkedList\$Node.prev;

Using this solver, STARC identifies equality constraints
and directly solves such constraints without using any non-
deterministic search. This optimization enables highly effi-
cient solving of a variety of local constraints. To illustrate,
STARC automatically detects the transpose relation at lines
L10 and L11 in Figure 1 of DoublyLinkedList and fixes
any violation in the prev field by setting it to the transpose
of its predecessor’s next field.

4.3 Solving data constraints
Previous work on assertion based repair proposed different
approaches for checking the satisfiability of the data con-
straints of a data structure. Demsky [10] proposed an ap-
proach similar to the one taken in Alloy [23] and the Alloy
Analyzer. Their framework translates the constraints written
in their language into a disjunctive normal form formula and
solves the formula for satisfiability. Juzi uses symbolic exe-
cution on repOk to extracts the path condition that the data
variables should satisfy and checks the satisfiability of the
path condition using a theorem prover (CVClite [3]).

We have previously developed Dicos [14], a difference
constraint solver for primitive integers. Dicos handled inte-
ger constraints that take the form x < y and x ≤ y. We
extended the implementation of Dicos to handle equality
constraints of the form x 6= y and x == y. Following a
textbook algorithm [9], the current implementation builds a

constraint graph where the vertices are the primitive fields,
and the edges are the constraints. Dicos adds a root node in
the graph that is a predecessor of all the nodes. Once the
graph is built, the problem simplifies to finding the single
source shortest path from the added root node. To check
the satisfiability of the constraints, Dicos checks for nega-
tive cycles in the graph. A negative cycle indicates a con-
tradiction in the constraints. Dicos implements the Bellman-
Ford [15] algorithm to find the shortest path in time O(v.e).
Since the complexity of the data constraints varies between
structures, Dicos uses faster algorithms for handling simple
constraints. For example, the data integrity constraints of the
binary search tree example (Section 2.2) are translated into a
directed acyclic graph (DAG) rather than a cyclic one. For a
directed acyclic graph with v nodes and e edges, Dicos can
compute the primitive values in O(v + e) using a topologi-
cal traversal. To illustrate, Figure 6 shows the data constraint
graph for the path condition in Figure 3(e). The topological
distance from the added root node to each node determines
the order of the data and solves the path condition. Dicos
keeps track of the nature of the graph being constructed and
then decides on which algorithm to use. Dicos even performs
some simplifications on the path condition that might solve
satisfiability without the need of a solver. These simplifica-
tions include transforming constraints in a path condition to
a canonical form, performing subsumption checking for sim-
ple cases, and propagating constants.

Dicos also handles more complex constraints like linear
programs, and quadratic programs, yet using this capability
requires user intervention to pre-select the desired algorithm
based on the target problem. Note that Dicos still uses CV-
Clite to check satisfiability if the constraints do not fit a cat-
egory that it can handle.

4.4 Illustration
We next illustrate the performance gain that STARC achieves
due to the aforementioned optimizations. We compare the
performance of Juzi and STARC in repairing faults in the
doubly linked list example from Section 2.1. We first con-
sider the example of the erroneous list in Figure 7(a). All the
prev fields in the list point to the header node. We repair
this list using Juzi and STARC. Juzi made 25 repair actions
and required 15ms to repair the structure whereas STARC
took 5 repair actions in less than 1ms. We then consider the
erroneous list in Figure 7(b). In this list, the faults occur in
the next field of node N3 and in the prev field of nodes
N0 and N2. For repairing this list Juzi took 47 repair actions
in 37ms whereas STARC took three repair actions again in
less than 1ms. This improvement in performance is due to
the optimizations applied in STARC which direct the repair
algorithm to select the most-likely option first. This reduces
the number of attempts needed to repair a field.
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Figure 7. (a) An erroneous list with all the prev fields
pointing to the header node. (b) An erroneous list with a fault
in the next field of the fourth node and the prev field of the
third node. (c) The resulting list after applying our repair
algorithm; all the constraints are satisfied.

