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1Genome Architecture, Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic

Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain.
2Universitat Pompeu Fabra (UPF), Barcelona, Spain.

ABSTRACT

Motivation: The increasing throughput of sequencing technologies

offers new applications and challenges for computational biology.

In many of those applications, sequencing errors need to be

corrected. This is particularly important when sequencing reads from

an unknwon reference such as random DNA barcodes. In this case,

error correction can be done by performing a pairwise comparison of

all the barcodes, which is computationally complex problem.

Results: Here we address this challenge and describe an exact

algorithm to determine which pairs of sequences lie within a given

Levenshtein distance. For error correction or redundancy reduction

purposes, matched pairs are then merged into clusters of similar

sequences. The effiency of starcode is attributable to the poucet

search, a novel implementation of the Needleman-Wunsch algorithm

performed on the nodes of a trie. On the task of matching random

barcodes, starcode outperforms sequence clustering algorithms in

both speed and precision.

Availability and implementation: The C source code is available at

http://github.com/gui11aume/starcode.

Contact: guillaume.filion@gmail.com

1 INTRODUCTION

All sequencing technologies have a certain degree of imprecision.

For instance, the Illumina platform (Margulies et al., 2005) has

a 1-2% error rate consisting of substitutions (Dohm et al., 2008;

Nakamura et al., 2011) and the PacBio platform has a 15% error

rate consisting of insertions and deletions (Eid et al., 2009). The

enormous throughput of such technologies has recently created

additional needs for developing efficient error correction algorithms.

Sequencing errors can be discovered by comparing the reads

to a reference genome. However, such a reference is not always

available. When the sequences are random or taken from an

unknown source, clustering is the main strategy to correct the errors.

For instance, this situation arises when using random barcodes to

track cells or transcripts (Schepers et al., 2008; Akhtar et al., 2013).

Sequencing errors will create erroneous (nonexistent) barcodes that

have to be removed.

Sequence clustering can be viewed as a community detection

problem on graphs, where nodes represent sequences and edges

represent matches between related sequences. The process consists

of a matching phase (the most computationally intensive), where the

∗to whom correspondence should be addressed

graph is constructed, and a clustering phase where communities are

identified.

Here we describe a sequence clustering algorithm called

“starcode” in reference to clusters of random barcodes, which

typically have a star shape. Starcode is based on all-pairs search,

i.e. all the pairs of sequences below a given Levenshtein distance

are identified during the graph construction phase. Matching is

carried out by lossless filtration, followed by an exhaustive search

on the branches of a prefix trie. The novelty of the algorithm is the

poucet strategy, which uses the redundancy of alphabetically sorted

sequences to avoid unnecessary recomputations and gain speed.

In this article we present and benchmark starcode. We show

that on real biological datasets, starcode is orders of magnitude

faster than existing sequence clustering software. Even though

starcode was designed for error correction, we also show that it

can be used for other problems. As an illustration, we use it to

identify enriched motifs in a bacterial genome and in protein-RNA

interaction experiments.

2 METHODS

2.1 Inexact string matching using tries

The matching method of starcode is based on a variation of the Needleman-

Wunsch (NW) algorithm (Needleman and Wunsch, 1970). In the original

algorithm (Figure 1a), the Levenshtein distance between two sequences is

found by applying a recurrence relation throughout a matrix of mn terms

(the edit matrix), where m and n are the respective sequence lengths. The

complexity of this dynamic programming approach is O(mn).

In many instances, the information of interest is to find out whether

the sequences are τ -matches (i.e. their distance is less then or equal to

a fixed threshold τ ). In that case, the complexity can be reduced to

O(τ min(m,n)). Instead of computing all the terms of the edit matrix, it is

initialized as shown on Figure 1b and only the terms around the diagonal are

computed. If a diagonal term has a value greater than τ , the process is halted

because the sequences are not τ -matches.

