
starER: A Conceptual Model for Data Warehouse Design
Nectaria Tryfona, Frank Busborg, and Jens G. Borch Christiansen

Department of Computer Science, Aalborg University,
Fredrik Bajersvej 7E, DK-9220, Aalborg Øst, Denmark

{tryfona, dux, jbc}@cs.auc.dk

Abstract. Modeling data warehouses is a complex task focusing, very often, into internal structures and implementation issues.
In this paper we argue that, in order to accurately reflect the users requirements into an error-free, understandable, and easily
extendable data warehouse schema, special attention should be paid at the conceptual modeling phase. Based on a real
mortgage business warehouse environment, we present a set of user modeling requirements and we discuss the involved
concepts. Understanding the semantics of these concepts, allow us to build a conceptual model− namely, the starER model− for
their efficient handling. More specifically, the starER model combines the star structure, which is dominant in data warehouses,
with the semantically rich constructs of the ER model; special types of relationships have been further added to support
hierarchies. We present an evaluation of the starER model as well as a comparison of the proposed model with other existing
models, pointing out differences and similarities. Examples from a mortgage data warehouse environment, in which starER is
tested, reveal the ease of understanding of the model, as well as the efficiency in representing complex information at the
semantic level.
Keywords: data warehouse, conceptual modeling, star structure, ER model.

1 Introduction
A data warehouse is a collection of consistent, subject-oriented,
integrated, time-variant, non-volatile data and processes on them,
which are based on available information and enable people to
make decisions and predictions about the future [7]. Over the last
years, data warehouses enjoy a lot of attention both from the
industrial and the research community. The reason lies in their
great importance: making predictions about the (near) future, has
always been desirable for business companies.

Data warehouse design has hitherto focused on the physical data
organization (i.e., the "internal" structure) and quite
understandable so, because of the volume and the complexity of
data. Following the logical structure of data, as described in a data
warehouse, several schemas have been developed emphasizing on
the star-oriented approach; data unfolds around facts occurring in
businesses. The star [1], the starflake [12], and the snowflake
schema [8] are used widely for this purpose. Although all of these
schemas provide some level of modeling abstraction that is
understandable to the user, they are not built having his/her needs
in mind.

Our position is that data warehouse modeling− as exactly databases
do, many years now− should be exposed, to a higher level of
design, that is understandable to the user, independent of
implementation issues, and that does not use any computer
metaphors, such as "table" or "field". The result of this process
will be a schema that is formal and complete, so that it can be
transformed into the next logical schema without ambiguities.
This is the conceptual or semantic modeling phase, and the
benefits of its use have been praised a lot: communication between
the designer and the user, early detection of modeling errors, and
easily extendable schemas are among them. The conceptual
modeling phase is part of a design methodology− which is classical
in the database area, and has been already proposed [6] for the
data warehouse area− following the user requirements analysis
and specifications phase and, is followed by the logical design
focusing on workload refinement and schema validation.

In this paper we firstly address the modeling requirements of a
data warehouse, from the user point of view. For this purpose, we
use a real mortgage business environment. The understanding of
the requirements reveals a set of concepts that need to be
accommodated at the conceptual modeling phase. We propose the
use of a new model, namely the starER model, for the conceptual
modeling of data warehouses. The starER model combines the
semantically rich constructs of the well-known Entity-
Relationship (ER) model [4] with the star structure that rules the
data in data warehouses. Our starting point is that, the ER model
has been tested for years, and proved powerful enough to model
complex applications such as spatiotemporal, and multimedia. In
all cases, when new modeling techniques are needed to capture the
new demands, new constructs are added to ER; but the core of the
model is the same. So, there is no reason to change such a model,
which designers are familiar and happy with. On the other hand,
as mentioned before, data warehouses impose a new modeling

structure: facts about businesses are central, and all the data is
unfolded around them.

We should make clear that we do not propose a set of new
concepts and terminology. We rather put all the necessary
concepts together under the same data warehouse framework, and
try to understand their semantics, in order to, later, build an
efficient, in terms of expressive power, conceptual model.

The presented starER model is tested in a mortgage warehouse;
examples and experiences are listed here.