5. Evaluation
This section evaluates the efficiency of STARC in repairing
large data structures. First, we present the methodology for
evaluating STARC. We then use STARC to repair a set of
standalone subject data structures. Finally, we demonstrate
STARC on an application that implements a software cache.

5.1 Methodology
We evaluate STARC by applying it to faulty implementa-
tions of ten subject structures. For each subject, we eval-
uate the time it takes to repair a faulty structure for sizes:
100, 1,000, 10,000, and 100,000. We repeat the repair pro-
cedure using 50 different randomization seeds and report
the average repair time. We also compare the number of re-
pair actions required to fix the errors. This metric measures
the growth of the search algorithm and the efficiency of the
added optimizations. We consider one example in detail to
illustrate how STARC generates structures that can automat-
ically repair themselves when an error occurs.

We compare the results of STARC with those of Juzi. We
set a threshold time of 10 minutes to repair a faulty structure,
and stop the execution after that period.

To study the efficiency of both the static analyzer and the
constraint solver, we consider subjects that vary in the types
and complexity of their constraints. We first consider struc-
tures with constraints on the structure only, that do not re-
quire the integer constraint solver. We then consider struc-
tures with constraints on both the structure and data that re-
quire the use of the integer constraint solver to determine
the satisfiability of the constraints on primitive data. In or-
der to clearly expose the advantage of the static analyzer,
we consider structures with complex structural and data con-
straint and use our constraint solver in both Juzi as well as

in STARC. Any performance advantage is thus due to the
improvement in the performance of the search algorithm.

We next describe the data structure subjects and the repair
results. All experiments used a 1.7 GHZ Pentium M proces-
sor with 1 GB of RAM.

5.2 Subjects
Table 2 lists the subject structures and the integrity con-
straints. The binary search tree and the doubly linked list are
both presented in Section 2. Disjoint set is a linked-based
implementation of the fast union-find data structure [9]; this
implementation uses both path compression and rank esti-
mation heuristics to improve efficiency. Fibonacci heap is
a dynamic data structure that implements a heap, but dif-
fer from a binary heap in complexity for certain opera-
tions [9]. Singly linked list is the simplest structure with
constraints only on the acyclicity of the structure. Sorted list
is structurally identical to a singly linked list but the ele-
ments are sorted. Red-black and AVL tree implement a bal-
anced search tree, with red-black trees having complex con-
straints on the colors of the nodes along the paths from the
root [9]. N-ary trees are used in the implementations of XML
documents and file systems. Software cache is a more com-
plex structure that comprises both a hash table and a doubly
linked list.

For each of the subjects, we constructed a set of faulty
structures by generating valid structures using available
API’s calls, and randomly traversing and mutating their ref-
erence and value fields.

5.3 Results
Table 3 displays the time and the number of repair actions
taken by Juzi and STARC to repair the described subject
structures. Singly linked list has the simplest of the con-
straints and the least number of faults and its repair is there-
fore the fastest. The n-ary tree data structure is similar in
complexity to the singly linked list, yet the number of faults
is larger. Note that the performance of Juzi and STARC is in-
distinguishable for simple constraints like acyclicity. Break-
ing cycles is achieved by setting the value of the corrupt field
to null. The performance of the integer constraint solver is
tested in the sorted list and the binary search tree examples.
Recall that Juzi uses a theorem prover (CVClite [3]) to check
for the satisfiability of the path condition. The results show
that using a dedicated integer constraint solver provides up
to one order of magnitude improvement for STARC espe-
cially in large structures. For the rest of the subjects, we use
the same constraint solver for Juzi and STARC in order to
study the improvement due to the static analysis.

