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ABSTRACT

Timely and cost-effective analytics over “Big Data” is now a key

ingredient for success in many businesses, scientific and engineer-

ing disciplines, and government endeavors. The Hadoop software

stack—which consists of an extensible MapReduce execution en-

gine, pluggable distributed storage engines, and a range of proce-

dural to declarative interfaces—is a popular choice for big data ana-

lytics. Most practitioners of big data analytics—like computational

scientists, systems researchers, and business analysts—lack the ex-

pertise to tune the system to get good performance. Unfortunately,

Hadoop’s performance out of the box leaves much to be desired,

leading to suboptimal use of resources, time, and money (in pay-

as-you-go clouds). We introduce Starfish, a self-tuning system for

big data analytics. Starfish builds on Hadoop while adapting to user

needs and system workloads to provide good performance automat-

ically, without any need for users to understand and manipulate the

many tuning knobs in Hadoop. While Starfish’s system architecture

is guided by work on self-tuning database systems, we discuss how

new analysis practices over big data pose new challenges; leading

us to different design choices in Starfish.

1. INTRODUCTION
Timely and cost-effective analytics over “Big Data” has emerged

as a key ingredient for success in many businesses, scientific and

engineering disciplines, and government endeavors [6]. Web search

engines and social networks capture and analyze every user action

on their sites to improve site design, spam and fraud detection,

and advertising opportunities. Powerful telescopes in astronomy,

genome sequencers in biology, and particle accelerators in physics

are putting massive amounts of data into the hands of scientists.

Key scientific breakthroughs are expected to come from compu-

tational analysis of such data. Many basic and applied science

disciplines now have computational subareas, e.g., computational

biology, computational economics, and computational journalism.

Cohen et al. recently coined the acronym MAD—for Magnetism,

Agility, and Depth—to express the features that users expect from

a system for big data analytics [6].

Magnetism: A magnetic system attracts all sources of data ir-
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respective of issues like possible presence of outliers, unknown

schema or lack of structure, and missing values that keep many

useful data sources out of conventional data warehouses.

Agility: An agile system adapts in sync with rapid data evolution.

Depth: A deep system supports analytics needs that go far be-

yond conventional rollups and drilldowns to complex statistical and

machine-learning analysis.

Hadoop is a MAD system that is becoming popular for big data

analytics. An entire ecosystem of tools is being developed around

Hadoop. Figure 1 shows a summary of the Hadoop software stack

in wide use today. Hadoop itself has two primary components: a

MapReduce execution engine and a distributed filesystem. While

the Hadoop Distributed FileSystem (HDFS) is used predominantly

as the distributed filesystem in Hadoop, other filesystems like Ama-

zon S3 are also supported. Analytics with Hadoop involves loading

data as files into the distributed filesystem, and then running paral-

lel MapReduce computations on the data.

A combination of factors contributes to Hadoop’s MADness.

First, copying files into the distributed filesystem is all it takes

to get data into Hadoop. Second, the MapReduce methodology

is to interpret data (lazily) at processing time, and not (eagerly)

at loading time. These two factors contribute to Hadoop’s mag-

netism and agility. Third, MapReduce computations in Hadoop can

be expressed directly in general-purpose programming languages

like Java or Python, domain-specific languages like R, or generated

automatically from SQL-like declarative languages like HiveQL

and Pig Latin. This coverage of the language spectrum makes

Hadoop well suited for deep analytics. Finally, an unheralded as-

pect of Hadoop is its extensibility, i.e., the ease with which many of

Hadoop’s core components like the scheduler, storage subsystem,

input/output data formats, data partitioner, compression algorithms,

caching layer, and monitoring can be customized or replaced.

Getting desired performance from a MAD system can be a non-

trivial exercise. The practitioners of big data analytics like data

analysts, computational scientists, and systems researchers usually

lack the expertise to tune system internals. Such users would rather

use a system that can tune itself and provide good performance au-

tomatically. Unfortunately, the same properties that make Hadoop

MAD pose new challenges in the path to self-tuning:

• Data opacity until processing: The magnetism and agility

that comes with interpreting data only at processing time

poses the difficulty that even the schema may be unknown

until the point when an analysis job has to be run on the data.

• File-based processing: Input data for a MapReduce job may

be stored as few large files, millions of small files, or any-

thing in between. Such uncontrolled data layouts are a marked

contrast to the carefully-planned layouts in database systems.
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Figure 1: Starfish in the Hadoop ecosystem

• Heavy use of programming languages: A sizable fraction

of MapReduce programs will continue to be written in pro-

gramming languages like Java for performance reasons, or

in languages like Python or R that a user is most comfortable

with while prototyping new analysis tasks.

Traditional data warehouses are kept nonMAD by its administra-

tors because it is easier to meet performance requirements in tightly

controlled environments; a luxury we cannot afford any more [6].

To further complicate matters, three more features in addition to

MAD are becoming important in analytics systems: Data-lifecycle-

awareness, Elasticity, and Robustness. A system with all six fea-

tures would be MADDER than current analytics systems.

Data-lifecycle-awareness: A data-lifecycle-aware system goes be-

yond query execution to optimize the movement, storage, and pro-

cessing of big data during its entire lifecycle. The intelligence em-

bedded in many Web sites like LinkedIn and Yahoo!—e.g., recom-

mendation of new friends or news articles of potential interest, se-

lection and placement of advertisements—is driven by computation-

intensive analytics. A number of companies today use Hadoop for

such analytics [12]. The input data for the analytics comes from

dozens of different sources on user-facing systems like key-value

stores, databases, and logging services (Figure 1). The data has to

be moved for processing to the analytics system. After processing,

the results are loaded back in near real-time to user-facing systems.

Terabytes of data may go through this cycle per day [12]. In such

settings, data-lifecycle-awareness is needed to: (i) eliminate indis-

criminate data copying that causes bloated storage needs (as high as

20x if multiple departments in the company make their own copy

of the data for analysis [17]); and (ii) reduce resource overheads

and realize performance gains due to reuse of intermediate data or

learned metadata in workflows that are part of the cycle [8].

Elasticity: An elastic system adjusts its resource usage and oper-

ational costs to the workload and user requirements. Services like

Amazon Elastic MapReduce have created a market for pay-as-you-

go analytics hosted on the cloud. Elastic MapReduce provisions

and releases Hadoop clusters on demand, sparing users the hassle

of cluster setup and maintenance.

