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Figure 1. Diverse image synthesis results on the CelebA-HQ dataset and the newly collected animal faces (AFHQ) dataset. The first column

shows input images while the remaining columns are images synthesized by StarGAN v2.

Abstract

A good image-to-image translation model should learn a

mapping between different visual domains while satisfying

the following properties: 1) diversity of generated images

and 2) scalability over multiple domains. Existing methods

address either of the issues, having limited diversity or mul-

tiple models for all domains. We propose StarGAN v2, a sin-

gle framework that tackles both and shows significantly im-

proved results over the baselines. Experiments on CelebA-

HQ and a new animal faces dataset (AFHQ) validate our

superiority in terms of visual quality, diversity, and scalabil-

ity. To better assess image-to-image translation models, we

release AFHQ, high-quality animal faces with large inter-

and intra-domain differences. The code, pretrained models,

and dataset are available at clovaai/stargan-v2.

1. Introduction

Image-to-image translation aims to learn a mapping be-

tween different visual domains [16]. Here, domain implies

a set of images that can be grouped as a visually distinctive

category, and each image has a unique appearance, which

we call style. For example, we can set image domains

based on the gender of a person, in which case the style in-

cludes makeup, beard, and hairstyle (top half of Figure 1).

An ideal image-to-image translation method should be able

to synthesize images considering the diverse styles in each

domain. However, designing and learning such models be-

come complicated as there can be arbitrarily large number

of styles and domains in the dataset.

* indicates equal contribution
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To address the style diversity, much work on image-to-

image translation has been developed [1, 13, 27, 22, 30, 40].

These methods inject a low-dimensional latent code to the

generator, which can be randomly sampled from the stan-

dard Gaussian distribution. Their domain-specific decoders

interpret the latent codes as recipes for various styles when

generating images. However, because these methods have

only considered a mapping between two domains, they are

not scalable to the increasing number of domains. For ex-

ample, having K domains, these methods require to train

K(K-1) generators to handle translations between each

and every domain, limiting their practical usage.

To address the scalability, several studies have proposed

a unified framework [2, 6, 14, 24]. StarGAN [6] is one of

the earliest models, which learns the mappings between all

available domains using a single generator. The generator

takes a domain label as an additional input, and learns to

transform an image into the corresponding domain. How-

ever, StarGAN still learns a deterministic mapping per each

domain, which does not capture the multi-modal nature of

the data distribution. This limitation comes from the fact

that each domain is indicated by a predetermined label.

Note that the generator receives a fixed label (e.g. one-hot

vector) as input, and thus it inevitably produces the same

output per each domain, given a source image.

To get the best of both worlds, we propose StarGAN v2,

a scalable approach that can generate diverse images across

multiple domains. In particular, we start from StarGAN

and replace its domain label with our proposed domain-

specific style code that can represent diverse styles of

a specific domain. To this end, we introduce two mod-

ules, a mapping network and a style encoder. The mapping

network learns to transform random Gaussian noise into

a style code, while the encoder learns to extract the style

code from a given reference image. Considering multiple

domains, both modules have multiple output branches, each

of which provides style codes for a specific domain. Finally,

utilizing these style codes, our generator learns to success-

fully synthesize diverse images over multiple domains (Fig-

ure 1).

We first investigate the effect of individual components

of StarGAN v2 and show that our model indeed benefits

from using the style code (Section 3.1). We empirically

demonstrate that our proposed method is scalable to multi-

ple domains and gives significantly better results in terms of

visual quality and diversity compared to the leading meth-

ods (Section 3.2). Last but not least, we present a new

dataset of animal faces (AFHQ) with high quality and wide

variations (Appendix) to better evaluate the performance of

image-to-image translation models on large inter- and intra-

domain differences. We release this dataset publicly avail-

able for research community.

2. StarGAN v2

In this section, we describe our proposed framework and

its training objective functions.