The doubly linked list, and the disjoint set data structure
are structurally more complex than the singly list and the
n-ary trees. Results show that for solving constraints like
transpose, sentinel (all pointers point to a sentinel node) and
reachabilitiy, STARC outperforms Juzi by more than two
orders of magnitude. Juzi did not finish the execution within



subject structural constraints data constraints
Singly linked list acyclicity, reachability N/A
Sorted linked list acyclicity, reachability sorted elements
n-ary tree acyclicity, reachability, one parent N/A
Binary Search tree acyclicity, reachability, one parent natural order on elements
Doubly linked list reachability, transpose, circularity N/A
Disjoint sets acyclicity, reachability, sentinel disjoint members
AVL tree acyclicity, reachability, one parent, balance natural order on elements
Red-black tree acyclicity, reachability, one parent, transpose, path, color natural order on elements
Fibonacci heap acyclicity, reachability, transpose, circularity min, heap property
Software cache reachability, transpose, circularity, hash correct binning of items

Table 2. Subject structures and their integrity constraints. Subjects vary in the complexity of their structural and data
constraints. We generated a valid set of structures for each subject, and randomly injected faults that violate the integrity
constraints.

the given time when repairing a doubly linked list with 1,000
nodes and 100 faults, whereas STARC was able to repair a
doubly linked list with 100,000 nodes in less than a minute.

Note that although the algorithm is complete for both Juzi
and STARC, the former took 21,656 repair actions to re-
pair 10 faults in a doubly linked list of size 1,000 whereas
the latter only took 9 actions. The static analyzer in STARC
bias the repair algorithm toward solving the reachability con-
straint while repairing a recurrent field. Juzi on the other
hand repairs the faults in the structure, yet the repaired struc-
ture might not satisfy the reachability constraint, thus it
keeps searching for a structure that satisfies all the con-
straints. This explains the large performance gain of STARC
over Juzi.

We test the efficiency of STARC on repairing more com-
plex constraints like balance (AVL), color and path (red-
black). Again for these structures, STARC is able to repair
structures with one hundred thousand nodes within the given
time.

Recall that the performance of STARC is directly propor-
tional to the number of repair actions taken while repairing
a structure. In our experiments, the number of repair actions
grows linearly with the number of corruptions in the struc-
ture. We plot the repair time versus the number of faults in
the structure (Figure 8) for a doubly linked list with ten thou-
sand nodes. The repair time grows essentially linearly with
the number of faults in the structure. We plot the repair time
versus the size of the structure (Figure 9) for a doubly linked
list with 10 corruptions. The repair time grows quadratically
with the size of the structure for a fixed number of corrup-
tions. This result is justified as follows: the static analysis in
STARC direct the search algorithm to the most likely value
to repair a fault, and thus most of the faults are repaired from
the first attempt. The backtracking algorithm that STARC
uses is stateless. Each execution of repOk re-initializes the
state of the structure. Thus, the structure is constructed with

every repair action, which adds a quadratic effect on the run-
time of STARC.

An alternative approach is to implement a stateful search,
which allows real backtracking similar to that in the Java
PathFinder (JPF) model checker [40] and obviates the need
of repeated invocations of repOk from the beginning. We ap-
plied both approaches to repair, and preliminary experimen-
tal results showed that due to the high overhead of saving the
state, a stateful approach, as in JPF, is less efficient when re-
pairing small structure (less than five thousand nodes). How-
ever, as the size of the structure increases, JPF outperforms
stateless backtracking. The results open a direction for fu-
ture work. We believe that, since repOk is a pure function,
i.e., does not change the state of the structure, using an incre-
mental approach, i.e., saving only sections of the state that
are of interest for repair, reduces JPF’s overhead and leads
to more efficient repair.

5.4 Overhead
In this section, we study the runtime overhead of STARC.
Overhead occurs in two forms. (1) Delays due to the ex-
tra method calls performed when running the instrumented
code. This overhead is minimal since it only includes calling
simple accessor methods rather than direct field accesses. (2)
Runtime overhead that arises from calling repOk to check
the validity of the structure. Each call to repOk performs
a linear traversal of all the fields in the structure when the
structure is valid.