Robustness: A robust system continues to provide service, possi-

bly with graceful degradation, in the face of undesired events like

hardware failures, software bugs [12], and data corruption.

1.1 Starfish: MADDER and Self­Tuning Hadoop
Hadoop has the core mechanisms to be MADDER than exist-

ing analytics systems. However, the use of most of these mecha-

nisms has to be managed manually. Take elasticity as an example.

Hadoop supports dynamic node addition as well as decommission-

ing of failed or surplus nodes. However, these mechanisms do not

magically make Hadoop elastic because of the lack of control mod-

ules to decide (a) when to add new nodes or to drop surplus nodes,

and (b) when and how to rebalance the data layout in this process.

Starfish is a MADDER and self-tuning system for analytics on

big data. An important design decision we made is to build Starfish

on the Hadoop stack as shown in Figure 1. (That is not to say that

Starfish uses Hadoop as is.) Hadoop, as observed earlier, has useful

primitives to help meet the new requirements of big data analytics.

In addition, Hadoop’s adoption by academic, government, and in-

dustrial organizations is growing at a fast pace.

A number of ongoing projects aim to improve Hadoop’s peak

performance, especially to match the query performance of parallel

database systems [1, 7, 10]. Starfish has a different goal. The peak

performance a manually-tuned system can achieve is not our pri-

mary concern, especially if this performance is for one of the many

phases in the data lifecycle. Regular users may rarely see perfor-

mance close to this peak. Starfish’s goal is to enable Hadoop users

and applications to get good performance automatically through-

out the data lifecycle in analytics; without any need on their part to

understand and manipulate the many tuning knobs available.

Section 2 gives an overview of Starfish while Sections 3–5 de-

scribe its components. The primary focus of this paper is on using

experimental results to illustrate the challenges in each component

and to motivate Starfish’s solution approach.

2. OVERVIEW OF STARFISH
The workload that a Hadoop deployment runs can be considered

at different levels. At the lowest level, Hadoop runs MapReduce

jobs. A job can be generated directly from a program written in

a programming language like Java or Python, or generated from a

query in a higher-level language like HiveQL or Pig Latin [15], or

submitted as part of a MapReduce job workflow by systems like

Azkaban, Cascading, Elastic MapReduce, and Oozie. The execu-

tion plan generated for a HiveQL or Pig Latin query is usually a

workflow. Workflows may be ad-hoc, time-driven (e.g., run every
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Figure 2: Example analytics workload to be run on Amazon Elastic MapReduce

Figure 3: Components in the Starfish architecture

hour), or data-driven. Yahoo! uses data-driven workflows to gener-

ate a reconfigured preference model and an updated home-page for

any user within seven minutes of a home-page click by the user.

Figure 2 is a visual representation of an example workload that a

data analyst may want to run on demand or periodically using Ama-

zon Elastic MapReduce. The input data processed by this workload

resides as files on Amazon S3. The final results produced by the

workload are also output to S3. The input data consists of files that

are collected by a personalized Web-site like my.yahoo.com.

The example workload in Figure 2 consists of workflows that

load the files from S3 as three datasets: Users, GeoInfo, and Clicks.

The workflows process these datasets in order to generate six dif-

ferent results I-VI of interest to the analyst. For example, Result

I in Figure 2 is a count of all users with age less than 20. For all

users with age greater than 25, Result II counts the number of users

per geographic region. For each workflow, one or more MapRe-

duce jobs are generated in order to run the workflow on Amazon

Elastic MapReduce or on a local Hadoop cluster. For example, no-

tice from Figure 2 that a join of the Users and GeoInfo datasets is

needed in order to generate Result II. This logical join operation

can be processed using a single MapReduce job.

The tuning challenges present at each level of workload process-

ing led us to the Starfish architecture shown in Figure 3. Broadly,

the functionality of the components in this architecture can be cate-

gorized into job-level tuning, workflow-level tuning, and workload-

level tuning. These components interact to provide Starfish’s self-

tuning capabilities.

2.1 Job­level Tuning
The behavior of a MapReduce job in Hadoop is controlled by

the settings of more than 190 configuration parameters. If the user

does not specify parameter settings during job submission, then de-

fault values—shipped with the system or specified by the system

administrator—are used. Good settings for these parameters de-

pend on job, data, and cluster characteristics. While only a frac-

tion of the parameters can have significant performance impact,

browsing through the Hadoop, Hive, and Pig mailing lists reveals

that users often run into performance problems caused by lack of

knowledge of these parameters.

Consider a user who wants to perform a join of data in the files

users.txt and geoinfo.txt, and writes the Pig Latin script:

Users = Load ‘users.txt’ as (username: chararray,
age: int, ipaddr: chararray)

GeoInfo = Load ‘geoinfo.txt’ as (ipaddr: chararray,
region: chararray)

Result = Join Users by ipaddr, GeoInfo by ipaddr

The schema as well as properties of the data in the files could have

been unknown so far. The system now has to quickly choose the

join execution technique—given the limited information available

so far, and from among 10+ ways to execute joins in Starfish—as

well as the corresponding settings of job configuration parameters.

Starfish’s Just-in-Time Optimizer addresses unique optimization

problems like those above to automatically select efficient execu-

tion techniques for MapReduce jobs. “Just-in-time” captures the

online nature of decisions forced on the optimizer by Hadoop’s

MADDER features. The optimizer takes the help of the Profiler

and the Sampler. The Profiler uses a technique called dynamic in-

strumentation to learn performance models, called job profiles, for

unmodified MapReduce programs written in languages like Java

and Python. The Sampler collects statistics efficiently about the

input, intermediate, and output key-value spaces of a MapReduce

job. A unique feature of the Sampler is that it can sample the exe-

cution of a MapReduce job in order to enable the Profiler to collect

approximate job profiles at a fraction of the full job execution cost.
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2.2 Workflow­level Tuning
Workflow execution brings out some critical and unanticipated

interactions between the MapReduce task scheduler and the un-

derlying distributed filesystem. Significant performance gains are

realized in parallel task scheduling by moving the computation to

the data. By implication, the data layout across nodes in the clus-

ter constrains how tasks can be scheduled in a “data-local” fash-

ion. Distributed filesystems have their own policies on how data

written to them is laid out. HDFS, for example, always writes the

first replica of any block on the same node where the writer (in

this case, a map or reduce task) runs. This interaction between

data-local scheduling and the distributed filesystem’s block place-

ment policies can lead to an unbalanced data layout across nodes in

the cluster during workflow execution; causing severe performance

degradation as we will show in Section 4.

