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We have theoretically studied the effect of an electric field on the energy levels of shallow donors and
acceptors in silicon. An analysis of the electric field dependence of the lowest energy states in donors and
acceptors is presented, taking the band structure into account. A description as hydrogenlike impurities was
used for accurate computation of energy levels and lifetimes up to large(several MV/m) electric fields. All
results are discussed in connection with atomic scale electronics and solid state quantum computation.
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I. INTRODUCTION

The field of atomic scale electronics(ASE) aims at con-
trolling charge and spin in semiconductors at the level of
individual dopant atoms. Such an ability is very attractive,
both for physics and for the development of(quantum) de-
vices. From a fundamental point of view, dopant atoms are
interesting, because they can be considered as the solid state
analog of atoms in free space. Several well-known effects
from atomic physics(e.g., the Stark effect and the Zeeman
effect) have been studied in great detail in large ensembles of
dopant atoms.1 The prospect of experimentally realizing
atomic scale electronics has renewed the interest in dopant
atoms. Measurement and control of individual dopant atoms
allows for the observation of quantum coherent time evolu-
tion and interactions of the dopant’s wave functions, which is
essential for the operation of a quantum computer.

Manipulation of a single particle’s wave functions can be
realized by using a local magnetic or electric field. Such a
field can be used either to perform the desired manipulation
itself, or to provide a local perturbation allowing for address-
ing a single impurity by a global radiation field. A local
electric field could be realized by putting a small gate close
to a dopant atom, which is in principle accomplishable with
current technology. An ultimate application of gate manipu-
lation is found in the solid state quantum computer as pro-
posed by Kane.2,3

To get more insight into the physics of atomic scale elec-
tronic devices, it is essential to try to predict their potential
behavior. A first step is the description of isolated dopant
atoms in a(homogeneous) electric field. Much more difficult
is accurate modeling of the time evolution of a dopant atom
wave function in an inhomogeneous field and the description
of the interaction of two or more dopants in a field.

Dopant atoms binding one electron or hole can be de-
scribed as a hydrogen atom, where the vacuum values of the
dielectric constant and the electron mass are replaced by the
appropriate values for the semiconductor. This “scaled hy-
drogen model”(SHM) provides a reasonable description of
the dopant atom’s energy levels. Therefore, it is useful to
look at existing studies of the Stark effect in the hydrogen
atom. Calculation of the shift and splitting of the hydrogen
energy levels up to very large electric fields have been car-
ried out by several different methods.4–6 Within the SHM,
these results can be directly translated to dopant atoms in a

uniform electric field. However, we found that almost no
actual results of such calculations in the(field) range of in-
terest for ASE have been published.

The SHM also offers a manageable way to describe a
dopant atom in an inhomogeneous electric field. Recently,
several calculations using this framework have been
published7–9 in the context of quantum computing. However,
the SHM fails in the explanation of effects where it is essen-
tial that the band structure of the semiconductor is taken into
account(as an example, see Ref. 10).

Many measurements of the energy levels of dopant atoms
in semiconductors(large ensembles) are known, but only a
few concerning the effect of a uniform electric field have
been reported, presumably because such measurements are
much more difficult than, e.g., measurements in a magnetic
field or under stress. Among them are spectroscopic mea-
surements of the boron energy levels in silicon subject to
electric fields up to 0.15 MV/m.11 Electron-spin-resonance
experiments12 demonstrated that the electric field couples
linearly to the acceptor ground state. The magnitude of the
effective electric dipole moment for linear Stark coupling has
been estimated as 0.26 D for boron acceptors in silicon
s1D=3.3310−30 Cmd. Photo-ionization measurements have
shown a very large electric field effect on the phosphorus
ground state in Si,13 but this was measured in highly doped
samples where the interaction between dopants dominates
the Stark effect of individual energy levels. Finally, quadratic
level shifts have been observed in deep selenium double do-
nors in Si, located in the space charge region of a diode.14

In this paper, we will theoretically investigate the effect of
a uniform electric field on isolated shallow impurities in sili-
con. The primary interest for ASE will be in the ground state
and possibly the first few excited states. These states are the
only ones that are well separated from neighboring levels,
and at low temperatures only the ground state is occupied.
Therefore, we focus on the lowest energy states of impurities
in silicon. First, we derive the shift, splitting, and wave func-
tions of the lowest donor levels in silicon in a small uniform
electric field, taking full account of the multiple valley con-
duction band structure(Sec. II). We briefly outline a similar
calculation for acceptors in silicon(Sec. III). The results are
useful for applications where a local gate is used to bring a
single dopant atom into resonance with a global radiation
field (nuclear magnetic resonance, electron spin resonance).
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Moreover, they can be used to outline the limitations of the
SHM. Second, in Sec. IV we present accurate numerical cal-
culation of the Stark effect in silicon within the SHM, from
zero field up to fields that are relevant for atomic scale elec-
tronics and quantum computing(several MV/m; see, for in-
stance, Ref. 3). Finally, we conclude by discussing possible
extensions and alternatives of our methods which are useful
to address issues in ASE(Sec. V).