Similar to other techniques on automatic data structure
repair [11, 10, 12, 28], our repair algorithm does not state
when to check for the validity of the structure, but it leaves
it to the user to decide when to do so. In this section, we
study the overhead due to a conservative checking which
calls repOk at the boundaries of the public methods that
modify the structure, and an optimistic checking which only
checks for the validity of the structure when an exception
is thrown in the program. To study the runtime overhead,



Subject Structure Size # of faults Time(ms) # of repair actions
Juzi STARC Juzi STARC

1,000 1 43 41 1 1
Singly linked list 10,000 1 138 118 1 1

100,000 1 1,698 1,581 1 1
1,000 1 6178 53 1 1

Sorted list 10,000 1 13,142 1,411 1 1
100,000 1 89,656 8,733 1 1

100 10 516 31 1,525 9
1,000 10 34,046 63 21,656 9

100 ≥ τ 234 ≥ δ 99
Doubly linked list 10,000 10 ≥ τ 656 ≥ δ 9

100 ≥ τ 4,078 ≥ δ 99
100,000 10 ≥ τ 4,594 ≥ δ 9

100 ≥ τ 53,828 ≥ δ 99
100 10 17 16 11 10

1,000 10 96 88 11 10
100 374 328 101 100

N-ary tree 10,000 10 715 656 11 10
100 3,781 3,672 101 100

100,000 10 7,268 6,656 11 10
100 57,468 55,327 101 100

100 10 128 24 11 10
1,000 10 7,424 137 11 10

100 8,173 428 101 100
Binary search tree 10,000 10 182,817 5,211 11 10

100 210,577 10,755 101 100
100 10 2,781 31 2,376 12

1,000 10 45,103 63 32,941 12
100 ≥ τ 438 ≥ δ 112

Disjoint set 10,000 10 ≥ τ 734 ≥ δ 12
100 ≥ τ 4,672 ≥ δ 112

100,000 10 ≥ τ 5,149 ≥ δ 12
100 ≥ τ 61,751 ≥ δ 112

100 10 1,006 78 1,675 11
1,000 10 12,521 738 9,648 11

100 ≥ τ 1,597 ≥ δ 101
AVL tree 10,000 10 ≥ τ 4,816 ≥ δ 11

100 ≥ τ 9,483 ≥ δ 101
100,000 10 ≥ τ 7,469 ≥ δ 11

100 ≥ τ 58,422 ≥ δ 101
100 10 3,107 169 1,811 29

1,000 10 16,437 1,382 24,399 49
100 ≥ τ 2,810 ≥ δ 139

Red-Black tree 10,000 10 ≥ τ 6,942 ≥ δ 109
100 ≥ τ 14,385 ≥ δ 299

100,000 10 ≥ τ 10,191 ≥ δ 153
100 ≥ τ 117,491 ≥ δ 244

100 10 799 26 1,833 19
1,000 10 17,903 622 10,899 24

100 ≥ τ 6,953 ≥ δ 99
Fibonacci heap 10,000 10 ≥ τ 18,615 ≥ δ 9

100 ≥ τ 45,703 ≥ δ 99
100,000 10 ≥ τ 37,197 ≥ δ 9

100 ≥ τ 117,366 ≥ δ 99

Table 3. Results for repairing large structures with up to 100,000 nodes. The tabulated times are in milliseconds. τ represents
a time threshold of 10 minutes. δ represents a threshold one million repair actions. STARC is able to repair structures with 100
times more faults than Juzi.
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we created a simple program that, for each of the subjects,
performs the following:

1. builds a structure with 5,000 nodes

2. injects up to 5 faults in the structure

3. adds another 5,000 nodes

4. traverses the structure

We first measure the overhead when there are no faults
in the structures. We run the original code, and the instru-
mented code when the structure has no faults, i.e., without
performing step 2, and measure the overhead due to call-
ing repOk in the optimistic and the conservative checking
methods. Table 4 shows the runtime in milliseconds for the
experiment.

