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Abstract. Modeling data warehouses is a complex task focusing, very often, into internal structures and implementation issues. 
In this paper we argue that, in order to accurately reflect the users requirements into an error-free, understandable, and easily 
extendable data warehouse schema, special attention should be paid at the conceptual modeling phase. Based on a real 
mortgage business warehouse environment, we present a set of user modeling requirements and we discuss the involved 
concepts. Understanding the semantics of these concepts, allow us to build a conceptual model− namely, the starER model− for 
their efficient handling. More specifically, the starER model combines the star structure, which is dominant in data warehouses, 
with the semantically rich constructs of the ER model; special types of relationships have been further added to support 
hierarchies. We present an evaluation of the starER model as well as a comparison of the proposed model with other existing 
models, pointing out differences and similarities. Examples from a mortgage data warehouse environment, in which starER is 
tested, reveal the ease of understanding of the model, as well as the efficiency in representing complex information at the 
semantic level. 
Keywords: data warehouse, conceptual modeling, star structure, ER model. 
 
 

1 Introduction 
A data warehouse  is a collection of consistent, subject-oriented, 
integrated, time-variant, non-volatile data and processes on them, 
which are based on available information and enable people to 
make decisions and predictions about the future [7]. Over the last 
years, data warehouses enjoy a lot of attention both from the 
industrial and the research community. The reason lies in their 
great importance: making predictions about the (near) future, has 
always been desirable for business companies.  

Data warehouse design has hitherto focused on the physical data 
organization (i.e., the "internal" structure) and quite 
understandable so, because of the volume and the complexity of 
data. Following the logical structure of data, as described in a data 
warehouse, several schemas have been developed emphasizing on 
the star-oriented approach; data unfolds around facts occurring in 
businesses. The star [1], the starflake [12], and the snowflake 
schema [8] are used widely for this purpose. Although all of these 
schemas provide some level of modeling abstraction that is 
understandable to the user, they are not built having his/her needs 
in mind.  

 
 
 
 
 

 
 
 
 
 

 

 

Our position is that data warehouse modeling− as exactly databases 
do, many years now− should be exposed, to a higher level of 
design, that is understandable to the user, independent of 
implementation issues, and that does not use any computer 
metaphors, such as "table" or "field". The result of this process 
will be a schema that is formal and complete, so that it can be 
transformed into the next logical schema without ambiguities. 
This is the conceptual or semantic modeling phase, and the 
benefits of its use have been praised a lot: communication between 
the designer and the user, early detection of modeling errors, and 
easily extendable schemas are among them. The conceptual 
modeling phase is part of a design methodology− which is classical 
in the database area, and has been already proposed [6] for the 
data warehouse area−  following the user requirements analysis 
and specifications phase and, is followed by the logical design 
focusing on workload refinement and schema validation.  

In this paper we firstly address the modeling requirements of a 
data warehouse, from the user point of view. For this purpose, we 
use a real mortgage business environment. The understanding of 
the requirements reveals a set of concepts that need to be 
accommodated at the conceptual modeling phase. We propose the 
use of a new model, namely the starER model, for the conceptual 
modeling of data warehouses. The starER model combines the 
semantically rich constructs of the well-known Entity-
Relationship (ER) model [4] with the star structure that rules the 
data in data warehouses. Our starting point is that, the ER model 
has been tested for years, and proved powerful enough to model 
complex applications such as spatiotemporal, and multimedia. In 
all cases, when new modeling techniques are needed to capture the 
new demands, new constructs are added to ER; but the core of the 
model is the same. So, there is no reason to change such a model, 
which designers are familiar and happy with. On the other hand, 
as mentioned before, data warehouses impose a new modeling 



structure: facts about businesses are central, and all the data is 
unfolded around them.  

We should make clear that we do not propose a set of new 
concepts and terminology. We rather put all the necessary 
concepts together under the same data warehouse framework, and 
try to understand their semantics, in order to, later, build an 
efficient, in terms of expressive power, conceptual model. 