2.1. Proposed framework

Let X and Y be the sets of images and possible domains,

respectively. Given an image x ∈ X and an arbitrary do-

main y ∈ Y , our goal is to train a single generator G that can

generate diverse images of each domain y that corresponds

to the image x. We generate domain-specific style vectors

in the learned style space of each domain and train G to

reflect the style vectors. Figure 2 illustrates an overview of

our framework, which consists of four modules described

below.

Generator (Figure 2a). Our generator G translates an input

image x into an output image G(x, s) reflecting a domain-

specific style code s, which is provided either by the map-

ping network F or by the style encoder E. We use adaptive

instance normalization (AdaIN) [12, 18] to inject s into G.

We observe that s is designed to represent a style of a spe-

cific domain y, which removes the necessity of providing y

to G and allows G to synthesize images of all domains.

Mapping network (Figure 2b). Given a latent code z and

a domain y, our mapping network F generates a style code

s = Fy(z), where Fy(·) denotes an output of F correspond-

ing to the domain y. F consists of an MLP with multiple

output branches to provide style codes for all available do-

mains. F can produce diverse style codes by sampling the

latent vector z ∈ Z and the domain y ∈ Y randomly.

Our multi-task architecture allows F to efficiently and ef-

fectively learn style representations of all domains.

Style encoder (Figure 2c). Given an image x and its corre-

sponding domain y, our encoder E extracts the style code

s = Ey(x) of x. Here, Ey(·) denotes the output of E corre-

sponding to the domain y. Similar to F , our style encoder E

benefits from the multi-task learning setup. E can produce

diverse style codes using different reference images. This

allows G to synthesize an output image reflecting the style

s of a reference image x.

Discriminator (Figure 2d). Our discriminator D is a multi-

task discriminator [24, 28], which consists of multiple out-

put branches. Each branch Dy learns a binary classification

determining whether an image x is a real image of its do-

main y or a fake image G(x, s) produced by G.

2.2. Training objectives

Given an image x ∈ X and its original domain y ∈ Y ,

we train our framework using the following objectives.

Adversarial objective. During training, we sample a latent

code z ∈ Z and a target domain ỹ ∈ Y randomly, and
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(a) Generator (b) Mapping network (c) Style encoder (d) Discriminator

Figure 2. Overview of StarGAN v2, consisting of four modules. (a) The generator translates an input image into an output image reflecting

the domain-specific style code. (b) The mapping network transforms a latent code into style codes for multiple domains, one of which is

randomly selected during training. (c) The style encoder extracts the style code of an image, allowing the generator to perform reference-

guided image synthesis. (d) The discriminator distinguishes between real and fake images from multiple domains. Note that all modules

except the generator contain multiple output branches, one of which is selected when training the corresponding domain.

generate a target style code s̃ = Fỹ(z). The generator G

takes an image x and s̃ as inputs and learns to generate an

output image G(x, s̃) via an adversarial loss

Ladv =Ex,y [logDy(x)] +

E
x,ỹ,z[log (1−Dỹ(G(x, s̃)))],

(1)

where Dy(·) denotes the output of D corresponding to the

domain y. The mapping network F learns to provide the

style code s̃ that is likely in the target domain ỹ, and G

learns to utilize s̃ and generate an image G(x, s̃) that is in-

distinguishable from real images of the domain ỹ.

Style reconstruction. In order to enforce the generator G to

utilize the style code s̃ when generating the image G(x, s̃),
we employ a style reconstruction loss

Lsty = E
x,ỹ,z

[
||̃s− Eỹ(G(x, s̃))||

1

]
. (2)

This objective is similar to the previous approaches [13, 40],

which employ multiple encoders to learn a mapping from

an image to its latent code. The notable difference is that

we train a single encoder E to encourage diverse outputs

for multiple domains. At test time, our learned encoder E

allows G to transform an input image, reflecting the style of

a reference image.