Since the structures have no faults, no exceptions are
thrown, and thus, the runtime of the original code and the
instrumented code when performing an optimistic check is
very similar. Conservative checking adds one order of mag-
nitude for complex structures, such as AVL trees, and al-
most two orders of magnitude for simple structures, such as
a singly linked lists. This overhead is expected as the pro-
gram traverses the structure every time a node is added.

We next measure the overhead when there are faults in the
structure, i.e., with step 2. Table 5 shows the results for the

subject original optimistic conservative
code checking checking

Singly linked list 36 47 3,314
Sorted linked list 250 301 3,847
n-ary tree 206 241 5,203
Binary Search tree 351 388 5,612
Doubly linked list 42 56 3,609
Disjoint sets 148 162 4,601
AVL tree 409 472 6,215
Red-black tree 573 627 7,243
Fibonacci heap 366 402 6,682

Table 4. Overhead imposed by the repair framework when
running an application which manipulates structures with up
to 10,000 nodes. Column 2 shows the runtime for the origi-
nal code. Column 3 shows the runtime for the instrumented
code when performing optimistic checking. Column 4 shows
the runtime for the instrumented code when performing con-
servative checking. All the times are in milliseconds.

subject original optimistic conservative
code checking checking

Singly linked list 26 118 3,550
Sorted linked list 150 634 4,188
n-ary tree 116 470 5,597
Binary Search tree 224 2,622 6,271
Doubly linked list 39 462 3,916
Disjoint sets 87 566 4,809
AVL tree 294 3,814 7,083
Red-black tree 503 5,048 9,730
Fibonacci heap 263 10,411 10,169

Table 5. Results for performing optimistic versus conserva-
tive checking when repairing a corrupt structure.

original code, the optimistic checking, and the conservative
checking.

The original code crashes while adding nodes after the
faults are injected for some structures, and while traversing
the nodes for other structures. For optimistic checking, the
structure is repaired whenever an exception is thrown during
addition or traversal, and the program safely terminates. For
the conservative checking, the structures are repaired on the
first node addition after the fault injection process since
repOk is checked with every addition.

As expected, conservative checking takes more time than
optimistic checking in almost all the subject structures.
However, for the optimistic checking, the structure imple-
mentation should throw exceptions when performing the
traverse or the add operations. If no exceptions are thrown,
the program might end up crashing, say because of an infi-
nite loop. For the conservative checking this problem might
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not be possible, yet the overhead of checking repOk with
every node addition is high.

The decision of when to check the validity of the structure
depends on the type of the structure, and the performance
and reliability requirements. It is up to the user to decide
when to check for validity. Section 6.7 describes more ways
to check for the validity and to trigger repair.

5.5 Case-study: repairing a software cache
In this section, we illustrate how STARC creates a repairable
application that can automatically recover from a dynamic
error when the application is already deployed. We use
STARC to create a repairable software cache, a small, but
interesting application with a complex data structure. Soft-
ware caches are gaining popularity in service oriented ap-
plications (SOA) [4] such as online business applications.
These applications are expected to be online any time the
user requests a transaction. The cost of failure in such ap-
plications is prohibitively high. We first describe a faulty
implementation for a software cache that implements the
least recently used (LRU) [38] replacement algorithm, and
then describe how the cache repairs without halting.

Software Cache: A software cache is a data structure
that supports constant time addition, access, and removal.
To support these requirements, it implements a hash table.
The capacity of a cache is limited. Once the cache is full,
elements are replaced. The cache described in this section
implements the least recently used algorithm. This algorithm

requires the cache to keep track of the least and the most
recently accessed elements. Thus, in addition to the hash
table a software cache implements a doubly linked list to
keep track of the order in which data is accessed. When
replacing an element, the LRU algorithm removes the entry
from both the linked list and the hash table. Thus, each entry
in the list should have a pointer to its key in the hash table as
shown in Figure 11.