The presented starER model is tested in a mortgage warehouse; 
examples and experiences are listed here.  

The paper is organized as follows: Section 2 gives the modeling 
requirements of a data warehouse, showing the concepts that need 
to be modeled. Then, in Section 3, the starER model is proposed. 
For each concept, we show the one-to-one correspondence with a 
starER construct. Small examples of use are given. Section 4 
focuses on the design of a larger excerpt from a mortgage and loan 
business. The efficiency and ease of use of starER is 
demonstrated. Section 5 includes an evaluation of starER and a 
comparison of the proposed model with other existing models, 
pointing out differences and similarities. Finally, Section 6 
concludes and discusses the future research plans.   

2 Conceptual Modeling of Data Warehouses: 
Requirements and Concepts 

In this Section we focus on the special modeling needs of a data 
warehouse at the conceptual phase, as they are drawn from 
theoretical [1], [2], [7] and practical experience [3] for a mortgage 
company. The listed user requirements reveal a set of new 
modeling concepts that need to be handled. Based on these, later 
on, well-known models and schema are to be combined and 
extended with new constructs, improving their ability to 
conveniently design data warehouse environments.  

Consider the following example taken from a mortgage business 
environment. Customers have loans on buildings. They pay the 
loans in terms of repayments (i.e., "small" amounts) at specific 
dates. The mortgage company is interested in keeping track of the 
repayments and analyzing them in terms of customer profiles, loan 
profiles, and time periods.  At the conceptual modeling phase of 
such a data warehouse there is the need to: 
(a)  represent facts and their properties. 

Facts are central to data warehouses. They show actual facts of the 
real world and can be seen as processes further generating data 
over time. They are characterized by properties. In our example, 
"repayment" is the fact, showing the payback of a loan. 
"repayment" has "repayment amount" (i.e., the amount paid every 
month), and "installment" (i.e., the remaining amount of the loan 
to be paid) as properties.  

Fact properties are usually numerical data, and can be summarized 
(or aggregated) in various ways in order to extract further 
information. For this reason, the numerical properties are also 
called summary properties ([9] refers to them as summary 
attributes). For example, the "repayment amount" is a summary 
property, as it can be summarized through the months, presenting 
the paid amount up to the current time point. This characteristic of 
the fact properties is important to data warehouses, and it is called 
summarizability. There are three different types of properties, with 
respect to summarizability: stock, flow and value-per-unit.  

A property of type stock records the state of something at a 
specific point in time; for example, "installment" is of type stock. 
Alternatively, properties of type stock can be thought of as 
snapshots of the current state of some parameter in the 

environment monitored by the data warehouse. Summary 
properties of type stock can be summarized over the temporal 
dimension.  

A property of type flow records the commutative effect over a 
period of time for some parameter in the environment monitored 
by the data warehouse. Properties of type flow record the change 
or, the commutative effect of a parameter over a period of time. 
Summary properties of type flow can always be summmarized. 
The "repayment amount" of our example is of type flow.  

A property of type value-per-unit is similar to a property of type 
stock, in the respect that it is measured for a fixed time, but that 
the units of the property is different; because of that, the resulted 
measures can not be summarized. A property of type value-per-
unit always describes the recording of the parameter in relation to 
some unit in the environment monitored. An example of this 
property type is the "interest rate per repayment". This is different 
from summary properties of type stock, since the "interest rate" 
can only be viewed in the context of its unit, i.e. "repayment". 

A list of how the different property types behave in relation to 
the different summery functions can be found in [9]. 
(b)  connect the temporal dimension to facts.  

Facts can be seen as processes evolving over time, generating 
data. Based on this, "time" is an important aspect, and is always 
associated to a fact. For example, the "repayment" is done at 
specific dates, or within specific (pre-specified) time-periods.  

(c)  represent objects, capture their properties and the associations 
among them.  