II. DONORS

A. The donor ground state

Group theory is a powerful tool to derive various proper-
ties of dopant wave functions in a semiconductor. In order to
provide the necessary background and to fix the notation, we
will briefly review some relevant properties of donor levels
in silicon (see, e.g., Ref. 15). Degeneracy due to spin is not
lifted by an electric field in donors. For simplicity, we will
therefore not count those degeneracies in this section.

The conduction band of silicon has six equivalent minima
located on thef100g and equivalent axes. These minima are
commonly called “valleys” and we label them by the num-
bers 1 to 6 as shown in Fig. 1(a). The band structure in the
vicinity of valley 1, located ink space atk1=sk0,0 ,0d, can
be approximated as

E = E0 +
"2

2mi

skx − k0d2 +
"2

2m'

sky
2 + kz

2d,

wheremi=0.98m and m'=0.19m are the electron effective
masses andm is the free electron mass. Furthermore,k0
=0.8532p /a,16 wherea is the size of the silicon unit cell.
Similar expressions hold for the remaining five valleys.

From effective mass theory(EMT) it follows that the
ground state wave function of the Hamiltonian of an electron
bound to a donor can be written as17

Csr d = o
m=1

6

amFmsr dwmsr d, s1d

where theam are numerical coefficients and theFmsr d are
envelope wave functions, which are slowly varying on the

length scale ofa. F1sr d=F2sr d satisfy the hydrogenlike
Schrödinger equation
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and similar equations hold for the remainingFm. The wmsr d
are Bloch wave functions at the minimum of the valleym
and can be written aseikm·rumsr d, whereumsr d has the peri-
odicity of the silicon crystal lattice. Because for allm the
eigenvalues resulting from Eq.(2) are the same, Eq.(1)
shows that the degeneracy of each of these eigenvalues is
multiplied by six for the total wave functionsCsr d. In par-
ticular, the ground state solution of Eq.(2) gives rise to a
sixfold degenerate donor ground state.

The symmetry group of the conduction band minima[and
thus of the Bloch functionswsr d] is C`v in EMT, which
reduces toC2v in the silicon crystal. The envelope wave
functionsFsr d belong toD`h. Their products belong to the
cross section of both groups, which isC2v. For the 1s-like
sm=0d ground state function of Eq.(2) Fmsr d, such a product
transforms according to theG1 representation of the valley
symmetry groupC2v. Because the donor is located at a sub-
stitutional site of the tetrahedral silicon lattice, the total wave
function hasTd symmetry. Using Frobenius’ theorem,18 it
can be shown that theG1 representation ofC2v induces the
G1+G3+G5 representation19 of Td. This means that linear
combinations of theFmsrd can be found that have the correct
transformations properties underTd. Using the notationa
=sa1, . . . ,a6d [as in Eq.(1)] the reduction to theTd represen-
tations is carried out by

ag =
1
Î6

s1,1,1,1,1,1d, G1,

5ar =
1

Î12
s− 1,− 1,− 1,− 1,2,2d

as =
1

2
s1,1,− 1,− 1,0,0d 6, G3,

5
ax =

1
Î2

s1,− 1,0,0,0,0d

ay =
1
Î2

s0,0,1,− 1,0,0d

az =
1
Î2

s0,0,0,0,1,− 1d
6, G5. s3d

Each of the vectorsa defines a wave functionC through Eq.
(1). Here, the basis functions of the two- and three-
dimensional representations have been chosen such thatCr
andCs transform underTd as 3z2−r2 andÎ3sx2−y2d, respec-
tively. Similarly, Cx, Cy, andCz have been chosen such that
they transform underTd asx, y, andz, respectively.

The potential term in the EMT Schrödinger equation(2) is
a good approximation only forr *a, wherea is the lattice
constant of silicon. For smallr, the charge of the nucleus is

FIG. 1. (Color online) (a) Schematic representation of the con-
duction band valleys of silicon as constant energy surfaces ink
space. The six valleys are labeled by numbers, e.g., 4 represents the

f01̄0g valley. (b) Definition of the coordinate system with respect to
the Si-crystal unit cell. We havex i f100g, y i f010g, zi f001g,
v i f110g, andw i f111g. The orientation of the figure in parts(a) and
(b) is the same.
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not screened by other electrons and it will attract electrons
much more strongly than described by the potential in Eq.
(2). Because the symmetry of the potential is not affected,
the states are still described by the representations ofTd, but
they are no longer degenerate. TheG1 stateCg is the only
one of the six ground state wave functions that has nonzero
electron density at the nucleussr =0d. Therefore, it has a
larger binding energy than predicted by EMT and for most
donors in silicon the 1ssG1d state is the true ground state.
This effect is generally called “chemical splitting”(because

the size of the effect depends on the donor in question) or
“valley-orbit splitting.” The remaining states(especially the
non-s states) are quite well described by EMT, because the
electron density at the nucleus is negligible. As an example,
in case of phosphorus in silicon, the 1ssG1d state(the ground
state) has been measured to be located 45.29 meV below the
conduction band minimum,1 while the EMT prediction is
31.27 meV.21