This method can be used to match sequences against a prefix tree, also

known as a trie (Ukkonen, 1995). The terms of the edit matrix are updated

row-wise while a depth-first search traverses the trie (Figure 2). Every time

a node is visited, a row is computed, and every time the search backtracks,

a row is erased. If the threshold value τ is exceeded for a diagonal term, the

Levenshtein distance for all the downstream sequences is also necessarily

greater than τ . Therefore, no more hits are to be discovered in this path and

the depth-first search backtracks to the parent node. When the process halts,

every tail node (corresponding to a sequence of the database) on the path

of this search is a τ -match of the query. This method is efficient because it
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Fig. 1. Needleman-Wunsch (NW) sequence comparison. a Comparison

of GTTGCA and GATCCA. The margins of the edit matrix (purple) are

initialized and the cells (yellow) are computed from left to right and from top

to bottom by the NW dynamic programming algorithm. E[i, j], the term of

coordinates (i, j) is computed as min(E[i−1, j]+1, E[i, j−1]+1, E[i−
1, j − 1] + ∆(i, j)), where ∆(i, j) = 0 if the i-th symbol from the first

sequence is the same as the j-th symbol from the second, and ∆(i, j) = 1

otherwise. The Levenshtein distance between the two sequences is the value

of the bottom right cell. b Lower complexity algorithm to determine whether

GTTGCA and GATCCA are 2-matches. The values in the purple cells are

set during initialization. The dynamic programming algorithm proceeds as

above, with the difference that it is aborted if the value of a diagonal cell

(bold borders) is larger than 2. The values in the purple cells may differ from

the original NW scheme (purple arrow), but the values in the yellow cells

are nevertheless identical. The values of the white cells are never computed,

which contributes to reducing the complexity.

eliminates large areas of the search space, and because the NW comparison

of the query with each prefix of the database is computed only once.

2.2 The poucet search algorithm

The search strategy can be further improved. If two consecutive queries

share a prefix of length k, the succession of computations up to the k-th

row of the edit matrix will be exactly the same for both queries. Therefore,

computation intermediates can be stored in the nodes of the trie, so that

the next trie search can start at depth k. However, storing the rows of the

edit matrix in the nodes meets some difficulty. Indeed, on the k-th row, the

terms on the right side of the diagonal depend on characters that are not

shared between the two queries. This issue is solved by storing in each node

a combination of row and column terms that form an angle shape, looking

like a horizontally flipped L (Figure 3). Using this structure, the computation

intermediates stored in a node at depth k depend only on the first k characters

of the query.

To take full advantage of this property, the input sequences are sorted

alphabetically, which maximize prefix sharing between consecutive queries.

In the fairy tale “Le Petit Poucet”, the hero seeds white pebbles for his older

brothers to find their way home, which is reminiscent of the way a smaller

query (in alphabetical order) paves the way for the next. We therefore called

this search algorithm “poucet”.

2.3 Lossless filtration

When a query has no match, it is advantageous to omit the trie search. To

this end, starcode uses a partition approach similar to that described by ?.

The query is initially partitioned in τ + 1 segments. Assuming that all the

segments have length at least τ , then every τ -match present in the database

will contain at least a verbatim copy of one of the query segments. Indeed,

there are at most τ editions between the query and the match to be distributed
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Fig. 2. NW algorithm on tries. Each sequence of the index is a path in

the trie. The query GTTGCA is written at the top of the matrix, which is

initialized as shown on Figure 1b. The trie is traversed by a depth-first search

(red path). At each depth, the node added to the path is written on the left

of the edit matrix and the row is computed. Checkpoints from 1 to 4 (circled

red numbers) show the state of the edit matrix as the search proceeds. The

node labeled 3 is a leaf and thus corresponds to a 2-match of the query. After

discovering the hit, the search path backtracks to the node labeled 2 and

the last rows of the edit matrix are erased. The search path then goes to the

node labeled 4, in which case the newly computed diagonal cell exceeds the

threshold (circled in red). Even if this node has children, they are not visited

(red crosses) because there is no 2-match to discover.
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Fig. 3. Poucet search algorithm. The algorithm proceeds with the same

principles as shown on Figure 2 with the difference that the edit matrix is

not updated row-wise, but along a horizontally flipped L. As the depth-first

search proceeds, these values are stored in the nodes of the trie. Since the

values in the vertical part of the flipped L are the same for every child of a

node, they are computed only once (purple arrow). The values in the grey

cells will be computed as the search path (red) visits the node. Storing the

intermediates in the nodes allows the next query to restart at depth k if it

shares a common prefix of length k with the current query.
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Fig. 4. Lossless filtration illustrated by an example sequence of length 20

with τ = 3. The last τ nucleotides of the query are removed, and the rest is

divided into 4 series of contiguous segments. Each series is queried against

a different index numbered I to IV. For instance, the only segment queried

against index I is GTTG, while those queried against index II are GCAA,

CAAT and AATA. If any of the segments is found in the appropriate index,

the trie search is performed, otherwise it is omited as there can be no τ -

match. Regardless of the result, segments labelled I to IV are then added to

the corresponding respective index (i.e. only one segment is added to each

index).