Information connected to facts can be analyzed− as in classical 
applications− in terms of objects, their properties and associations 
among objects, capturing the semantics of the data warehouse 
environment. In the example of the mortgage company, a 
"customer" is an object, with "customer identification number" 
(or, "customer id"), "name" and "income level" as properties. The 
"customer" "has" (i.e., association), an "address", with "zip code" 
and "street number" as properties.  

Object properties can, like the fact properties, be numeric and are, 
also, called summary properties. Accordingly, they can be of type 
stock, flow, and value-per-unit. For instance, the "interest rate" of 
a loan is of type value-per-unit, as its average, minimum or 
maximum per year can be calculated, but it can not be summarized 
(i.e., with the sum function).  

Additionally, three special types of associations− apart from the 
usual ones− among objects exist very often:  

(i) specialization/generalization, showing objects as subclasses of 
another object. For example, a "company" and a "physical person" 
are both "customers" for a "mortgage company", 

(ii) aggregation, showing objects as parts of a larger object; for  
example, a "mortgage company" consists of the "financial 
department" and the "administration department",  

(iii)  membership, showing that an object is member of another 
"higher" object class1 with the same characteristics and  behavior; 
for example, "branches" of a mortgage company are members of 
the "company".   

                                                        
1 The term "object class", here, has a broader meaning than the 

specific object-oriented one. 



The membership association is of special interest in data 
warehouses, since it appears very often and in connection to 
dimensions gives further results (see below, (e)). It is 
characterized by its strictness (or, not) and completeness (or, not). 
Strict membership means all members belong to only one higher 
object class. For example, a "branch" is a member of only one 
"company". Complete membership means that all members belong 
to one higher object class and that object class is consisted by that 
members only. For example, all "branches" and only them, belong 
to the "company". Thus, the membership branch-company is strict 
and complete.  

(d)  record the associations between objects and facts.  

Facts are semantically connected to objects. For example, a 
"customer" (i.e., object) who has a loan, "pays" the "repayment" 
(i.e., fact) which is associated to the "loan" (i.e., object).  

(e)  distinguish dimensions and categorize them into hierarchies.  

When a fact is connected to an object, the data that can be 
retrieved and analyzed via this association is of great importance. 
For example, analysis between "repayment" and "customer" 
shows the connection between the size of the repayment and the 
income level of the customers. Objects that are connected via 
associations to facts are called dimensions, and they are usually 
the focus of the data warehouse analysis. As said before (in (b)), a 
fact is always connected to the temporal dimension.  

Dimensions are usually governed by associations of type 
membership forming hierarchies that specify different 
granularities. Thus, the time dimension can be decomposed into 
year, month and day, showing that days are members of months, 
which are members of years, which are members of time (i.e., 
membership). In that way, the sum of the repayments per customer 
can be summarized at quarterly basis of the year. In a similar way, 
a year can be summarized by its season-parts. 

3 The starER Conceptual Data Warehouse Model  
After analyzing the user requirements for data warehouse 
modeling, we proceed to the conceptual (or semantic) modeling 
phase of the application development cycle. Here, the main goal is 
to translate user requirements into an abstract representation, 
understandable to the user, that is independent of implementation 
issues, but is formal and complete, so that it can be transformed 
into the next logical schema without ambiguities.  

The Entity-Relationship model (ER) [4] is the most widely used 
conceptual model. Its main advantages are the ease of use that it 
provides and the small set of supported constructs. Its main 
constructs are (a) the entity sets, capturing real world objects, (b) 
the relationship sets, capturing associations among objects and, (c) 
the attributes representing properties of entity or relationship set.  
On the other hand, a set of new schemas (and not models) have 
been recently employed to capture the structure of data 
warehouses: the star, the snowflake and the starflake schemas. The 
reason for this is the star-structured data of a warehouse 
environment: facts about companies are centered, and data unfolds 
around them.  