The paper is organized as follows: Section 2 gives the modeling
requirements of a data warehouse, showing the concepts that need
to be modeled. Then, in Section 3, the starER model is proposed.
For each concept, we show the one-to-one correspondence with a
starER construct. Small examples of use are given. Section 4
focuses on the design of a larger excerpt from a mortgage and loan
business. The efficiency and ease of use of starER is
demonstrated. Section 5 includes an evaluation of starER and a
comparison of the proposed model with other existing models,
pointing out differences and similarities. Finally, Section 6
concludes and discusses the future research plans.

2 Conceptual Modeling of Data Warehouses:
Requirements and Concepts

In this Section we focus on the special modeling needs of a data
warehouse at the conceptual phase, as they are drawn from
theoretical [1], [2], [7] and practical experience [3] for a mortgage
company. The listed user requirements reveal a set of new
modeling concepts that need to be handled. Based on these, later
on, well-known models and schema are to be combined and
extended with new constructs, improving their ability to
conveniently design data warehouse environments.

Consider the following example taken from a mortgage business
environment. Customers have loans on buildings. They pay the
loans in terms of repayments (i.e., "small" amounts) at specific
dates. The mortgage company is interested in keeping track of the
repayments and analyzing them in terms of customer profiles, loan
profiles, and time periods. At the conceptual modeling phase of
such a data warehouse there is the need to:
(a) represent facts and their properties.

Facts are central to data warehouses. They show actual facts of the
real world and can be seen as processes further generating data
over time. They are characterized by properties. In our example,
"repayment" is the fact, showing the payback of a loan.
"repayment" has "repayment amount" (i.e., the amount paid every
month), and "installment" (i.e., the remaining amount of the loan
to be paid) as properties.

Fact properties are usually numerical data, and can be summarized
(or aggregated) in various ways in order to extract further
information. For this reason, the numerical properties are also
called summary properties ([9] refers to them as summary
attributes). For example, the "repayment amount" is a summary
property, as it can be summarized through the months, presenting
the paid amount up to the current time point. This characteristic of
the fact properties is important to data warehouses, and it is called
summarizability. There are three different types of properties, with
respect to summarizability: stock, flow and value-per-unit.

A property of type stock records the state of something at a
specific point in time; for example, "installment" is of type stock.
Alternatively, properties of type stock can be thought of as
snapshots of the current state of some parameter in the

environment monitored by the data warehouse. Summary
properties of type stock can be summarized over the temporal
dimension.

A property of type flow records the commutative effect over a
period of time for some parameter in the environment monitored
by the data warehouse. Properties of type flow record the change
or, the commutative effect of a parameter over a period of time.
Summary properties of type flow can always be summmarized.
The "repayment amount" of our example is of type flow.

A property of type value-per-unit is similar to a property of type
stock, in the respect that it is measured for a fixed time, but that
the units of the property is different; because of that, the resulted
measures can not be summarized. A property of type value-per-
unit always describes the recording of the parameter in relation to
some unit in the environment monitored. An example of this
property type is the "interest rate per repayment". This is different
from summary properties of type stock, since the "interest rate"
can only be viewed in the context of its unit, i.e. "repayment".

A list of how the different property types behave in relation to
the different summery functions can be found in [9].
(b) connect the temporal dimension to facts.

Facts can be seen as processes evolving over time, generating
data. Based on this, "time" is an important aspect, and is always
associated to a fact. For example, the "repayment" is done at
specific dates, or within specific (pre-specified) time-periods.

(c) represent objects, capture their properties and the associations
among them.

Information connected to facts can be analyzed− as in classical
applications− in terms of objects, their properties and associations
among objects, capturing the semantics of the data warehouse
environment. In the example of the mortgage company, a
"customer" is an object, with "customer identification number"
(or, "customer id"), "name" and "income level" as properties. The
"customer" "has" (i.e., association), an "address", with "zip code"
and "street number" as properties.

Object properties can, like the fact properties, be numeric and are,
also, called summary properties. Accordingly, they can be of type
stock, flow, and value-per-unit. For instance, the "interest rate" of
a loan is of type value-per-unit, as its average, minimum or
maximum per year can be calculated, but it can not be summarized
(i.e., with the sum function).