Style diversification. To further enable the generator G to

produce diverse images, we explicitly regularize G with the

diversity sensitive loss [27, 35]

Lds = E
x,ỹ,z1,z2

[‖G(x, s̃1)−G(x, s̃2)‖1] , (3)

where the target style codes s̃1 and s̃2 are produced by F

conditioned on two random latent codes z1 and z2 (i.e.

s̃i = Fỹ(zi) for i ∈ {1, 2}). Maximizing the regulariza-

tion term forces G to explore the image space and discover

meaningful style features to generate diverse images. Note

that in the original form, the small difference of ‖z1 − z2‖1
in the denominator increases the loss significantly, which

makes the training unstable due to large gradients. Thus,

we remove the denominator part and devise a new equation

for stable training but with the same intuition.

Preserving source characteristics. To guarantee that the

generated image G(x, s̃) properly preserves the domain-

invariant characteristics (e.g. pose) of its input image x, we

employ the cycle consistency loss [6, 20, 39]

Lcyc = E
x,y,ỹ,z [||x−G(G(x, s̃), ŝ)||

1
] , (4)

where ŝ = Ey(x) is the estimated style code of the input

image x, and y is the original domain of x. By encourag-

ing the generator G to reconstruct the input image x with

the estimated style code ŝ, G learns to preserve the original

characteristics of x while changing its style faithfully.

Full objective. Our full objective functions can be summa-

rized as follows:

min
G,F,E

max
D

Ladv + λsty Lsty

− λds Lds + λcyc Lcyc,
(5)

where λsty , λds, and λcyc are hyperparameters for each

term. We also further train our model in the same manner

as the above objective, using reference images instead of

latent vectors when generating style codes. We provide the

training details in Appendix.
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Method FID LPIPS

A Baseline StarGAN [6] 98.4 -

B + Multi-task discriminator 91.4 -

C + Tuning (e.g. R1 regularization) 80.5 -

D + Latent code injection 32.3 0.312

E + Replace (D) with style code 17.1 0.405

F + Diversity regularization 13.8 0.453

Table 1. Performance of various configurations on CelebA-HQ.

Frechet inception distance (FID) indicates the distance between

two distributions of real and generated images (lower is better),

while learned perceptual image patch similarity (LPIPS) measures

the diversity of generated images (higher is better).

3. Experiments

In this section, we describe evaluation setups and con-

duct a set of experiments. We analyze the individual compo-

nents of StarGAN v2 (Section 3.1) and compare our model

with three leading baselines on diverse image synthesis

(Section 3.2). All experiments are conducted using unseen

images during the training phase.

Baselines. We use MUNIT [13], DRIT [22], and MSGAN

[27] as our baselines, all of which learn multi-modal map-

pings between two domains. For multi-domain compar-

isons, we train these models multiple times for every pair

of image domains. We also compare our method with Star-

GAN [6], which learns mappings among multiple domains

using a single generator. All the baselines are trained using

the implementations provided by the authors.

Datasets. We evaluate StarGAN v2 on CelebA-HQ [17] and

our new AFHQ dataset (Appendix). We separate CelebA-

HQ into two domains of male and female, and AFHQ into

three domains of cat, dog, and wildlife. Other than the do-

main labels, we do not use any additional information (e.g.

facial attributes of CelebA-HQ or breeds of AFHQ) and

let the models learn such information as styles without su-

pervision. For a fair comparison, all images are resized to

256 × 256 resolution for training, which is the highest res-

olution used in the baselines.

Evaluation metrics. We evaluate both the visual quality

and the diversity of generated images using Frechét incep-

tion distance (FID) [11] and learned perceptual image patch

similarity (LPIPS) [38]. We compute FID and LPIPS for ev-

ery pair of image domains within a dataset and report their

average values. The details on evaluation metrics and pro-

tocols are further described in Appendix.

3.1. Analysis of individual components

We evaluate individual components that are added to our

baseline StarGAN using CelebA-HQ. Table 1 gives FID and

LPIPS for several configurations, where each component

is cumulatively added on top of StarGAN. An input im-

age and the corresponding generated images of each con-

figuration are shown in Figure 3. The baseline configura-

(A)

(B) (C)

Source

(D)

(E) (F)

Figure 3. Visual comparison of generated images using each con-

figuration in Table 1. Note that given a source image, the config-

urations (A) - (C) provide a single output, while (D) - (F) generate

multiple output images.

tion (A) corresponds to the basic setup of StarGAN, which

employs WGAN-GP [10], ACGAN discriminator [31], and

depth-wise concatenation [29] for providing the target do-

main information to the generator. As shown in Figure 3a,

the original StarGAN produces only a local change by ap-

plying makeup on the input image.