We believe that none of the aforementioned models and schemas 
is adequate to meet the data warehouse requirements, although 
they provide the constructs and the structure for this purpose. Our 
position is that the semantically rich ER model and the structure-
efficient star schema have to be combined under the same model. 
For this purpose, we enrich ER with all the concepts showed in 
Section 2, as they are the result of the understanding and 
experiment [3] of the data warehouse nature as well as the star 

structure, in which facts are central. We show the one-to-one 
translation of these concepts to modeling constructs of the 
combined starER (i.e., star and ER) model.  

3.1 The constructs of the starER model 
Summarizing the set of concepts presented in Section 2, with 
respect to the ER constructs, the starER needs to accommodate: 
(a) facts, which show actual facts of the real world application 
environment, based on on-going processes, (b) entities, which 
represent autonomous objects of the environment, (c) 
relationships, which represent associations or links among entities, 
or among entities and facts, and (d) attributes, representing 
characteristics or properties of entities or relationships, or facts.  

Based on these concepts, the model has the following constructs: 

• Fact set: represents a set of real-world facts sharing the same 
characteristics or properties (see below). Semantically, a fact 
set points to the process of generating data over time, i.e., 
data is generated in terms of facts, each time an event related 
to the fact takes place. For that reason, a fact set is always 
associated to time (see below). A fact set is represented as a 
circle.  

Consider the example from the mortgage company environment, 
in which the customers pay repayments on their building loans 
each month. In this case the event is the repayment of the loans. 
Figure 3.1 shows a "repayment" as a fact set. 

repayment

 
Figure 3.1: "repayment" as a fact set. 

• Entity set: represents a set of real-world objects with similar 
properties; it has the same meaning as in traditional 
application modeling. The graphical representation of an 
entity set is a rectangle.  

Typical entity sets from the mortgage company example are the 
"customer" and "loan". 

 

Figure 3.2: "customer" and "loan" as entity sets in the mortgage 
company example. 

• Relationship set: represents a set of associations among 
entity sets or among entity sets and fact sets. Its cardinality 
can be many-to-many (N:M), many-to-one (M:1) or one-to-
many (1:M). The graphical representation of a relationship 
set, in both cases, is a diamond.  

Figure 3.3 shows the relationship set between "customer" and 
his/her "address". 

customer addresshas 
M N

 
Figure 3.3: "customer" and "address" associated with the 

relationship set "has". 

An example of a relationship set among entity sets and fact sets is 
(Figure 3.4) the association between "customer" and "repayment".   
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Figure 3.4: "customer" and "repayment" associated with the 

relationship type "pays".  

Relationship sets among entity sets can be of type 
specialization/generalization, aggregation and membership, as 
described in Section 2. Figure 3.5 gives examples of these types 
together with their graphical representation.  

customer

person

company

specialization/
generalization

mortgage
companybranches

complete membership

financial
department

administration

mortgage
company

aggregation

non-complete membership
1M

M>0

strict membership

 
Figure 3.5: Examples of specialization, aggregation and 

membership relationship sets.  

As mentioned in Section 2, in data warehouses, it is important to 
know if a membership is strict or not and complete, or not. The 
strictness or not of a membership is shown by cardinality of the 
membership and the accompanying constraint (i.e., M:1 and M>0 
means strict). A complete membership is illustrated by a solid 
arrow, while a non-complete is given by a dashed arrow.  
An important relationship among fact sets and entity sets, is the 
one between any fact and the "time" this fact is performed. "time" 
and any further component of it such as "day", "month", "season", 
is recorded as entity set. That allows us to model, and later on 
summarize, summary properties of that fact (described below as 
fact attributes) according to the time granularity (Section 2).  
Additionally, "time", as well as the other entity sets associated to a 
fact, are the dimensions of that fact. Dimensions consist of 
hierarchies and/or other relationships among other entity sets. 
Consider the example of  "repayment"-"payback"-"loan" and 
"repayment"-"at"-"time" presented in Figure 3.6.  