Additionally, three special types of associations− apart from the
usual ones− among objects exist very often:

(i) specialization/generalization, showing objects as subclasses of
another object. For example, a "company" and a "physical person"
are both "customers" for a "mortgage company",

(ii) aggregation, showing objects as parts of a larger object; for
example, a "mortgage company" consists of the "financial
department" and the "administration department",

(iii) membership, showing that an object is member of another
"higher" object class1 with the same characteristics and behavior;
for example, "branches" of a mortgage company are members of
the "company".

1 The term "object class", here, has a broader meaning than the

specific object-oriented one.

The membership association is of special interest in data
warehouses, since it appears very often and in connection to
dimensions gives further results (see below, (e)). It is
characterized by its strictness (or, not) and completeness (or, not).
Strict membership means all members belong to only one higher
object class. For example, a "branch" is a member of only one
"company". Complete membership means that all members belong
to one higher object class and that object class is consisted by that
members only. For example, all "branches" and only them, belong
to the "company". Thus, the membership branch-company is strict
and complete.

(d) record the associations between objects and facts.

Facts are semantically connected to objects. For example, a
"customer" (i.e., object) who has a loan, "pays" the "repayment"
(i.e., fact) which is associated to the "loan" (i.e., object).

(e) distinguish dimensions and categorize them into hierarchies.

When a fact is connected to an object, the data that can be
retrieved and analyzed via this association is of great importance.
For example, analysis between "repayment" and "customer"
shows the connection between the size of the repayment and the
income level of the customers. Objects that are connected via
associations to facts are called dimensions, and they are usually
the focus of the data warehouse analysis. As said before (in (b)), a
fact is always connected to the temporal dimension.

Dimensions are usually governed by associations of type
membership forming hierarchies that specify different
granularities. Thus, the time dimension can be decomposed into
year, month and day, showing that days are members of months,
which are members of years, which are members of time (i.e.,
membership). In that way, the sum of the repayments per customer
can be summarized at quarterly basis of the year. In a similar way,
a year can be summarized by its season-parts.

3 The starER Conceptual Data Warehouse Model
After analyzing the user requirements for data warehouse
modeling, we proceed to the conceptual (or semantic) modeling
phase of the application development cycle. Here, the main goal is
to translate user requirements into an abstract representation,
understandable to the user, that is independent of implementation
issues, but is formal and complete, so that it can be transformed
into the next logical schema without ambiguities.

The Entity-Relationship model (ER) [4] is the most widely used
conceptual model. Its main advantages are the ease of use that it
provides and the small set of supported constructs. Its main
constructs are (a) the entity sets, capturing real world objects, (b)
the relationship sets, capturing associations among objects and, (c)
the attributes representing properties of entity or relationship set.
On the other hand, a set of new schemas (and not models) have
been recently employed to capture the structure of data
warehouses: the star, the snowflake and the starflake schemas. The
reason for this is the star-structured data of a warehouse
environment: facts about companies are centered, and data unfolds
around them.

We believe that none of the aforementioned models and schemas
is adequate to meet the data warehouse requirements, although
they provide the constructs and the structure for this purpose. Our
position is that the semantically rich ER model and the structure-
efficient star schema have to be combined under the same model.
For this purpose, we enrich ER with all the concepts showed in
Section 2, as they are the result of the understanding and
experiment [3] of the data warehouse nature as well as the star

structure, in which facts are central. We show the one-to-one
translation of these concepts to modeling constructs of the
combined starER (i.e., star and ER) model.

3.1 The constructs of the starER model
Summarizing the set of concepts presented in Section 2, with
respect to the ER constructs, the starER needs to accommodate:
(a) facts, which show actual facts of the real world application
environment, based on on-going processes, (b) entities, which
represent autonomous objects of the environment, (c)
relationships, which represent associations or links among entities,
or among entities and facts, and (d) attributes, representing
characteristics or properties of entities or relationships, or facts.

Based on these concepts, the model has the following constructs:

• Fact set: represents a set of real-world facts sharing the same
characteristics or properties (see below). Semantically, a fact
set points to the process of generating data over time, i.e.,
data is generated in terms of facts, each time an event related
to the fact takes place. For that reason, a fact set is always
associated to time (see below). A fact set is represented as a
circle.