Efficient scheduling of a Hadoop workflow is further compli-

cated by concerns like (a) avoiding cascading reexecution under

node failure or data corruption [11], (b) ensuring power propor-

tional computing, and (c) adapting to imbalance in load or cost of

energy across geographic regions and time at the datacenter level

[16]. Starfish’s Workflow-aware Scheduler addresses such concerns

in conjunction with the What-if Engine and the Data Manager.

This scheduler communicates with, but operates outside, Hadoop’s

internal task scheduler.

2.3 Workload­level Tuning
Enterprises struggle with higher-level optimization and provi-

sioning questions for Hadoop workloads. Given a workload con-

sisting of a collection of workflows (like Figure 2), Starfish’s Work-

load Optimizer generates an equivalent, but optimized, collection

of workflows that are handed off to the Workflow-aware Scheduler

for execution. Three important categories of optimization opportu-

nities exist at the workload level:

A. Data-flow sharing, where a single MapReduce job performs

computations for multiple and potentially different logical

nodes belonging to the same or different workflows.

B. Materialization, where intermediate data in a workflow is

stored for later reuse in the same or different workflows.

Effective use of materialization has to consider the cost of

materialization (both in terms of I/O overhead and storage

consumption [8]) and its potential to avoid cascading reexe-

cution of tasks under node failure or data corruption [11].

C. Reorganization, where new data layouts (e.g., with partition-

ing) and storage engines (e.g., key-value stores like HBase

and databases like column-stores [1]) are chosen automat-

ically and transparently to store intermediate data so that

downstream jobs in the same or different workflows can be

executed very efficiently.

While categories A, B, and C are well understood in isolation, ap-

plying them in an integrated manner to optimize MapReduce work-

loads poses new challenges. First, the data output from map tasks

and input to reduce tasks in a job is always materialized in Hadoop

in order to enable robustness to failures. This data—which today is

simply deleted after the job completes—is key-value-based, sorted

on the key, and partitioned using externally-specified partitioning

functions. This unique form of intermediate data is available almost

for free, bringing new dimensions to questions on materialization

and reorganization. Second, choices for A, B, and C potentially in-

teract among each other and with scheduling, data layout policies,

as well as job configuration parameter settings. The optimizer has

to be aware of such interactions.

Hadoop provisioning deals with choices like the number of nodes,

node configuration, and network configuration to meet given work-

load requirements. Historically, such choices arose infrequently

and were dealt with by system administrators. Today, users who

provision Hadoop clusters on demand using services like Ama-

zon Elastic MapReduce and Hadoop On Demand are required to

make provisioning decisions on their own. Starfish’s Elastisizer

automates such decisions. The intelligence in the Elastisizer comes

from a search strategy in combination with the What-if Engine that

uses a mix of simulation and model-based estimation to answer

what-if questions regarding workload performance on a specified

cluster configuration. In the longer term, we aim to automate provi-

sioning decisions at the level of multiple virtual and elastic Hadoop

clusters hosted on a single shared Hadoop cluster to enable Hadoop

Analytics as a Service.

2.4 Lastword: Starfish’s Language for Work­
loads and Data

As described in Section 1.1 and illustrated in Figure 1, Starfish

is built on the Hadoop stack. Starfish interposes itself between

Hadoop and its clients like Pig, Hive, Oozie, and command-line

interfaces to submit MapReduce jobs. These Hadoop clients will

now submit workloads—which can vary from a single MapReduce

job, to a workflow of MapReduce jobs, and to a collection of mul-

tiple workflows—expressed in Lastword1 to Starfish. Lastword is

Starfish’s language to accept as well as to reason about analytics

workloads.

Unlike languages like HiveQL, Pig Latin, or Java, Lastword is

not a language that humans will have to interface with directly.

Higher-level languages like HiveQL and Pig Latin were developed

to support a diverse user community—ranging from marketing an-

alysts and sales managers to scientists, statisticians, and systems

researchers—depending on their unique analytical needs and pref-

erences. Starfish provides language translators to automatically

convert workloads specified in these higher-level languages to Last-

word. A common language like Lastword allows Starfish to exploit

optimization opportunities among the different workloads that run

on the same Hadoop cluster.

A Starfish client submits a workload as a collection of work-

flows expressed in Lastword. Three types of workflows can be rep-

resented in Lastword: (a) physical workflows, which are directed

graphs2 where each node is a MapReduce job representation; (b)

logical workflows, which are directed graphs where each node is a

logical specification such as a select-project-join-aggregate (SPJA)

or a user-defined function for performing operations like partition-

ing, filtering, aggregation, and transformations; and (c) hybrid work-

flows, where a node can be of either type.

An important feature of Lastword is its support for expressing

metadata along with the tasks for execution. Workflows specified

in Lastword can be annotated with metadata at the workflow level

or at the node level. Such metadata is either extracted from in-

puts provided by users or applications, or learned automatically by

Starfish. Examples of metadata include scheduling directives (e.g.,

whether the workflow is ad-hoc, time-driven, or data-driven), data

properties (e.g., full or partial schema, samples, and histograms),

data layouts (e.g., partitioning, ordering, and collocation), and run-

time monitoring information (e.g., execution profiles of map and

reduce tasks in a job).

The Lastword language gives Starfish another unique advantage.

Note that Starfish is primarily a system for running analytics work-

1Language for Starfish Workloads and Data.
2Cycles may be needed to support loops or iterative computations.
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WordCount TeraSort
Rules of Based on Rules of Based on
Thumb Job Profile Thumb Job Profile

io.sort.spill.percent 0.80 0.80 0.80 0.80
io.sort.record.percent 0.50 0.05 0.15 0.15
io.sort.mb 200 50 200 200
io.sort.factor 10 10 10 100
mapred.reduce.tasks 27 2 27 400

Running Time (sec) 785 407 891 606

Table 1: Parameter settings from rules of thumb and recom-

mendations from job profiles for WordCount and TeraSort

loads on big data. At the same time, we want Starfish to be usable in

environments where workloads are run directly on Hadoop without

going through Starfish. Lastword enables Starfish to be used as a

recommendation engine in these environments. The full or partial

Hadoop workload from such an environment can be expressed in

Lastword—we will provide tools to automate this step—and then

input to Starfish which is run in a special recommendation mode.