Notice that the hierarchies of a dimension show the different 
granularities at which the connected fact set can be summarized. 
So, "repayment" can be summarized in terms of months, or years.  
Exactly for the reason of the summary calculation, it is important 
to know if a hierarchy is strict and/or complete. 
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Figure 3.6: Dimensions and hierarchies. 
• Attribute: static properties of entity sets, relationship sets, 

and/or fact sets are represented as attributes. Attributes are 
illustrated by ovals.  

Attribute examples of the "customer" entity set are "name", 
"customer id", and "income level". 
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Figure 3.7: "name", "customer id", and "income level" as 

attributes of "customer". 

As said in Section 2, fact properties can be of type stock, flow, or 
value-per-unit. This is indicated by an "S", "F", or "V" on the left 
of the attribute illustration, respectively. The attribute examples of 
the "repayment" fact set are the "repayment amount" and the 
"installment" (Figure 3.8). 
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Figure 3.8: "repayment amount", and "installment" as attributes 

of the "repayment" fact set. 

4   Example of Use 
In this Section we give an extended excerpt (i.e., the customer-
loan view) from the data warehouse of a mortgage business 
company, using the starER model. As can be seen, the basic 
structure of the resulted starER schema is star. The fact set 
"repayment" is central, and around it− indicated by shaded 
color− are the dimensions "customer", "loan", "real estate", and 
"time". Each dimension is further modeled by using the constructs 
of the ER model. Also, the "time" dimension is clearly governed 
by hierarchies specifying the different granularities at which the 
fact set "repayment" can be summarized. 



repayment

loan

payback

1

yearquartermonthday

a’ semester b’ semester

loan id

loan type

at

N

customer

customer id name income level

pays

address
N Mhas

str_no zip code

M

real estate

number address value

done by

M

N

region

city

country

S

name size

Gross
National
Product

mortage 
company

N

name

branch

financial
dept

administr. 
dept

M

has

week

S

V interest

1

1S F

installment rep.amount
N 1 M 1 N 1

M>0

M 1N 1

1

company

code

person

M N>0 M>0 N>0

M>0N>0

V

S

Figure 3.9:  An excerpt from a mortgage company data warehouse, using the starER model. The financial and the administration department 
are outside  the customer dimension as this is dependent on design decisions  and semantic issues. 

 
 
5 Evaluation of the starER model 
In this section we evaluate the starER model based on a well-
defined set of criteria [11] and later on, we compare the proposed 
model to other conceptual data warehouse models [5].  
[11] present a set of evaluation criteria for data warehouse models. 
We adopt them here to evaluate the starER model. The criteria 
allow us to decide whether or not a model is adequate for data 
warehouse modeling, in terms of correctness, modeling power and 
efficiency in information capturing, independent of the design 
level the particular model exists. Below we present the criteria as 
described in [11] and discuss whether or not the starER model 
meets them. The nine criteria are:  

• Explicit hierarchies in dimensions. The hierarchies in the 
dimensions should be captured explicitly by the schema, so 
the user has available the relation between the different 
hierarchical level.  

The starER model supports explicit hierarchies, in terms of 
memberships.  

• Symmetric treatment of dimensions and summary attributes 
(properties). The model should allow summary attributes to 
be treated as dimensions and vice versa.  

In our interpretation of the starER constructs we have made a 
conceptual distinction between dimensions and summary 
attributes, but we do not restrict the user from modeling a 
dimension as a particular summary property (or vice versa) in 
order to add extra features to the analysis. In our example, the 
"repayment amount" is a summary attribute, to allow for 
computations such as summing up values.  

• Multiple hierarchies in each dimension.  

In our example of the "time" dimension, days can roll-up to 
months, and days can also roll-up to weeks.  

• Support for correct summary or aggregation. The data model 
should give meaningful summaries or aggregations to the 
user.  