We first improve our baseline by replacing the ACGAN

discriminator with a multi-task discriminator [28, 24], al-

lowing the generator to transform the global structure of an

input image as shown in configuration (B). Exploiting the

recent advances in GANs, we further enhance the training

stability and construct a new baseline (C) by applying R1

regularization [28] and switching the depth-wise concate-

nation to adaptive instance normalization (AdaIN) [8, 12].

Note that we do not report LPIPS of these variations in Ta-

ble 1, since they are yet to be designed to produce multiple

outputs for a given input image and a target domain.

To induce diversity, one can think of directly giving a

latent code z into the generator G and impose the latent re-

construction loss ||z− E(G(x, z, y))||
1

[13, 40]. However,

in a multi-domain scenario, we observe that this baseline (D)

does not encourage the network to learn meaningful styles

and fails to provide as much diversity as we expect. We con-

jecture that this is because latent codes have no capability

in separating domains, and thus the latent reconstruction

loss models domain-shared styles (e.g. color) rather than

domain-specific ones (e.g. hairstyle). Note that the FID gap

between baseline (C) and (D) is simply due to the difference

in the number of output samples.
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Figure 4. Reference-guided image synthesis results on CelebA-HQ. The source and reference images in the first row and the first column

are real images, while the rest are images generated by our proposed model, StarGAN v2. Our model learns to transform a source image

reflecting the style of a given reference image. High-level semantics such as hairstyle, makeup, beard and age are followed from the

reference images, while the pose and identity of the source images are preserved. Note that the images in each column share a single

identity with different styles, and those in each row share a style with different identities.
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Source MUNIT [13] DRIT [22] MSGAN [27] Ours Source MUNIT [13] DRIT [22] MSGAN [27] Ours

(a) Latent-guided synthesis on CelebA-HQ (b) Latent-guided synthesis on AFHQ

Figure 5. Qualitative comparison of latent-guided image synthesis results on the CelebA-HQ and AFHQ datasets. Each method translates

the source images (left-most column) to target domains using randomly sampled latent codes. (a) The top three rows correspond to the

results of converting male to female and vice versa in the bottom three rows. (b) Every two rows from the top show the synthesized images

in the following order: cat-to-dog, dog-to-wildlife, and wildlife-to-cat.

Instead of giving a latent code into G directly, to learn

meaningful styles, we transform a latent code z into a

domain-specific style code s through our proposed mapping

network (Figure 2b) and inject the style code into the gen-

erator (E). Here, we also introduce the style reconstruction

loss (Eq. (2)). Note that each output branch of our map-

ping network is responsible to a particular domain, thus

style codes have no ambiguity in separating domains. Un-

like the latent reconstruction loss, the style reconstruction

loss allows the generator to produce diverse images reflect-

ing domain-specific styles. Finally, we further improve the

network to produce diverse outputs by adopting the diver-

sity regularization (Eq. (3)), and this configuration (F) cor-

responds to our proposed method, StarGAN v2. Figure 4

shows that StarGAN v2 can synthesize images that reflect

diverse styles of references including hairstyle, makeup,

and beard, without hurting the source characteristics.

3.2. Comparison on diverse image synthesis

In this section, we evaluate StarGAN v2 on diverse im-

age synthesis from two perspectives: latent-guided synthe-

sis and reference-guided synthesis.