In this mode, Starfish uses its tuning features to recommend good

configurations at the job, workflow, and workload levels; instead of

running the workload with these configurations as Starfish would

do in its normal usage mode.

3. JUST­IN­TIME JOB OPTIMIZATION
The response surfaces in Figure 4 show the impact of various

job configuration parameter settings on the running time of two

MapReduce programs in Hadoop. We use WordCount and TeraSort

which are simple, yet very representative, MapReduce programs.

The default experimental setup used in this paper is a single-rack

Hadoop cluster running on 16 Amazon EC2 nodes of the c1.medium

type. Each node runs at most 3 map tasks and 2 reduce tasks con-

currently. WordCount processes 30GB of data generated using the

RandomTextWriter program in Hadoop. TeraSort processes 50GB

of data generated using Hadoop’s TeraGen program.

Rules of Thumb for Parameter Tuning: The job configuration

parameters varied in Figure 4 are io.sort.mb, io.sort.record.percent,

and mapred.reduce.tasks. All other parameters are kept constant.

Table 1 shows the settings of various parameters for the two jobs

based on popular rules of thumb used today [5, 13]. For exam-

ple, the rules of thumb recommend setting mapred.reduce.tasks

(the number of reduce tasks in the job) to roughly 0.9 times the

total number of reduce slots in the cluster. The rationale is to en-

sure that all reduce tasks run in one wave while leaving some slots

free for reexecuting failed or slow tasks. A more complex rule

of thumb sets io.sort.record.percent to 16

16+avg record size
based on

the average size of map output records. The rationale here involves

source-code details of Hadoop.

Figure 4 shows that the rule-of-thumb settings gave poor perfor-

mance. In fact, the rule-of-thumb settings for WordCount gave one

of its worst execution times: io.sort.mb and io.sort.record.percent

were set too high. The interaction between these two parameters

was very different and more complex for TeraSort as shown in Fig-

ure 4(b). A higher setting for io.sort.mb leads to better performance

for certain settings of the io.sort.record.percent parameter, but hurts

performance for other settings. The complexity of the surfaces and

the failure of rules of thumb highlight the challenges a user faces

if asked to tune the parameters herself. Starfish’s job-level tuning

components—Profiler, Sampler, What-if Engine, and Just-in-Time

Optimizer—help automate this process.

Profiling Using Dynamic Instrumentation: The Profiler uses dy-

namic instrumentation to collect run-time monitoring information

from unmodified MapReduce programs running on Hadoop. Dy-

namic instrumentation has become hugely popular over the last few

years to understand, debug, and optimize complex systems [4]. The

dynamic nature means that there is zero overhead when instrumen-

tation is turned off; an appealing property in production deploy-

ments. The current implementation of the Profiler uses BTrace [2],

a safe and dynamic tracing tool for the Java platform.

When Hadoop runs a MapReduce job, the Starfish Profiler dy-

namically instruments selected Java classes in Hadoop to construct

a job profile. A profile is a concise representation of the job exe-

cution that captures information both at the task and subtask lev-

els. The execution of a MapReduce job is broken down into the

Map Phase and the Reduce Phase. Subsequently, the Map Phase is

divided into the Reading, Map Processing, Spilling, and Merging

subphases. The Reduce Phase is divided into the Shuffling, Sorting,

Reduce Processing, and Writing subphases. Each subphase repre-

sents an important part of the job’s overall execution in Hadoop.

The job profile exposes three views that capture various aspects

of the job’s execution:

1. Timings view: This view gives the breakdown of how wall-

clock time was spent in the various subphases. For exam-

ple, a map task spends time reading input data, running the

user-defined map function, and sorting, spilling, and merging

map-output data.

2. Data-flow view: This view gives the amount of data pro-

cessed in terms of bytes and number of records during the

various subphases.

3. Resource-level view: This view captures the usage trends of

CPU, memory, I/O, and network resources during the vari-

ous subphases of the job’s execution. Usage of CPU, I/O,

and network resources are captured respectively in terms of

the time spent using these resources per byte and per record

processed. Memory usage is captured in terms of the mem-

ory used by tasks as they run in Hadoop.

We will illustrate the benefits of job profiles and the insights gained

from them through a real example. Figure 5 shows the Timings

view from the profiles collected for the two configuration parame-

ter settings for WordCount shown in Table 1. We will denote the

execution of WordCount using the “Rules of Thumb” settings from

Table 1 as Job A; and the execution of WordCount using the “Based

on Job Profile” settings as Job B. Note that the same WordCount

MapReduce program processing the same input dataset is being run

in either case. The WordCount program uses a Combiner to per-

form reduce-style aggregation on the map task side for each spill

of the map task’s output. Table 1 shows that Job B runs 2x faster

than Job A.

Our first observation from Figure 5 is that the map tasks in Job B

completed on average much faster compared to the map tasks in Job

A; yet the reverse happened to the reduce tasks. Further exploration

of the Data-flow and Resource views showed that the Combiner

in Job A was processing an extremely large number of records,

causing high CPU contention. Hence, all the CPU-intensive op-

erations in Job A’s map tasks (executing the user-provided map

function, serializing and sorting the map output) were negatively

affected. Compared to Job A, the lower settings for io.sort.mb

and io.sort.record.percent in Job B led to more, but individually

smaller, map-side spills. Because the Combiner is invoked on these

individually smaller map-side spills in Job B, the Combiner caused

far less CPU contention in Job B compared to Job A.

On the other hand, the Combiner drastically decreases the amount

of intermediate data that is spilled to disk as well as transferred over

the network (shuffled) from map to reduce tasks. Since the map
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Figure 4: Response surfaces of MapReduce programs in Hadoop: (a) WordCount, with io.sort.mb ∈ [50, 200] and

io.sort.record.percent ∈ [0.05, 0.5] (b) TeraSort, with io.sort.mb ∈ [50, 200] and io.sort.record.percent ∈ [0.05, 0.5] (c) TeraSort,

with io.sort.record.percent ∈ [0.05, 0.5] and mapred.reduce.tasks ∈ [27, 400]

Figure 5: Map and reduce time breakdown for two WordCount

jobs run with different settings of job configuration parameters

tasks in Job B processed smaller spills, the data reduction gains

from the Combiner were also smaller; leading to larger amounts

of data being shuffled and processed by the reducers. However,

the additional local I/O and network transfer costs in Job B were

dwarfed by the reduction in CPU costs.