Consider the example from the mortgage company environment,
in which the customers pay repayments on their building loans
each month. In this case the event is the repayment of the loans.
Figure 3.1 shows a "repayment" as a fact set.

repayment

Figure 3.1: "repayment" as a fact set.

• Entity set: represents a set of real-world objects with similar
properties; it has the same meaning as in traditional
application modeling. The graphical representation of an
entity set is a rectangle.

Typical entity sets from the mortgage company example are the
"customer" and "loan".

Figure 3.2: "customer" and "loan" as entity sets in the mortgage
company example.

• Relationship set: represents a set of associations among
entity sets or among entity sets and fact sets. Its cardinality
can be many-to-many (N:M), many-to-one (M:1) or one-to-
many (1:M). The graphical representation of a relationship
set, in both cases, is a diamond.

Figure 3.3 shows the relationship set between "customer" and
his/her "address".

customer addresshas
M N

Figure 3.3: "customer" and "address" associated with the

relationship set "has".

An example of a relationship set among entity sets and fact sets is
(Figure 3.4) the association between "customer" and "repayment".

customer loan

customer

pays

M N

repayment

Figure 3.4: "customer" and "repayment" associated with the

relationship type "pays".

Relationship sets among entity sets can be of type
specialization/generalization, aggregation and membership, as
described in Section 2. Figure 3.5 gives examples of these types
together with their graphical representation.

customer

person

company

specialization/
generalization

mortgage
companybranches

complete membership

financial
department

administration

mortgage
company

aggregation

non-complete membership
1M

M>0

strict membership

Figure 3.5: Examples of specialization, aggregation and

membership relationship sets.

As mentioned in Section 2, in data warehouses, it is important to
know if a membership is strict or not and complete, or not. The
strictness or not of a membership is shown by cardinality of the
membership and the accompanying constraint (i.e., M:1 and M>0
means strict). A complete membership is illustrated by a solid
arrow, while a non-complete is given by a dashed arrow.
An important relationship among fact sets and entity sets, is the
one between any fact and the "time" this fact is performed. "time"
and any further component of it such as "day", "month", "season",
is recorded as entity set. That allows us to model, and later on
summarize, summary properties of that fact (described below as
fact attributes) according to the time granularity (Section 2).
Additionally, "time", as well as the other entity sets associated to a
fact, are the dimensions of that fact. Dimensions consist of
hierarchies and/or other relationships among other entity sets.
Consider the example of "repayment"-"payback"-"loan" and
"repayment"-"at"-"time" presented in Figure 3.6.

Notice that the hierarchies of a dimension show the different
granularities at which the connected fact set can be summarized.
So, "repayment" can be summarized in terms of months, or years.
Exactly for the reason of the summary calculation, it is important
to know if a hierarchy is strict and/or complete.

repayment

loan

payback

M 1

yearquartermonthday

time dimension

loan id

loan typeloan dimension

at

M

N

week

Figure 3.6: Dimensions and hierarchies.
• Attribute: static properties of entity sets, relationship sets,

and/or fact sets are represented as attributes. Attributes are
illustrated by ovals.

Attribute examples of the "customer" entity set are "name",
"customer id", and "income level".

customer

name customer id

income level

Figure 3.7: "name", "customer id", and "income level" as

attributes of "customer".

As said in Section 2, fact properties can be of type stock, flow, or
value-per-unit. This is indicated by an "S", "F", or "V" on the left
of the attribute illustration, respectively. The attribute examples of
the "repayment" fact set are the "repayment amount" and the
"installment" (Figure 3.8).

repayment

S

installment

F

repayment
amount

Figure 3.8: "repayment amount", and "installment" as attributes

of the "repayment" fact set.