Faulty Implementation: We illustrate how STARC re-
pairs a faulty cache and corrects the program behavior on-
the-fly. The class LRUCache declares the subject structure:

class LRUCache {
int capacity;
int size;
HashTable cache;
DoublyLinkedList lru;

static class Data {
Object value;
Object key;
Data next;
Data prev;

}
}

Each cache has a capacity field which represents the
maximum number of nodes that the cache can hold, a size
field to represent the current number of nodes, a hash table
to support constant time data access, and a doubly linked list
to keep track of the order in which the data is accessed. The
inner class Data models the entries in the cache. Since each
element in the cache is a node in the doubly linked list, each



entry has two fields indicating the next and prev entries
in their recent access order in the cache, a value field to
represent the saved data, and a key field which saves the
corresponding key entry in the hash table.

Consider the method add that given a key and a value
performs the following:

• adds an entry to the cache if the key is not already in the
cache and if the cache is not full,

• updates an entry in the cache if the key is already in the
cache and tags it as the most recently accessed node, and

• replaces an element in the cache if the key is not found in
the cache and the cache is full.

The following code gives an implementation of the add

method:
void faultyAdd(Object key , Object value) {

// get the data entry if its in the cache
Data oldData = (Data)cache.remove(key);
// remove it from the list if it is in the list
if (oldData != null) {

lru.remove(oldData);
} else {

// if the cache is not full, increment the size
if (size < capacity)

++size;
// if the cache is full, remove the LRU node
else if (size == capacity) {

Data removed = lru.removeLast();
cache.remove(removed.key);

}
}
// add the node in the top of the list
Data add = lru.addFirst(key,value);
// add the entry to the cache
cache.put(key, add);

}

The state of the cache after six additions using the above
method is displayed in Figure 10. All the key pointers in the
Data objects are set to null. The bug is in the implementa-
tion of the addFirst method of the doubly linked list. The
key field of the Data class is set to null rather than the key
entry in the hash table. The program reports an unhandled
null pointer exception when adding an additional node in to
the cache (trying to replace the LRU entry from the cache).

We instrument the LRUCache and the Data classes using
STARC and run the add method again. The repair routine
is triggered whenever the null pointer exception is thrown,
and restores the cache to a valid state. We randomly add
1,000 entries to the cache and the code reports 89 calls to
the repair routine in less than two seconds without any crash
in the program.

6. Discussion
We next present some characteristics and limitations of
STARC and discuss some promising future directions.

6.1 Constraint generation
Our repair algorithm expects the user to provide the integrity
constraints by writing the repOk method. For complex con-
straints, writing a precise predicate can be error-prone. Ex-
isting constraint-synthesis tools can be used to help users

formulate the predicates correctly. Daikon [41] (a tool for in-
variant discovery) stores a dictionary of invariants and uses
a learning algorithm to discover what invariants apply to the
structure. Cork [26] builds on the garbage collector to take
snapshots of the structure being collected. Using these heap
snapshots, Cork can learn some properties of the structure
We have recently developed Deryaft [34], a tool that spe-
cializes in generating constraints of complex data structures.
Deryaft takes as input a handful of concrete data structures
of small sizes and generates a repOk predicate that repre-
sents their structural integrity constraints. For example, for
all our benchmarks except red-black trees and disjoint set,
Deryaft can generate the precise repOk’s using five sample
structures for each subject. Even in cases when Deryaft is
unable to output a complete repOk predicate, Deryaft’s out-
put helps the users correctly formulate the predicate, say by
using the output as a skeletal implementation.

6.2 Completeness of the Repair Algorithm
The Juzi algorithm is based on Korat [5], a systematic
search based test input generator. Juzi explores all the non-
isomorphic structures that satisfy the integrity constraints.
Thus, if there exists a structure that satisfies the integrity
constraints, Juzi will find it. We point out that the optimiza-
tions added in STARC do not affect the completeness of
the original algorithm. Using the recurrent field information,
STARC only changes the order of the search and does not
skip any valid structure from being explored. The reference
constraint solver statically detects and solves constraints that
are not yet initialized by the search algorithm. Thus, instru-
mentation of repOk does not affect its behavior.