Effectively, the more balanced usage of CPU, I/O, and network

resources in the map tasks of Job B improved the overall perfor-

mance of the map tasks significantly compared to Job A. Overall,

the benefit gained by the map tasks in Job B outweighed by far the

loss incurred by the reduce tasks; leading to the 2x better perfor-

mance of Job B compared to the performance of Job A.

Predicting Job Performance in Hadoop: The job profile helps in

understanding the job behavior as well as in diagnosing bottlenecks

during job execution for the parameter settings used. More impor-

tantly, given a new setting S of the configuration parameters, the

What-if Engine can use the job profile and a set of models that we

developed to estimate the new profile if the job were to be run using

S. This what-if capability is utilized by the Just-in-Time Optimizer

in order to recommend good parameter settings.

The What-if Engine is given four inputs when asked to predict

the performance of a MapReduce job J :

1. The job profile generated for J by the Profiler. The profile

may be available from a previous execution of J . Otherwise,

the Profiler can work in conjunction with Starfish’s Sampler

to generate an approximate job profile efficiently. Figure 6

considers approximate job profiles later in this section.

2. The new setting S of the job configuration parameters using

which Job J will be run.

3. The size, layout, and compression information of the input

dataset on which Job J will be run. Note that this input

dataset can be different from the dataset used while gener-

ating the job profile.

4. The cluster setup and resource allocation that will be used to

run Job J . This information includes the number of nodes

and network topology of the cluster, the number of map and

reduce task slots per node, and the memory available for each

task execution.

The What-if Engine uses a set of performance models for predict-

ing (a) the flow of data going through each subphase in the job’s

execution, and (b) the time spent in each subphase. The What-if En-

gine then produces a virtual job profile by combining the predicted

information in accordance with the cluster setup and resource allo-

cation that will be used to run the job. The virtual job profile con-

tains the predicted Timings and Data-flow views of the job when

run with the new parameter settings. The purpose of the virtual

profile is to provide the user with more insights on how the job will

behave when using the new parameter settings, as well as to ex-

pand the use of the What-if Engine towards answering hypothetical

questions at the workflow and workload levels.

Towards Cost-Based Optimization: Table 1 shows the parameter

settings for WordCount and TeraSort recommended by an initial

implementation of the Just-in-Time Optimizer. The What-if En-

gine used the respective job profiles collected from running the jobs

using the rules-of-thumb settings. WordCount runs almost twice

as fast at the recommended setting. As we saw earlier, while the

Combiner reduced the amount of intermediate data drastically, it

was making the map execution heavily CPU-bound and slow. The

configuration setting recommended by the optimizer—with lower

io.sort.mb and io.sort.record.percent—made the map tasks signif-

icantly faster. This speedup outweighed the lowered effectiveness

of the Combiner that caused more intermediate data to be shuffled

and processed by the reduce tasks.

These experiments illustrate the usefulness of the Just-in-Time

Optimizer. One of the main challenges that we are addressing

is in developing an efficient strategy to search through the high-

dimensional space of parameter settings. A related challenge is in

generating job profiles with minimal overhead. Figure 6 shows the

tradeoff between the profiling overhead (in terms of job slowdown)

and the average relative error in the job profile views when profil-

ing is limited to a fraction of the tasks in WordCount. The results

are promising but show room for improvement.

4. WORKFLOW­AWARE SCHEDULING
Cause and Effect of Unbalanced Data Layouts: Section 2.2 men-

tioned how interactions between the task scheduler and the policies

employed by the distributed filesystem can lead to unbalanced data

layouts. Figure 7 shows how even the execution of a single large
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Figure 6: (a) Relative job slowdown, and (b) relative error in

the approximate views generated as the percentage of profiled

tasks in a job is varied

Figure 7: Unbalanced data layout

job can cause an unbalanced layout in Hadoop. We ran a partition-

ing MapReduce job (similar to “Partition by age” shown in Figure

2) that partitions a 100GB TPC-H Lineitem table into four parti-

tions relevant to downstream workflow nodes. The data properties

are such that one partition is much larger than the others. All the

partitions are replicated once as done by default for intermediate

workflow data in systems like Pig [11]. HDFS ends up placing all

blocks for the large partition on the node (Datanode 14) where the

reduce task generating this partition runs.

A number of other causes can lead to unbalanced data layouts

rapidly or over time: (a) skewed data, (b) scheduling of tasks in

a data-layout-unaware manner as done by the Hadoop schedulers

available today, and (c) addition or dropping of nodes without run-

ning costly data rebalancing operations. (HDFS does not automat-

ically move existing data when new nodes are added.) Unbalanced

data layouts are a serious problem in big data analytics because

they are prominent causes of task failure (due to insufficient free

disk space for intermediate map outputs or reduce inputs) and per-

formance degradation. We observed a more than 2x slowdown for

a sort job running on the unbalanced layout in Figure 7 compared

to a balanced layout.

Unbalanced data layouts cause a dilemma for data-locality-aware

schedulers (i.e., schedulers that aim to move computation to the

data). Exploiting data locality can have two undesirable conse-

quences in this context: performance degradation due to reduced

parallelism, and worse, making the data layout further unbalanced

because new outputs will go to the over-utilized nodes. Figure 7

also shows how running a map-only aggregation on the large par-

tition leads to the aggregation output being written to the over-

utilized Datanode 14. The aggregation output was small. A larger

output could have made the imbalance much worse. On the other

hand, non-data-local scheduling (i.e., moving data to the computa-

tion) incurs the overhead of data movement. A useful new feature

in Hadoop will be to piggyback on such data movements to rebal-

ance the data layout.

Figure 8: Sort running time on the partitions

Figure 9: Partition creation time

We ran the same partitioning job with a replication factor of two

for the partitions. For our single-rack cluster, HDFS places the

second replica of each block of the partitions on a randomly-chosen

node. The overall layout is still unbalanced, but the time to sort

the partitions improved significantly because the second copy of

the data is spread out over the cluster (Figure 8). Interestingly, as

shown in Figure 9, the overhead of creating a second replica is very

small on our cluster (which will change if the network becomes the

bottleneck [11]).