Latent-guided synthesis. Figure 5 provides a qualitative

comparison of the competing methods. Each method pro-

CelebA-HQ AFHQ

Method FID LPIPS FID LPIPS

MUNIT [13] 31.4 0.363 41.5 0.511

DRIT [22] 52.1 0.178 95.6 0.326

MSGAN [27] 33.1 0.389 61.4 0.517

StarGAN v2 13.8 0.453 16.3 0.451

Real images 14.8 - 12.9 -

Table 2. Quantitative comparison on latent-guided synthesis. The

FIDs of real images are computed between the training and test

sets. Note that they may not be optimal values since the number of

test images is insufficient, but we report them for reference.

duces multiple outputs using random noise. For CelebA-

HQ, we observe that our method synthesizes images with

a higher visual quality compared to the baseline models. In

addition, our method is the only model that can successfully

change the entire hair styles of the source images, which re-

quires non-trivial effort (e.g. generating ears). For AFHQ,

which has relatively large variations, the performance of the

baselines is considerably degraded, while our method still

produces images with high quality and diverse styles.

As shown in Table 2, our method outperforms all the

baselines by a large margin in terms of visual quality. For

both CelebA-HQ and AFHQ, our method achieves FIDs of

13.8 and 16.3, respectively, which are more than two times
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Source Reference DRIT [22] MSGAN [27] Ours Source Reference DRIT [22] MSGAN [27] Ours

(a) Reference-guided synthesis on CelebA-HQ (b) Reference-guided synthesis on AFHQ

Figure 6. Qualitative comparison of reference-guided image synthesis results on the CelebA-HQ and AFHQ datasets. Each method trans-

lates the source images into target domains, reflecting the styles of the reference images.

improvement over the previous leading method. Our LPIPS

is also the highest in CelebA-HQ, which implies our model

produces the most diverse results given a single input. We

conjecture that the high LPIPS values of the baseline mod-

els in AFHQ are due to their spurious artifacts.

Reference-guided synthesis. To obtain the style code from

a reference image, we sample test images from a target do-

main and feed them to the encoder network of each method.

For CelebA-HQ (Figure 6a), our method successfully ren-

ders distinctive styles (e.g. bangs, beard, makeup, and hair-

style), while the others mostly match the color distribution

of reference images. For the more challenging AFHQ (Fig-

ure 6b), the baseline models suffer from a large domain

shift. They hardly reflect the style of each reference im-

age and only match the domain. In contrast, our model ren-

ders distinctive styles (e.g. breeds) of each reference im-

age as well as its fur pattern and eye color. Note that Star-

GAN v2 produces high quality images across all domains

and these results are from a single generator. Since the other

baselines are trained individually for each pair of domains,

the output quality fluctuates across domains. For example,

in AFHQ (Figure 6b), the baseline models work reasonably

well in dog-to-wildlife (2nd row) while they fail in cat-to-

dog (1st row).

Table 3 shows FID and LPIPS of each method for ref-

erence guided synthesis. For both datasets, our method

achieves FID of 23.9, and 19.7, which are about 1.5× and

3.5× better than the previous leading method, respectively.

CelebA-HQ AFHQ

Method FID LPIPS FID LPIPS

MUNIT [13] 107.1 0.176 223.9 0.199

DRIT [22] 53.3 0.311 114.8 0.156

MSGAN [27] 39.6 0.312 69.8 0.375

StarGAN v2 23.9 0.388 19.7 0.432

Real images 14.8 - 12.9 -

Table 3. Quantitative comparison on reference-guided synthesis.

We sample ten reference images to synthesize diverse images.

The LPIPS of StarGAN v2 is also the highest among the

competitors, which implies that our model produces the

most diverse results considering the styles of reference im-

ages. Here, MUNIT and DRIT suffer from mode-collapse in

AFHQ, which results in lower LPIPS and higher FID than

other methods.