in τ + 1 regions, so at least one segment is unmodified. Due to potential

insertions and deletions in the preceding segments, the shared segment may

be shifted up to τ nucleotides on the left (all insertions) or on the right (all

deletions) from its original position in the query.

These observations are the basis of a filtration method with 100%

specificity. More precisely, the segments are defined as follows: the first

τ nucleotides of the sequence are removed, and the rest of the sequence is

partitioned in τ + 1 segments of sizes differing by at most 1 (the longer

segments always in 3’ for consistency). Every time a sequence is added to

the trie, it is partitioned and its segments are added to τ+1 different indexes.

The first fragments are added to the first index, the second fragments to the

second index, etc. Before the search, the query is partitioned in the same way

and its segments are looked up in the indexes. In case no match is found, this

query has no τ -match in the current database, therefore the trie search is

omitted. Conversely, if at least one segment is found, the trie search must

performed.

As mentioned above, segments shared between the query and a τ -match

may be found shifted up to τ nucleotides. For this reason, shifted segments

of the query are looked up in the indexes according to the scheme of Figure 4,

which ensures that no match can be missed: the rightmost segment is looked

up in the τ+1-th index, the second rightmost segment and the contiguous

segments shifted by 1 nucleotides are are looked up in the τ -th index and

so on, until the first segment and its contiguous segments shifted by up to τ

nucleotides are looked up in the first index.

2.4 Seek and construct

To reduce the size of the search space, starcode uses a dynamic “seek and

construct” approach whereby queries are processed meanwhile the trie is

built. In other words, each sequence is matched against the trie before it is

inserted. If A and B are mutual τ -matches, either A will be queried when B

is in in the trie, or the converse. Either way, the match A-B is discovered.

This guarantees that every τ -match is discovered, while maintaining the trie

as “thin” as possible, thereby reducing the search time. The whole matching

process is summarized in the pseudocode shown in Algorithms 1 and 2.

2.5 Parallelization

Queries are sorted and partitioned in contiguous blocks. The matching step

then proceeds in two phases. In the build phase, a distinct trie is built from

the sequences of each block according to the algorithm described above. In

Algorithm 1 Starcode algorithm

1: Define: τ

2: Variables: seed, start = 0, height, seq, trie, lastseq, k

3: Containers: hits, pebbles

4: READ sequence file

5: height← DETERMINE maximum sequence length

6: PAD sequences up to height

7: SORT sequences alphabetically

8: k ← COMPUTE filter segment lengths

9: trie← CREATE an empty trie of height height

10: INSERT root node of trie in pebbles at depth 0

11: for all sequences do

12: seq ← GET next sequence

13: if at least one k-mer of seq is in the filter index then

14: seed ← LENGTH of shared prefix between current and

next sequence

15: start ← LENGTH of shared prefix between seq and

lastseq

16: CLEAR hits

17: CLEAR pebbles at depth > start

18: for all pebbles at depth start do

19: node← GET next node from pebbles

20: call POUCET(seq, node, seed, hits, pebbles)

21: end for

22: PROCESS hits and LINK matches to seq

23: lastseq ← seq

24: end if

25: INSERT seq path in trie

26: INSERT seq k-mers into the filter index

27: end for

Algorithm 2 Poucet search algorithm

1: procedure POUCET(query, node, seed, hits, pebbles):

2: COMPUTE node-specific column following NW ⊲ Fig.1

3: for all child nodes in node do

4: COMPUTE child-specific row following NW ⊲ Fig.1

5: COMPUTE center value using row and column ⊲ Fig.1

6: if center value > τ then ⊲ Mismatches exceeded.

7: continue with next child

8: end if

9: if node depth = height then ⊲ Hit found.

10: SAVE node sequence in hits

11: continue with next child

12: end if

13: if node depth ≤ seed then

14: SAVE node in pebbles at current depth

15: end if

16: call poucet(query, child, seed, hits, pebbles)

17: end for

18: end procedure

the second, all the sequence blocks are queried against all the other tries.