4 Example of Use
In this Section we give an extended excerpt (i.e., the customer-
loan view) from the data warehouse of a mortgage business
company, using the starER model. As can be seen, the basic
structure of the resulted starER schema is star. The fact set
"repayment" is central, and around it− indicated by shaded
color− are the dimensions "customer", "loan", "real estate", and
"time". Each dimension is further modeled by using the constructs
of the ER model. Also, the "time" dimension is clearly governed
by hierarchies specifying the different granularities at which the
fact set "repayment" can be summarized.

repayment

loan

payback

1

yearquartermonthday

a’ semester b’ semester

loan id

loan type

at

N

customer

customer id name income level

pays

address
N Mhas

str_no zip code

M

real estate

number address value

done by

M

N

region

city

country

S

name size

Gross
National
Product

mortage
company

N

name

branch

financial
dept

administr.
dept

M

has

week

S

V interest

1

1S F

installment rep.amount
N 1 M 1 N 1

M>0

M 1N 1

1

company

code

person

M N>0 M>0 N>0

M>0N>0

V

S

Figure 3.9: An excerpt from a mortgage company data warehouse, using the starER model. The financial and the administration department
are outside the customer dimension as this is dependent on design decisions and semantic issues.

5 Evaluation of the starER model
In this section we evaluate the starER model based on a well-
defined set of criteria [11] and later on, we compare the proposed
model to other conceptual data warehouse models [5].
[11] present a set of evaluation criteria for data warehouse models.
We adopt them here to evaluate the starER model. The criteria
allow us to decide whether or not a model is adequate for data
warehouse modeling, in terms of correctness, modeling power and
efficiency in information capturing, independent of the design
level the particular model exists. Below we present the criteria as
described in [11] and discuss whether or not the starER model
meets them. The nine criteria are:

• Explicit hierarchies in dimensions. The hierarchies in the
dimensions should be captured explicitly by the schema, so
the user has available the relation between the different
hierarchical level.

The starER model supports explicit hierarchies, in terms of
memberships.

• Symmetric treatment of dimensions and summary attributes
(properties). The model should allow summary attributes to
be treated as dimensions and vice versa.

In our interpretation of the starER constructs we have made a
conceptual distinction between dimensions and summary
attributes, but we do not restrict the user from modeling a
dimension as a particular summary property (or vice versa) in
order to add extra features to the analysis. In our example, the
"repayment amount" is a summary attribute, to allow for
computations such as summing up values.

• Multiple hierarchies in each dimension.

In our example of the "time" dimension, days can roll-up to
months, and days can also roll-up to weeks.

• Support for correct summary or aggregation. The data model
should give meaningful summaries or aggregations to the
user.

The starER model requires the illustration of explicit hierarchies
together with the type of the hierarchy (i.e. strict, complete etc.)
and the measure types (i.e., stock, flow, or value-per-unit), so that
the conditions of summarizability can be properly evaluated.

• Support of non-strict hierarchies.

The starER model allows non-strict hierarchies via the cardinality
of the memberships.

• Support of many-to-many relationships between facts and
dimensions.

An example of this is the relationship between "repayment" and
"real estate".

• Handling different levels of granularity at summary
properties.

The starER model handles different levels of granularity at
summary properties via the membership hierarchy. For example,
the "repayment amount" of Figure 3.8 can be summarized per
year, following the granularity of the "time" dimension.

• Handling uncertainty.

The starER at the present state does not accommodate uncertainty.
Uncertainty in data warehouses is a research area on its own, and
needs extended study. If uncertainty deals with the presence or not
of fact sets, entity sets, attributes, or relationship sets, then it can
be however handled by starER, by adding probability (i.e.,
attributes showing probability) at fact sets, entity sets, attributes

(i.e., making them composite) or relationship sets, respectively. If
uncertainty deals with specific values of instances of starER
constructs, e.g., the probability to have "loan interest" more than
3%, then it falls at the logical design level, and its accommodation
can not be argued for the starER model, since all the included
information is at the conceptual level.

• Handling change and time.
This criterion falls in the logical design level, and its
accommodation can not be argued for the starER model, since all
the included information is at the conceptual level.

As mentioned before, the starER model has the basic constructs
and philosophy of the ER model, as well as the structure of the
star schema. It is semantically richer that the star, starflake and
snowflake schema as it is designed to serve highly abstract
representations. The only schema that falls into the area of
conceptual design is the dimensional fact schema [5]. Its main
components are facts, dimensions and hierarchies. A fact schema
is constructed as a tree, with the fact as root.
There are some differences between the dimensional fact schema
and the starER model, which make the second one semantically
richer:

• Relationships between dimensions and facts in starER are not
only many-to-one, but also many-to-many, which allows for
better understanding of the involved information. Such an
example is the relationship between "repayment" and "real
estate".