The algorithm is complete for integer constraints. Once
a structure is repaired, the problem of solving the data con-
straints is decidable. If the path condition is satisfiable then
the solver generates a solution to it. It is important to point
out that STARC relies on the user to provide correct and sat-
isfiable constraints in repOk. If the constraints are not satis-
fiable, STARC notifies the user after exploring all the search
space.

6.3 Reachability of the Repaired Structure
An important characteristic of STARC is that it solves two
problems: the structural constraints as described in repOK

and the reachability of the original structure nodes. Recall
in Section 4.1.3 that STARC prioritizes the order of choices
according to the type of the faulty field. Using the recurrent
analysis information, the recurrent fields are assigned to new
non-visited nodes. Thus, STARC first solves the reachability
problem, and then satisfies repOk. This feature is not present
in previous work on assertion based repair, which usually
finds the first structure that solves the constraint disregarding
the original size and the number of nodes reachable from the
root of the structure. For example, a faulty doubly linked list
of 100 nodes might be repaired into a list with 10 nodes that
satisfies the structural integrity constraints.



Since STARC algorithm is complete, and prioritizes
reachability, it will first try to find a solution with all reach-
able nodes. If none exists, it will satisfy repOk with a
smaller structure, if possible.

6.4 Generation Based Repair
STARC can easily be used for test input generation [14]. A
key observation behind this idea is that while the problem
of generating an input that satisfies all the given constraints
is hard, generating a structure at random, which may or may
not satisfy the constraints but has a desired number of objects
is straightforward. Indeed, a structure generated at random
is highly unlikely to satisfy any of the desired constraints.
However, it can be repaired using STARC to transform it so
that it to satisfy all the desired constraints.

6.5 Data Repair
Data repair is one of the most challenging problems in repair.
To illustrate, consider repairing a binary search tree whose
elements are not in the correct search order. One way to
repair this structure is to replace the elements with new
elements that appear in the correct search order. However,
this choice is unlikely to be a good one, since it might end
up corrupting all the information in the tree.

Our approach gives the user some control on how to re-
pair the data. (1) The user can provide in a configuration file,
the list of primitive fields that are not to be instrumented, and
thus, never changed by the repair algorithm. (2) The user can
specify a ranges of data values for primitive fields and use
these ranges to constrain the repair algorithm. (3) The user
can state specific relations between the values of a corrupted
structure and a repaired structure akin to specifying post-
conditions that relate pre-state with post-state. For example,
if the user specifies an order relation between the elements
of the structure, say a binary search tree or a sorted list, the
repair algorithm will reorder the values in the structure using
the order of the values generated by the constraint solver.

6.6 Controlling the Fields to Repair
STARC provides a configuration file for the user to spec-
ify what classes to instrument and what fields to repair. This
feature allows the user to add more constraints on the repair
algorithm, which might be needed in some cases. For exam-
ple, when the structure needs to have a certain number of
nodes, the user can specify not to repair the size field and
keep it concrete rather than symbolic. In this case, STARC
cannot modify the size field to satisfy other constraints, and
if the reachability property is not satisfied, STARC reports
the structure as non-repairable. This feature has both its ad-
vantages and drawbacks. On one hand, it gives flexibility to
the user to specify some fields as concrete all the time of
execution, but on the other hand these field will not be re-
pairable and if a fault occurs in these fields, STARC cannot
repair it.

6.7 When to Trigger the Repair Routine?
One open question in data structure repair is when to trig-
ger the repair routine. STARC provides the framework for
repair, and lets the user decide when to use the repair rou-
tines. It is unknown when an error is going to occur in the
program, which makes triggering the repair routine a tricky
decision, as we do not want to affect the performance of the
running applications by continuously checking the validity
of the constraints. In Section 5.5, we provided an example
where the repair routine is triggered when an exception is
thrown due to an error in the implementation of the struc-
ture’s API. This technique was efficient when repairing the
software cache yet in some cases it is unfeasible to wait for
an exception to be thrown to perform the repair. For example,
I/O operations that are performed on the faulty structure are
persistent, and it is very expensive to invalidate such opera-
tions. Another approach is to give the Java Virtual Machine
(JVM) the control over when to trigger repair, and run the in-
tegrity checks periodically analogous to garbage collection.
The efficiency of this approach is yet to be studied.