The starER model requires the illustration of explicit hierarchies 
together with the type of the hierarchy (i.e. strict, complete etc.) 
and the measure types (i.e., stock, flow, or value-per-unit), so that 
the conditions of summarizability can be properly evaluated.  

• Support of non-strict hierarchies.  

The starER model allows non-strict hierarchies via the cardinality 
of the memberships.  

• Support of many-to-many relationships between facts and 
dimensions. 

An example of this is the relationship between "repayment" and 
"real estate".  

• Handling different levels of granularity at summary 
properties.  

The starER model handles different levels of granularity at 
summary properties via the membership hierarchy. For example, 
the "repayment amount" of Figure 3.8 can be summarized per 
year, following the granularity of the "time" dimension.  

• Handling uncertainty. 

The starER at the present state does not accommodate uncertainty. 
Uncertainty in data warehouses is a research area on its own, and 
needs extended study. If uncertainty deals with the presence or not 
of fact sets, entity sets, attributes, or relationship sets, then it can 
be however handled by starER, by adding probability (i.e., 
attributes showing probability) at fact sets, entity sets, attributes 



(i.e., making them composite) or relationship sets, respectively. If 
uncertainty deals with specific values of instances of starER 
constructs, e.g., the probability to have "loan interest" more than 
3%, then it falls at the logical design level, and its accommodation 
can not be argued for the starER model, since all the included 
information is at the conceptual level.   

• Handling change and time. 
This criterion falls in the logical design level, and its 
accommodation can not be argued for the starER model, since all 
the included information is at the conceptual level.   

As mentioned before, the starER model has the basic constructs 
and philosophy of the ER model, as well as the structure of the 
star schema. It is semantically richer that the star, starflake and 
snowflake schema as it is designed to serve highly abstract 
representations. The only schema that falls into the area of 
conceptual design is the dimensional fact schema [5]. Its main 
components are facts, dimensions and hierarchies. A fact schema 
is constructed as a tree, with the fact as root.  
There are some differences between the dimensional fact schema 
and the starER model, which make the second one semantically 
richer:  

• Relationships between dimensions and facts in starER are not 
only many-to-one, but also many-to-many, which allows for 
better understanding of the involved information. Such an 
example is the relationship between "repayment" and "real 
estate". 

• Objects participating in the data warehouse, but not in the 
form of a dimension (i.e., not connected directly to a fact) are 
allowed in starER, permitting in this way to capture more 
semantics.  

• Specialized relationships on dimensions are permitted, such 
as specialization/generalization, membership, and 
aggregation representing more information (see Figure 3.8)  

One could argue that the dimensional fact schema requires only a 
rather straight forward transformation to fact and dimension 
tables, and this is an advantage of the dimensional fact schema. 
But, this is not a drawback for the starER model, since well-
known rules of how to transform an ER schema (which is the 
basic structural difference between the two approaches) to 
relations do exist. 

6 Conclusions 
In this paper we discuss a set of modeling requirements as they are 
drawn from a real mortgage warehouse environment, from the 
users' point of view. These requirements reveal a set of concepts 
that need to be included into conceptual models in order to 
efficiently design data warehouses. Based on these concepts, we 
build a new model, the starER model, which combines the 
semantically powerful constructs of the ER model, with the 
dominant, in the warehouses, star-structure of data. The model has 
been tested in a mortgage business environment and we 
experienced a welcome acceptance from both users, appreciating 
the ease of use and understanding of starER, and designers, for the 
model's expressive power and still close relation to tools and terms 
they are used to.  

We see the starER model as part of a data warehouse design 
methodology, leading from user requirements to physical 
implementation. We are currently working on building the tool to 
support in a semi-automatic way such a methodology. 
Transformation rules from the starER constructs to specific logical 

models, such as the relational model, which is used by many data 
warehouse software packages (see for example [13]) and to 
multidimensional models [10] are considered.  
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