• Objects participating in the data warehouse, but not in the
form of a dimension (i.e., not connected directly to a fact) are
allowed in starER, permitting in this way to capture more
semantics.

• Specialized relationships on dimensions are permitted, such
as specialization/generalization, membership, and
aggregation representing more information (see Figure 3.8)

One could argue that the dimensional fact schema requires only a
rather straight forward transformation to fact and dimension
tables, and this is an advantage of the dimensional fact schema.
But, this is not a drawback for the starER model, since well-
known rules of how to transform an ER schema (which is the
basic structural difference between the two approaches) to
relations do exist.

6 Conclusions
In this paper we discuss a set of modeling requirements as they are
drawn from a real mortgage warehouse environment, from the
users' point of view. These requirements reveal a set of concepts
that need to be included into conceptual models in order to
efficiently design data warehouses. Based on these concepts, we
build a new model, the starER model, which combines the
semantically powerful constructs of the ER model, with the
dominant, in the warehouses, star-structure of data. The model has
been tested in a mortgage business environment and we
experienced a welcome acceptance from both users, appreciating
the ease of use and understanding of starER, and designers, for the
model's expressive power and still close relation to tools and terms
they are used to.

We see the starER model as part of a data warehouse design
methodology, leading from user requirements to physical
implementation. We are currently working on building the tool to
support in a semi-automatic way such a methodology.
Transformation rules from the starER constructs to specific logical

models, such as the relational model, which is used by many data
warehouse software packages (see for example [13]) and to
multidimensional models [10] are considered.

Acknowledgements. This work was supported by the Nykredit
Coorporation (Denmark). The authors wish to thank Nykredit
Data for providing the environment, as well as the feedback for
the mortgage and loan management applications.

7 References

[1] Anahory, S., and Murray, D., 1997. Data Warehousing in the
Real World. Addison-Wesley.

[2] Busborg, F., Christiansen, J.B., Jensen, K.M., and Jensen, L.,
1998a. A Method fo Data Warehouse Development. Dat5
Report, part 2. CS Department. Aalborg University.

[3] Busborg, F., Christiansen, J.B., Jensen, K.M., and Jensen, L.,
1998b. Data Warehouse Modeling: The Nykredit Case Study.
Dat5 Report/Part I. Computer Science Department. Aalborg
University.

[4] Chen, P.S., 1976. The Entity-Relationship Model: Toward a
unified view of Data. ACM TODS, 1(1):9-36.

[5] Golfarelli, M., Maio, D., and Rizzi, S., 1998. Conceptual
Design of Data Warehouses from E/R Schemas. Proceedings
of the 13th Hawaii International Conference on System
Sciences. Kona, Hawaii.

[6] Golfarelli, M., and Rizzi, S., 1998. A Methodological
Approach for Data Warehouse Design. Proceedings of the 1st
International Workshop on Data Warehouses and OLAP
(DOLAP'98). Washington DC. USA.

[7] Immon, W. H., 1996. Building the Data Warehouse. Wiley
Computer Publishing (2nd Edition).

[8] Kimball, R., 1996. The Data Warehouse Toolkit. John Wiley
& Sons Inc.

[9] Lenz, H-J., and Shoshani, A., 1997. Summarizability in OLAP
and Statistical Databases. 9th International Conference on
Scientific and Statistical Database Management.

[10] Oracle Manual, 1998. Oracle Corporation. Oracle Express
Server: Delivering OLTP to the Enterprise. White paper at:
www.oracle.com/database/documents/express_server_fo.pdf

[11] Pedersen, T. B., and Jensen, C. S., 1998. Multidimensional
Data Modeling of Complex Data. Proceedings of the 15th
IEEE International Conference on Data Engineering (ICDE
99), Sydney, Australia.

[12] Poe, V., 1996. Building a Data Warehouse. Prentice Hall.
[13] SAS Manual, 1996. SAS Institute's Rapid Warehousing

Methodology (Manual), SAS institute Inc.