If the queries are partitioned in N blocks, the first phase consists of N
seek and construct jobs, wile the second consists of N(N − 1)/2 query

jobs. In each phase, the jobs show no dependency on each other, so the

matching algorithm can be efficiently parallelized provided N is larger than

the number of independent threads.
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2.6 Clustering

The default clustering algorithm of starcode is designed to correct

sequencing error. This method uses message passing (MacKay, 2002) to

identify and count “canonical” sequences (also referred to as centroids in the

clustering terminology). By default, each sequence transfers its read count

to its closest τ -match provided the latter has at least 5 times more counts. If

the condition is not met, the transfer does not take place. If the sequence has

several equally close τ -matches, the counts are split equally among them.

The process is repeated recursively, starting from sequences with lowest read

count. The sequences with a positive read count at the end of the process

are considered canonical. Clusters consist of all the sequences transferring

their read counts to the same canonical sequence (sequence transferring their

read counts to different canonicals are discarded). Note that the radius of the

clusters can be higher than the maximum distance used for matching.

Since no sequencing technology has an error rate higher than 20%, it

is expected that sequences appearing from sequencing errors will always

have 5 times or lower read count than the canonical sequence. Otherwise,

sequences are more likely unrelated, or both are derived from the same

canonical sequence. This behavior can be modified with the command-line

option cluster-ratio to allow for a more flexible or more strict clustering, e.g.

to cluster unique input sequences together, cluster-ratio must be set to 1.

For other sequence clustering problems, starcode implements a multi-

purpose algorithm called “sphere clustering”. In sphere clustering,

sequences are sorted by frequency of occurrence. Starting from the most

frequent, each sequence becomes canonical and claims all its τ -matches,

which forms a cluster of radius τ (hence the name). Claimed sequences are

immediately removed, so that they can belong to only one cluster.

2.7 Benchmark conditions

All the tests were performed on a 16-core dual-processor Intel Xeon E5-

2687W v2 system with 256 GB of DDR3-RAM at 1866 Mhz. Command-line

parameters were set equivalently in all softwares to run in single-core mode

allowing up to 3 mismatches for input sequences of length 50. Tables 1 and

2 summarize the execution options used in simulation and real data sets,

respectively.

Table 1. Software execution options used in simulation benchmark.

software command-line options

starcode-1.0 starcode -d3

slidesort-2 slidesort v2 -d 3 -t E -c DNA

cd-hit-est-4.6.1 cd-hit-est -n 9 -c 0.9 -M 0 -r 0

seed-1.4.1 SEED --mismatch 3

Table 2. Software execution options used in real data benchmark.

software command-line options

starcode-1.0 starcode -d3

slidesort-2 slidesort v2 -d 3 -u -t E -c DNA

cd-hit-est-4.6.1 cd-hit-est -n 8 -c 0.94 -M 0

seed-1.4.1 SEED --mismatch 3 --shift 3

rainbow-2.0.3 rainbow cluster -m 3

3 RESULTS

3.1 Presentation and basic performance

Starcode is a general purpose DNA sequence clustering tool with

a strong focus on error correction. Errors are assumed to be

mismatches, insertions or deletions (the implementation presented

here matches sequences with up to 8 errors). The input sequences

can be single or paired-end reads, with an upper limit of 1024

nucleotides (512 for paired-end). Sequences may be of variable

length, they may be trimmed and filtered for quality or not. File

formats compatible with starcode are raw sequence, raw sequence

with count, FASTA or FASTQ (in which case starcode ignores

the quality). Starcode either returns detailed information of the

clustering results, i.e. canonical sequences, cluster sizes and the

complete list of their constituent sequences. Alternatively, only

the canonical sequences are printed, which is useful to filter

out redundant sequences from input files. By default, clustering

is performed under the assumption that divergence occurs from

experimental errors (sequencing errors, PCR mutations etc.) and

a more general algorithm is also available for other clustering

problems (an example of which is given in section 3.3).