Aside from ensuring that the data layout is balanced, other choices

are available such as collocating two or more datasets. Consider a

workflow consisting of three jobs. The first two jobs partition two

separate datasets R and S (e.g., Users and GeoInfo from Figure

2) using the same partitioning function into n partitions each. The

third job, whose input consists of the outputs of the first two jobs,

performs an equi-join of the respective partitions from R and S.

HDFS does not provide the ability to collocate the joining parti-

tions from R and S; so a join job run in Hadoop will have to do

non-data-local reads for one of its inputs.

We implemented a new block placement policy in HDFS that

enables collocation of two or more datasets. (As an excellent ex-

ample of Hadoop’s extensibility, HDFS provides a pluggable inter-

face that simplifies the task of implementing new block placement

policies [9].) Figure 10 shows how the new policy gives a 22%

improvement in the running time of a partition-wise join job by

collocating the joining partitions.

Experimental results like those above motivate the need for a

Workflow-aware Scheduler that can run jobs in a workflow such

that the overall performance of the workflow is optimized. Work-

flow performance can be measured in terms of running time, re-

source utilization in the Hadoop cluster, and robustness to failures

(e.g., minimizing the need for cascading reexecution of tasks due to

node failure or data corruption) and transient issues (e.g., reacting

to the slowdown of a node due to temporary resource contention).

As illustrated by Figures 7–10, good layouts of the initial (base),

intermediate (temporary), and final (results) data in a workflow are

vital to ensure good workflow performance.

Workflow-aware Scheduling: A Workflow-aware Scheduler can

ensure that job-level optimization and scheduling policies are co-

267



Figure 10: Respective execution times of a partition-wise join

job with noncollocated and collocated input partitions

ordinated tightly with the policies for data placement employed

by the underlying distributed filesystem. Rather than making de-

cisions that are locally optimal for individual MapReduce jobs,

Starfish’s Workflow-aware Scheduler makes decisions by consider-

ing producer-consumer relationships among jobs in the workflow.

Figure 11 gives an example of producer-consumer relationships

among three Jobs P , C1, and C2 in a workflow. Analyzing these

relationships gives important information such as:

• What parts of the data output by a job are used by down-

stream jobs in the workflow? Notice from Figure 11 that the

three writer tasks of Job P generate files File1, File2, and

File3 respectively. (In a MapReduce job, the writer tasks are

map tasks in a map-only job, and reduce tasks otherwise.)

Each file is stored as blocks in the distributed filesystem.

(HDFS blocks are 64MB in size by default.) File1 forms the

input to Job C1, while File1 and File2 form the input to Job

C2. Since File3 is not used by any of the downstream jobs,

a Workflow-aware Scheduler can configure Job P to avoid

generating File3.

• What is the unit of data-level parallelism in each job that

reads the data output by a job? Notice from Figure 11 that

the data-parallel reader tasks of Job C1 read and process one

data block each. However, the data-parallel reader tasks of

Job C2 read one file each. (In a MapReduce job in a work-

flow, the data-parallel map tasks of the job read the output

of upstream jobs in the workflow.) While not shown in Fig-

ure 11, jobs like the join in Figure 10 consist of data-parallel

tasks that each read a group of files output by upstream jobs

in the workflow. Information about the data-parallel access

patterns of jobs is vital to guarantee good data layouts that,

in turn, will guarantee an efficient mix of parallel and data-

local computation. For File2 in Figure 11, all blocks in the

file should be placed on the same node to ensure data-local

computation (i.e., to avoid having to move data to the compu-

tation). The choice for File1, which is read by both Jobs C1
and C2, is not so easy to make. The data-level parallelism is

at the block-level in Job C1, but at the file-level in Job C2.

Thus, the optimal layout of File1 from Job C1’s perspective

is to spread File1’s blocks across the nodes so that C1’s map

tasks can run in parallel across the cluster. However, the op-

timal layout of File1 from Job C2’s perspective is to place

all blocks on the same node.

Starfish’s Workflow-aware Scheduler works in conjunction with the

What-if Engine and the Just-in-Time Optimizer in order to pick the

job execution schedule as well as the data layouts for a workflow.

The space of choices for data layout includes:

1. What block placement policy to use in the distributed filesys-

tem for the output file of a job? HDFS uses the Local Write

Figure 11: Part of an example workflow showing producer-

consumer relationships among jobs

block placement policy which works as follows: the first

replica of any block is stored on the same node where the

block’s writer (a map or reduce task) runs. We have imple-

mented a new Round Robin block placement policy in HDFS

where the blocks written are stored on the nodes of the dis-

tributed filesystem in a round robin fashion.

2. How many replicas to store—called the replication factor—

for the blocks of a file? Replication helps improve perfor-

mance for heavily-accessed files. Replication also improves

robustness by reducing performance variability in case of

node failures.

3. What size to use for blocks of a file? For a very big file, a

block size larger than the default of 64MB can improve per-

formance significantly by reducing the number of map tasks

needed to process the file. The caveat is that the choice of the

block size interacts with the choice of job-level configuration

parameters like io.sort.mb (recall Section 3).

4. Should a job’s output files be compressed for storage? Like

the use of Combiners (recall Section 3), the use of compres-

sion enables the cost of local I/O and network transfers to be

traded for additional CPU cost. Compression is not always

beneficial. Furthermore, like the choice of the block size, the

usefulness of compression depends on the choice of job-level

parameters.

The Workflow-aware Scheduler performs a cost-based search for a

good layout for the output data of each job in a given workflow.

The technique we employ here asks a number of questions to the

What-if Engine; and uses the answers to infer the costs and benefits

of various choices. The what-if questions asked for a workflow

consisting of the producer-consumer relationships among Jobs P ,

C1, and C2 shown in Figure 11 include:

(a) What is the expected running time of Job P if the Round

Robin block placement policy is used for P ’s output files?

(b) What will the new data layout in the cluster be if the Round

Robin block placement policy is used for P ’s output files?

(c) What is the expected running time of Job C1 (C2) if its input

data layout is the one in the answer to Question (b)?
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Figure 12: Respective running times of (a) a partition job and

(b) a two-job workflow with the (default) Local Write and the

Round Robin block placement policies used in HDFS

(d) What are the expected running times of Jobs C1 and C2 if

they are scheduled concurrently when Job P completes?