Human evaluation. We use the Amazon Mechanical Turk

(AMT) to compare the user preferences of our method

with baseline approaches. Given a pair of source and ref-

erence images, the AMT workers are instructed to select

one among four image candidates from the methods, whose

order is randomly shuffled. We ask separately which model

offers the best image quality and which model best styl-

izes the input image considering the reference image. For

each comparison, we randomly generate 100 questions, and

each question is answered by 10 workers. We also ask each

worker a few simple questions to detect unworthy work-

ers. The number of total valid workers is 76. As shown in

Table 4, our method obtains the majority of votes in all in-

8194



CelebA-HQ AFHQ

Method Quality Style Quality Style

MUNIT [13] 6.2 7.4 1.6 0.2

DRIT [22] 11.4 7.6 4.1 2.8

MSGAN [27] 13.5 10.1 6.2 4.9

StarGAN v2 68.9 74.8 88.1 92.1

Table 4. Votes from AMT workers for the most preferred method

regarding visual quality and style reflection (%). StarGAN v2 out-

performs the baselines with remarkable margins in all aspects.

stances, especially in the challenging AFHQ dataset and the

question about style reflection. These results show that Star-

GAN v2 better extracts and renders the styles onto the input

image than the other baselines.

4. Discussion

We discuss several reasons why StarGAN v2 can suc-

cessfully synthesize images of diverse styles over multiple

domains. First, our style code is separately generated per

domain by the multi-head mapping network and style en-

coder. By doing so, our generator can only focus on us-

ing the style code, whose domain-specific information is al-

ready taken care of by the mapping network (Section 3.1).

Second, following the insight of StyleGAN [18], our style

space is produced by learned transformations. This provides

more flexibility to our model than the baselines [13, 22, 27],

which assume that the style space is a fixed Gaussian dis-

tribution (Section 3.2). Last but not least, our modules ben-

efit from fully exploiting training data from multiple do-

mains. By design, the shared part of each module should

learn domain-invariant features which induces the regular-

ization effect, encouraging better generalization to unseen

samples. To show that our model generalizes over the un-

seen images, we test a few samples from FFHQ [18] with

our model trained on CelebA-HQ (Figure 7). Here, Star-

GAN v2 successfully captures styles of references and ren-

ders these styles correctly to the source images.

5. Related work

Generative adversarial networks (GANs) [9] have shown

impressive results in many computer vision tasks such as

image synthesis [3, 25, 7], colorization [15, 36] and super-

resolution [21, 34]. Along with improving the visual quality

of generated images, their diversity also has been consid-

ered as an important objective which has been tackled by

either devoted loss functions [27, 28] or architectural de-

sign [3, 18]. StyleGAN [18] introduces a non-linear map-

ping function that embeds an input latent code into an inter-

mediate style space to better represent the factors of varia-

tion. However, this method requires non-trivial effort when

transforming a real image, since its generator is not de-

signed to take an image as input.

Early image-to-image translation methods [16, 39, 23]

are well known to learn a deterministic mapping even with

stochastic noise inputs. Several methods reinforce the con-

Source Reference Output

Figure 7. Reference-guided synthesis results on FFHQ with the

model trained on CelebA-HQ. Despite the distribution gap be-

tween the two datasets, StarGAN v2 successfully extracts the style

codes of the references and synthesizes faithful images.

nection between stochastic noise and the generated im-

age for diversity, by marginal matching [1], latent regres-

sion [40, 13], and diversity regularization [35, 27]. Other

approaches produce various outputs with the guidance of

reference images [4, 5, 26, 32]. However, all theses meth-

ods consider only two domains, and their extension to mul-

tiple domains is non-trivial. Recently, FUNIT [24] tackles

multi-domain image translation using a few reference im-

ages from a target domain, but it requires fine-grained class

labels and can not generate images with random noise. Our

method provides both latent-guided and reference-guided

synthesis and can be trained with coarsely labeled dataset.

In parallel work, Yu et al. [37] tackle the same issue but they

define the style as domain-shared characteristics rather than

domain-specific ones, which limits the output diversity.

6. Conclusion

We proposed StarGAN v2, which addresses two major

challenges in image-to-image translation; translating an im-

age of one domain to diverse images of a target domain, and

supporting multiple target domains. The experimental re-

sults showed that our model can generate images with rich

styles across multiple domains, remarkably outperforming

the previous leading methods [13, 22, 27]. We also released

a new dataset of animal faces (AFHQ) for evaluating meth-

ods in a large inter- and intra domain variation setting.
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