We show the basic performance and scalability of starcode on

a dataset of pseudorandom sequences (Figure 5). The standard

configuration is a set of 1,000,000 sequences of length 40, running

on 1 thread and with a maximum Levenshtein distance of 3. In

each test, only one parameter is modified while the others are

kept constant. Since the clustering step does not require additional

memory allocation and is significantly faster than all-pairs search,

the performance results presented in Sections 3.1 and 3.2 apply for

both message-passing and spheres clustering algorithms.

Figure 5a shows the running time of starcode as a function of

the number of input sequences n. In double logarithmic scale the

trend is a straight line with slope 1.5, suggesting that the running

time complexity of starcode is lower than quadratic (the naive

implementation of all-pairs search). Note that the sequences of this

dataset have no match, see section 3.2 for an evaluation of the

performance on more realistic datasets. Figure 5b shows that the

running time grows exponentially as a function of the maximum

Levenshtein distance used for clustering. The reason is that the trie

fans out exponentially and the search bails out at a greater depth

as the maximum distance increases. As a function of the sequence

length, the running time first increases but then plummets and stays

low (Figure 5c). Beyond a threshold length, the filtering algorithm

starts to be efficient, and most of the queries are resolved without

searching the trie. Finally, we show the scalability of starcode with

increasing number of threads in Figure 5d. The search algorithm

is fully parallel and the relative performance increases linearly up

to 12 threads. The bending observed thereafter has two sources;

the first is that the input reading and clustering steps are brief but

not parallel, the second is due to hardware limitations, i.e. there is

insufficient memory bandwidth to satisfy the increased demand of

parallel memory accesses.

3.2 Benchmark

We benchmarked starcode against the sequence clustering

algorithms slidesort (?), seed (?), rainbow (?) and cd-hit (Fu et al.,

2012). Even though slidesort is an all-pairs search algorithm, it was

included in the benchmark because sequence comparison is the most

computationally intensive step of the sequence clustering problem.

Rainbow runs exclusively on paired-end reads, whereas the other

tools run on single reads, for this reason all the tools could not be

run on the same dataset.
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the number of sequences to be clustered. b Running time as a function of the
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Relative performance increase for different number of parallel threads.
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Fig. 6. Benchmark results on artificial datasets of known cluster structure

(see main text). a Accuracy measured by the number of identified clusters.

Starcode identifies the correct number of clusters, while seed and cd-hit

identify about 40 false positives per true positive. The red line is the first

bisector and indicates perfect results. b Accuracy measured by the number

of identified pairs. Slidesort identifies 5-10% less pairs than starcode. The

red line indicates a ratio of 1. c Running time of the different tools. As

the size of the clusters the running time of starcode increases but remains

competitive. d Memory usage of the different tools. The memory usage of

starcode decreases as the size of the cluster increases.

The performance of sequence clustering algorithms can be

sensitive to the size of the clusters in the dataset, which in many

applications is not known a priori. We therefore set up a benchmark

on artificial datasets to test the accuracy and the scaling of the tools

on a known cluster structure. We generated 4 datasets of 1 million

50-mers arranged in 1 to 1,000 clusters. Each cluster consisted of

100 repeats of the same centroid sequence, plus satellites derived

from the centroid by incorporating 3 errors including at most 1

indel. The number of satellites per cluster ranged from 999900

to 900. Rainbow was not tested on this benchmark because the

generated data are single reads. In addition, evaluating the exactness

of slidesort was problematic because the number of 3-matches in

each dataset is not known (pairs of satellites in the same cluster

may be 3-matches or not). For this reason we only compared the

number of pairs found by starcode with the number of pairs found

by slidesort. The outcome of the test is summarized in Figure 6.

While starcode achieves perfect clustering on all 4 datasets,

the clustering achieved by seed and cd-hit is incomplete.

Both tools identify approximately 40 false clusters per true

cluster on all the datasets (Figure 6a). We also observed that

slidesort found 5-10% less 3-matches than starcode on all the

datasets (Figure 6b). We were surprised by this result because

slidesort is claimed to be an exact algorithm. However, this

was clearly not the case when we ran additional tests on

smaller datasets where naive pairwise comparisons are feasible

(more information is available on the starcode repository, see

http://github.com/gui11aume/starcode/tree/master/misc).