7. Related Work
This section compares STARC to prior work on error recov-
ery, dedicated repair routines, and constraint-based repair.

Error recovery has been part of software systems for a
couple of decades [25, 37]. System reboot is a traditional er-
ror recovery mechanisms. In this approach, the user reboots
the system when it crashes, uses system logs to analyze the
cause of the problem, and creates patches to fix the errors.
One disadvantage of this approach is that the system state
before the crash is lost and the system returns to its initial
state. Check-pointing [30] tackles the problem of state loss
when rebooting by recovering the program state to the last
saved state rather than the initial one [27]. One drawback still
exists when persistent, rather than volatile, faults occur in a
system. In this case, it is very difficult to automate recovery
using traditional approaches.

Another technique for error recovery is to implement ded-
icated repair routines that are triggered when specific prob-
lems occur during a system’s execution. For example, file
system utilities, such as fsck and chkdsk, routinely check
and correct the underlying file structure. Some commercially
developed systems, such as the IBM MVS operating sys-
tem [36] and the Lucent 5ESS telephone switch [20], provide
routines for monitoring and maintaining properties of their
data structures. These routines, however, do not perform re-
pair using a description of the data structure constraints, and
thus it is hard to build a robust generic repair framework us-
ing such approaches, since the developer must envision all
possible bugs.

The use of structural integrity constraints as a basis to
perform repair is relatively new. Demsky and Rinard [10, 12]
are the first to use constraints as repair routines. Their frame-
work performs repairs based on constraints written in a new



declarative language that is similar to the first-order rela-
tional language Alloy [24]. Repair is performed by trans-
lating the constraints to disjunctive normal form and solv-
ing them using an ad hoc search. To help the user formu-
late constraints correctly, they have taken a promising new
approach [11] of integrating repair with dynamic invariant
generation using Daikon [16].

Our work differs from theirs as our algorithm allows
writing constraints using the language of implementation,
while they require using a declarative language. Since this
language does not support transitive closure [10], it is very
hard to model the complex structural constraints that STARC
solves and which are easily expressed in Java.

Previous work presented Juzi [13, 17, 28, 39], a constraint-
based repair framework, which uses constraints written as
Java predicates. In contrast with Demsky and Rinard’s ap-
proach where the search is adhoc, Juzi uses a systematic
search, which is based on symbolic execution [29, 31] and
Korat [5], an efficient tool for constraint-based generation of
data structures. To decide the feasibility of path conditions
that arise during symbolic execution, Juzi uses the CVC-lite
theorem prover [3].

STARC builds on Juzi and introduces a novel static anal-
ysis that enables efficient and effective repair. Additionally,
STARC implements a dedicated constraint solver, which
provides significantly faster constraint solving (for a range
of integer constraints) than the automated theorem prover
used by Juzi. Experimental results show that STARC can re-
pair structures that are up to 100 times larger in size than
those feasibly handled by Juzi.

8. Conclusions
This paper introduced the idea of using static analysis to
guide the search and scale the performance of assertion-
based repair. It presented STARC, an efficient framework
for repairing large data structures. STARC builds on previ-
ous work on error recovery. Given a Java predicate that rep-
resents the desired structural and data integrity constraints,
and a faulty structure, STARC first performs static analysis
on the structure to detect the recurrent fields, then performs
systematic search of the neighborhood of the faults to find
candidates that repair the structure to satisfy the given con-
straints.

Experiments on repairing data structures using subjects
with complex structural and data constraints show that
STARC can efficiently repair structures with up to 10,000
nodes. In comparison with previous work on assertion-based
repair, STARC feasibly repairs structures that are up to 100
times larger.

We believe that using static analysis is a highly promising
approach to improve the performance of constraint-based
approaches for error recovery as well as automated testing.
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