(e) Given the Local Write block placement policy and a repli-

cation factor of 1 for Job P ’s output, what is the expected

increase in the running time of Job C1 if one node in the

cluster were to fail during C1’s execution?

These questions are answered by the What-if Engine based on a

simulation of the main aspects of workflow execution. This step in-

volves simulating MapReduce job execution, task scheduling, and

HDFS block placement policies. The job-level and cluster-level

information described in Section 3 is needed as input for the simu-

lation of workflow execution.

Figure 12 shows results from an experiment where the Workflow-

aware Scheduler was asked to pick the data layout for a two-job

workflow consisting of a partition job followed by a sort job. The

choice for the data layout involved selecting which block place-

ment policy to use between the (default) Local Write policy and the

Round Robin policy. The remaining choices were kept constant:

replication factor is 1, the block size is 128MB, and compression is

not used. The choice of collocation was not considered since it is

not beneficial to collocate any group of datasets in this case.

The Workflow-aware Scheduler first asks what-if questions re-

garding the partition job. The What-if Engine predicted correctly

that the Round Robin policy will perform better than the Local

Write policy for the output data of the partition job. In our cluster

setting on Amazon EC2, the local I/O within a node becomes the

bottleneck before the parallel writes of data blocks to other storage

nodes over the network. Figure 12(a) shows the actual performance

of the partition job for the two block placement policies.

The next set of what-if questions have to do with the performance

of the sort job for different layouts of the output of the partition job.

Here, using the Round Robin policy for the partition job’s output

emerges a clear winner. The reason is that the Round Robin policy

spreads the blocks over the cluster so that maximum data-level par-

allelism of sort processing can be achieved while performing data-

local computation. Overall, the Workflow-aware Scheduler picks

the Round Robin block placement policy for the entire workflow.

As seen in Figure 12(b), this choice leads to the minimum total run-

ning time of the two-job workflow. Use of the Round Robin policy

gives around 30% reduction in total running time compared to the

default Local Write policy.

5. OPTIMIZATION AND PROVISIONING

FOR HADOOP WORKLOADS
Workload Optimizer: Starfish’s Workload Optimizer represents

the workload as a directed graph and applies the optimizations listed

in Section 2.3 as graph-to-graph transformations. The optimizer

Figure 13: Processing multiple SPA workflow nodes on the

same input dataset

uses the What-if Engine to do a cost-based estimation of whether

the transformation will improve performance.

Consider the workflows that produce the results IV, V, and VI

in Figure 2. These workflows have a join of Users and Clicks in

common. The results IV, V, and VI can each be represented as a

Select-Project-Aggregate (SPA) expression over the join. Starfish

has an operator, called the Jumbo operator, that can process any

number of logical SPA workflow nodes over the same table in a

single MapReduce job. (MRShare [14] and Pig [15] also support

similar operators.) Without the Jumbo operator, each SPA node

will have to be processed as a separate job. The Jumbo operator en-

ables sharing of all or some of the map-side scan and computation,

sorting and shuffling, as well as the reduce-side scan, computation,

and output generation. At the same time, the Jumbo operator can

help the scheduler to better utilize the bounded number of map and

reduce task slots in a Hadoop cluster.

Figure 13(a) shows an experimental result where three logical

SPA workflow nodes are processed on a 24GB dataset as: (a) Se-

rial, which runs three separate MapReduce jobs in sequence; (b)

Concurrent, which runs three separate MapReduce jobs concur-

rently; (c) using the Jumbo operator to share the map-side scans

in the SPA nodes; and (d) using the Jumbo operator to share the

map-side scans as well as the intermediate data produced by the

SPA nodes. Figure 13(a) shows that sharing the sorting and shuf-

fling of intermediate data, in addition to sharing scans, provides

additional performance benefits.

Now consider the workflows that produce results I, II, IV, and

V in Figure 2. These four workflows have filter conditions on

the age attribute in the Users dataset. Running a MapReduce job

to partition Users based on ranges of age values will enable the

four workflows to prune out irrelevant partitions efficiently. Figure

13(b) shows the results from applying partition pruning to the same

three SPA nodes from Figure 13(a). Generating the partitions has

significant overhead—as seen in Figure 13(b)—but possibilities ex-

ist to hide or reduce this overhead by combining partitioning with a

previous job like data copying. Partition pruning improves the per-

formance of all MapReduce jobs in our experiment. At the same

time, partition pruning decreases the performance benefits provided

by the Jumbo operator. These simple experiments illustrate the in-

teractions among different optimization opportunities that exist for

Hadoop workloads.

Elastisizer: Users can now leverage pay-as-you-go resources on

the cloud to meet their analytics needs. Amazon Elastic MapRe-

duce allows users to instantiate a Hadoop cluster on EC2 nodes,

and run workflows. The typical workflow on Elastic MapReduce

accesses data initially from S3, does in-cluster analytics, and writes

final output back to S3 (Figure 2). The cluster can be released when

the workflow completes, and the user pays for the resources used.

While Elastic MapReduce frees users from setting up and main-

taining Hadoop clusters, the burden of cluster provisioning is still
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Figure 14: Workload performance under various cluster and Hadoop configurations on Amazon Elastic MapReduce

Figure 15: Performance Vs. pay-as-you-go costs for a workload on Amazon Elastic MapReduce

on the user. Specifically, users have to specify the number and type

of EC2 nodes (from among 10+ types) as well as whether to copy

data from S3 into the in-cluster HDFS. The space of provisioning

choices is further complicated by Amazon Spot Instances which

provide a market-based option for leasing EC2 nodes. In addition,

the user has to specify the Hadoop-level as well as job-level con-

figuration parameters for the provisioned cluster.

One of the goals of Starfish’s Elastisizer is to automatically deter-

mine the best cluster and Hadoop configurations to process a given

workload subject to user-specified goals (e.g., on completion time

and monetary costs incurred). To illustrate this problem, Figure 14

shows how the performance of a workload W consisting of a sin-

gle workflow varies across different cluster configurations (number

and type of EC2 nodes) and corresponding Hadoop configurations

(number of concurrent map and reduce slots per node).

The user could have multiple preferences and constraints for the

workload, which poses a multi-objective optimization problem. For

example, the goal may be to minimize the monetary cost incurred to

run the workload, subject to a maximum tolerable workload com-

pletion time. Figures 15(a) and 15(b) show the running time as well

as cost incurred on Elastic MapReduce for the workload W for dif-

ferent cluster configurations. Some observations from the figures:

• If the user wants to minimize costs subject to a completion time

of 30 minutes, then the Elastisizer should recommend a cluster

of four m1.large EC2 nodes.