The running time of the different tools as a function of the size of

the clusters is shown on Figure 6c. The running time of slidesort and

starcode show linear and sub-linear trends, respectively. Seed and

cd-hit run approximately in constant time regardless of the cluster

size. In spite of this result, the performance of starcode remains

competitive, even for clusters of 1 million sequences. The memory

usage is shown in Figure 6c. The smallest memory footprint is

achieved by slidesort and cd-hit, with a maximum difference of

an order of magnitude with respect to the other tools. Note that

the comparison with slidesort is not completely fair since it does

not hold in memory the full graph necessary for clustering. The

memory usage of starcode is the highest for clusters of size 1000,

but it decreases and becomes lower than the memory usage of seed

as the size of the cluster increases. In conclusion, starcode was the

only tool to achieve perfect precision on these datasets at a price

of increased memory footprint. Considering the exactness of the

output, starcode maintains a competitive performance in terms of

running time.

The performance on artificial data is not always in agreement

with the performance on experimental datasets. Typical experiments

present additional difficulties. For instance, the sizes of the clusters

may be uneven and the reads may contain near constant regions

that usually degrade the performance of filter-based algorithms.

We benchmarked sequence clustering algorithms on the problem

of clustering TRIP barcodes (Akhtar et al., 2013). Briefly, the

principle of TRIP (Thousands of Reporters Integrated in Parallel)

is to tag reporter transcripts with random barcodes and measure the

abundance of barcodes in the RNA as a proxy for gene expression.

There is no reference to match aberrant barcodes against, because

the tagging sequences are unknown.

The basic properties of the datasets used for benchmarking are

summarized in Table 3. Dataset 1 (SRR950457) has been pre-

processed to extract the barcode and remove the constant part of

the reads. Only barcodes between 15 and 17 nucleotides were

included in the file. Dataset 2 (PRJEB7686) consists of raw Illumina

single reads. These datasets differ by the read size, the total read

count and by the empirical cluster sizes. According to the output

of starcode, the largest clusters of dataset 1 contain approximately

70,000 sequences, whereas dataset 2 contains 4 clusters with more

than 1 million sequences. Dataset 3 (SRR950477) has been included

to benchmark starcode against rainbow in paired-end clustering

mode.

The running times of starcode, seed, slidesort, rainbow and cd-

hit are summarized in Table 4. We accommodated the distance

threshold for the first dataset to compensate for the reduced

sequence length. Both starcode and slidesort were executed with the

option ‘-d 2’ and the identity for cd-hit was set to ‘-c 0.85’.

We were not able to run seed on dataset 1 due to limitations on the
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Table 3. Summary of the biological datasets used for benchmarking. All the

datasets are Illumina reads.

dataset read count read length type

SRR950457 6,542,309 16± 1 single

PRJEB7686 127,675,537 50 single

SRR950477 2,460,226 100+100 paired-end

minimum sequence length. Starcode was significantly faster than

the other tools on all the datasets. Seed and cd-hit came in second

position with a running time approximately 35 and 20 times greater

on datasets 1 and 2, respectively. Rainbow was nearly an order of

magnitude slower in the job of clustering paired-end reads. We did

not record the exact running times past 10 days since this is several

orders of magnitude higher than the running time of starcode.

Table 4. Running time (in seconds) of the software on three biological

datasets. Exact running time was not recordeed past 10 days. A dash

indicates that the software cannot be used for this dataset.

software SRR950457 PRJEB7686 SRR950477

starcode 5 2,898 44

seed - 60,374 -

slidesort 4,055 > 10 days -

rainbow - - 306

cd-hit-est 170 512,591 -

The memory footprint of the different tools on the same datasets

is shown in Table 5. The values represent the peak memory usage

throughout the run on the datasets described above. On short reads

(dataset 1), starcode outperforms the other tools taking advantage

of the trie compaction. On dataset 3, starcode had a significantly

larger memory usage than rainbow. Starcode and cd-hit used similar

amount of memory on dataset 2. Both needed twice as much

memory as slidesort, which has the advantage of not storing the

complete graph during the all-pair comparison.

Table 5. Memory usage (in GB).

software SRR950457 PRJEB7686 SRR950477

starcode 0.65 30.9 5.2

seed - 53.9 -

slidesort 1.30 13.9 -

rainbow - - 0.5

cd-hit-est 0.80 28.5 -

3.3 Identifying enriched sequence motifs

As a sequence clustering algorithm, starcode can also be used

for other applications, such as the identification of enriched

motifs. Sequence motifs are thought to play an important role in

DNA metabolism. Key regulators, such as transcription factors,

nucleosomes and non coding RNAs have sequence preferences

targeting them to the sites where they act. Identifying those

sequences is a way to pinpoint the regulators and the mechanisms

they are involved in. However, the sequence motifs are not strictly

identical at different sites, hence they are better identified by inexact

matching. This problem becomes computationally difficult for long

motifs (above 12-13 nucleotides) because of the combinatorial

scaling.

We set up a test based on the meningitis-causing agent Neisseria

meningitidis. The genome of this bacterium is interspersed with a

frequent 12 bp sequence known as DNA uptake sequence (Smith

et al., 1999). We extracted the 12-mers from both orientations of

the 2.19 Mb genome, yielding 4.39 million 12-mers, consisting of

2.77 million unique sequences. Clustering the 12-mers with starcode

within a Levenshtein distance of 2, we identified the known DNA

uptake sequence of Neisseria meningitidis (ATGCCGTCTGAA) as

the most abundant 12-mer, with 1466 exact and 2096 inexact hits.

This result testifies to the fact that starcode can be used to identify

biologically relevant motifs in bacterial genomes.

To test starcode on another application, we used the RNA-

protein interaction data produced by RNAcompete (Ray et al.,

2009). The mammalian splicing factor SRSF1 is known to bind

RNA GA-rich motifs, but there is some disagreement about

the motif that it recognizes (Pandit et al., 2013). For each

replicate of the human SRSF1 in the RNAcompete dataset, we

replaced the microarray signals by their rank and extracted the

10-mers from the microarray probes. The 10-mers were given a

score equal to the rank of the probe they belong, and enriched

motifs were found using the sphere clustering of starcode with

maximum Levenshtein distance 2. The score of the most enriched

10-mer is thus the sum of the ranks of all 10-mers within

this distance. Among the 6 replicates, the most enriched 10-

mers were AGGACACGGA, AGGACACGGA, AGGACGGAGG,

AGGACGGAGG, AGGACACGGA and AGGATACAGG. Except

for the last replicate, the motifs consist of AGGAC and GGA, with

a spacer of variable length. This suggests that the binding of SRSF1

to RNA may involve a spacer sequence, which would explain the

disagreement between the motifs derived from 6-mers or 7-mers.

4 DISCUSSION AND CONCLUSION

Starcode is a solid algorithm for sequence clustering based on all-

pairs matching. It achieves high precision, and on experimental

datasets it can be faster than popular heuristics. By design, starcode

is tailored to process high throughput sequencing data on multi-core

platforms with sufficient amount of memory. Due to its superior

precision and faster running time, it fills a gap among available

software, by allowing to take full advantage of middle to high end

hardware.

It is somehwat surprising that starcode is significantly faster than

competing tools on experimental datasets, whereas seed and cd-hit

are faster on artificial datasets. Starcode was developed ground up

from TRIP experimental datasets and the poucet search was selected

for giving the best empirical results. We speculate that the trie

structure benefits from the entropy deficit that is typically observed

in experimental data versus pseudorandom reads.

The speed and precision of starcode also makes it useful for other

clustering tasks, such as identifying enriched motifs in microbial

genomes and in experimental data. Here we have given two

examples of such applications. In the first, we recover a known

enriched 12-mer in the genome of Neisseria meningitidis. In the

second, we recover the motif of the human RNA binding protein
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SRSF1 and notice that it seems to consist of two halves separated by

a linker. This hypothesis is consistent with the fact that SRSF1 binds

RNA through two consecutive RNA Recognition Motifs (RRM)

that are known to bind 3-4 nucleotides in a row(Daubner et al.,

2013). The Levenshtein distance, which incorporates insertions and

deletions is more likely to capture bi-partite binding motifs than

position weight matrix representations. The use of a clustering

method to tackle this problem is unusual, but it illustrates the

potential advantages of distance-based approaches.

One of the reasons why starcode appears to be faster than

alternative tools is that it is designed to cluster relatively similar

sequences. When clustering related but divergent sequences,

the Levenshtein distance will have to be increased, leading

to exponentially longer running times (Figure 5b). However,

for the imporant practical case of correcting errors introduced

by sequencing, starcode illustrates that there is still room for

developing algorithms that are both faster and more accurate than

the current state of the art.
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