• If the user wants to minimize costs, then two m1.small nodes

are best. However, the Elastisizer can suggest that by paying

just 20% more, the completion time can be reduced by 2.6x.

To estimate workload performance for various cluster configura-

tions, the Elastisizer invokes the What-if Engine which, in turn,

uses a mix of simulation and model-based estimation. As dis-

cussed in Section 4, the What-if Engine simulates the task schedul-

ing and block-placement policies over a hypothetical cluster, and

uses performance models to predict the data flow and performance

of the MapReduce jobs in the workload. The latest Hadoop release

includes a Hadoop simulator, called Mumak, that we initially at-

tempted to use in the What-if Engine. However, Mumak needs a

workload execution trace for a specific cluster size as input, and

cannot simulate workload execution for a different cluster size.

6. RELATED WORK AND SUMMARY
Hadoop is now a viable competitor to existing systems for big

data analytics. While Hadoop currently trails existing systems in

peak query performance, a number of research efforts are address-

ing this issue [1, 7, 10]. Starfish fills a different void by enabling

Hadoop users and applications to get good performance automat-

ically throughout the data lifecycle in analytics; without any need

on their part to understand and manipulate the many tuning knobs

available. A system like Starfish is essential as Hadoop usage con-

tinues to grow beyond companies like Facebook and Yahoo! that

have considerable expertise in Hadoop. New practitioners of big

data analytics like computational scientists and systems researchers

lack the expertise to tune Hadoop to get good performance.

Starfish’s tuning goals and solutions are related to projects like

Hive, Manimal, MRShare, Nectar, Pig, Quincy, and Scope [3, 8, 14,

15, 18]. The novelty in Starfish’s approach comes from how it fo-

cuses simultaneously on different workload granularities—overall

workload, workflows, and jobs (procedural and declarative)—as

well as across various decision points—provisioning, optimization,

scheduling, and data layout. This approach enables Starfish to han-

dle the significant interactions arising among choices made at dif-

ferent levels.
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APPENDIX

A. STARFISH’S VISUALIZER
When a MapReduce job executes in a Hadoop cluster, a lot of in-

formation is generated including logs, counters, resource utilization

metrics, and profiling data. This information is organized, stored,

and managed by Starfish’s Metadata Manager in a catalog that can

be viewed using Starfish’s Visualizer. A user can employ the Vi-

sualizer to get a deep understanding of a job’s behavior during ex-

ecution, and to ultimately tune the job. Broadly, the functionality

of the Visualizer can be categorized into Timeline views, Data-flow

views, and Profile views.

A.1 Timeline Views
Timeline views are used to visualize the progress of a job exe-

cution at the task level. Figure 16 shows the execution timeline of

map and reduce tasks that ran during a MapReduce job execution.

The user can observe information like how many tasks were run-

ning at any point in time on each node, when each task started and

ended, or how many map or reduce waves occurred. The user is

able to quickly spot any variance in the task execution times and

discover potential load balancing issues.

Moreover, Timeline views can be used to compare different ex-

ecutions of the same job run at different times or with different

parameter settings. Comparison of timelines will show whether

the job behavior changed over time as well as help understand the

impact that changing parameter settings has on job execution. In

addition, the Timeline views support a What-if mode using which

the user can visualize what the execution of a job will be when run

using different parameter settings. For example, the user can deter-

mine the impact of decreasing the value of io.sort.mb on map task

execution. Under the hood, the Visualizer invokes the What-if En-

gine to generate a virtual job profile for the job in the hypothetical

setting (recall Section 3).

A.2 Data­flow Views
The Data-flow views enable visualization of the flow of data

among the nodes and racks of a Hadoop cluster, and between the

map and reduce tasks of a job. They form an excellent way of iden-

tifying data skew issues and realizing the need for a better parti-

tioner in a MapReduce job. Figure 17 presents the data flow among

the nodes during the execution of a MapReduce job. The thickness

of each line is proportional to the amount of data that was shuffled

between the corresponding nodes. The user also has the ability to

specify a set of filter conditions (see the left side of Figure 17) that

allows her to zoom in on a subset of nodes or on the large data

transfers. An important feature of the Visualizer is the Video mode

that allows users to play back a job execution from the past. Us-

ing the Video mode (Figure 17), the user can inspect how data was

processed and transfered between the map and reduce tasks of the

job, and among nodes and racks of the cluster, as time went by.

A.3 Profile Views
In Section 3, we saw how a job profile contains a lot of useful

information like the breakdown of task execution timings, resource

usage, and data flow per subphase. The Profile views help visualize

the job profiles, namely, the information exposed by the Timings,

Data-flow, and Resource-level views in a profile; allowing an in-

depth analysis of the task behavior during execution. For example,

Figure 5 shows parts of two Profile views that display the break-

down of time spent on average in each map and reduce task for two

WordCount job executions. Job A was run using the parameter set-

tings as specified by rules of thumb, whereas Job B was run using

the settings recommended by the Just-in-time Optimizer (Table 1

in Section 3). The main difference caused by the two settings was

more, but smaller, map-side spills for Job B compared to Job A.

We can observe that the map tasks in Job B completed on av-

erage much faster compared to the map tasks in Job A; yet the

reverse happened to the reduce tasks. The Profile views allow us to

see exactly which subphases benefit the most from the parameter

settings. It is obvious from Figure 5 that the time spent perform-

ing the map processing and the spilling in Job B was significantly

lower compared to Job A.

On the other hand, the Combiner drastically decreases the amount

of intermediate data spilled to disk (which can be observed in the

Data-flow views not shown here). Since the map tasks in Job B

processed smaller spills, the reduction gains from the Combiner

were also smaller; leading to larger amounts of data being shuffled

and processed by the reducers. The Profile views show exactly how

much more time was spent in Job B for shuffling and sorting the

intermediate data, as well as performing the reduce computation.

Overall, the benefit gained by the map tasks in Job B outweighed

by far the loss incurred by the reduce tasks, leading to a 2x better

performance than Job A.
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Figure 16: Execution timeline of the map and reduce tasks of a MapReduce job

Figure 17: Visual representation of the data-flow among the Hadoop nodes during a MapReduce job execution
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