B. Symmetry of the donor ground state in an electric field

After this brief review of established knowledge of silicon
donors, we return to the main subject of this paper. From
purely symmetry based considerations, we can find how the
Hilbert subspace spanned by the original six valley wave
functions is decomposed by the application of an electric
field in a certain direction. The impurities considered in this
paper occupy substitutional sites in the silicon lattice and
their wave functions transform according to representations

of site symmetry groupT̄d. The symmetry group of a uni-
form electric fieldE is C`v. WhenE is applied in an arbi-

trary direction in the silicon crystal, the symmetry groupT̄d
of the Hamiltonian reduces to the trivial groupC1. Only
when the direction of the field is along one of the main
crystallographic directions of the crystal, the result isC2v for
E i k100l, C3v for E i k111l, andCs for E i k110l. The reduc-
tion of symmetry can induce a splitting in the original energy
levels as shown in Table I. As expected, the electric field
does not remove degeneracy due to time-reversal symmetry

TABLE I. Reduction of the site symmetry of an impurity in a
uniform electric field in various directions and the resulting reduc-
tion of the irreducible representations(Ref. 20).

Direction

k100l k111l k110l
Group

C̄2v C̄3v C̄s

G1 sTdd G1 G1 G1

G2 sTdd G3 G2 G2

G3 sTdd G1+G3 G3 G1+G2

G4 sTdd G2+G3+G4 G2+G3 G1+2G2

G5 sTdd G1+G2+G4 G1+G3 2G1+G2

G6 sT̄dd G5 G4 G3+4

G7 sT̄dd G5 G4 G3+4

G8 sT̄dd 2G5 G4+G5+6 2G3+4

TABLE II. By considering the symmetry of the valley wave functions in an electric field, the symmetry
of the total wave function they induce can be obtained. The results for the 1s level, without considering
valley-orbit splitting, are shown in this table. The direction ofE in the first column is denoted by the vectors
defined in Fig. 1(a). The fifth column lists the representations of the appropriate site symmetry group, given
in the second column. The basis vectors are given in the notation of Eq.(3).

Direction of E Site symmetry Valley Valley symmetry G(site) Basis

z C2v 1, 2, 3, 4 C1 G1 s1,1,1,1,0,0d
G2 s1,−1,1,−1,0,0d
G3 s1,1,−1,−1,0,0d
G4 s1,−1,−1,1,0,0d

5 C2v G1 s0,0,0,0,1,0d
6 C2v G1 s0,0,0,0,0,1d

w C3v 1, 3, 5 Cs G1 s1,0,1,0,1,0d
G3 sv2,0 ,v ,0 ,1 ,0d

sv ,0 ,v2,0 ,1,0d
2, 3, 6 Cs G1 s0,1,0,1,0,1d

G3 s0,v2,0 ,v ,0 ,1d
s0,v ,0 ,v2,0 ,1d

v Cs 1, 3 C1 G1 s1,0,1,0,0,0d
G2 s1,0,−1,0,0,0d

2, 4 C1 G1 s0,1,0,1,0,0d
G2 s0,1,0,−1,0,0d

5 Cs G1 s0,0,0,0,1,0d
6 Cs G1 s0,0,0,0,0,1d
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and therefore all resulting levels are at least twofold degen-
erate.

To make the connection to the valley wave functions
Fmsr dfmsr d, we will now discuss the symmetry of the 1s
levels in an electric field from another point of view. We start
by looking at the individual valley wave functions and sub-
sequently derive which linear combinations form appropriate
donor wave functions(using the method of Ref. 22). When a
donor impurity in silicon is situated in an electric field along
the positivez direction, the valleys 5 and 6 keep theirC2v
symmetry, while the field reduces the symmetry group of the
other four valleys toC1. These four valleys are mixed by the
elements of the site symmetry groupC2v and are therefore
grouped together in the third column of Table II.

In case of a 1s state, the valley wave functions belong to
the G1 representation ofC2v (for valleys 5 and 6) or C1 (for
1, 2, 3, and 4). This is found by reducing the evenm=0
representation ofD`h to C2v andC1, respectively. By using
Frobenius’ theorem, it can be deduced that these generate for
the impurity wave function the representationsG1 and G1
+G2+G3+G4 of C2v, respectively. This is also shown in Table
II, together with the(set of) induced wave function(s) span-
ning the subspace of that representation. In a similar way, we
obtained results for the electric field in the other main crys-
tallographic directions. They are also shown in the table.

Due to the valley-orbit splitting(which has been ignored
so far) the three irreducible components of the donor ground
state are already energetically separated at zero field. There-
fore, the basis vectors have to be chosen in such a way that
they agree with the zero-field energy splitting of theG1, G3,

andG5 levels ofTd.
23 The result for various directions of the

electric field is shown in Table III.

C. Shift and splitting in an electric field

Now, we will derive the shift and splitting of the lowest
donor levels in an electric field from a perturbation calcula-
tion. Results for other levels can be derived using the same
method, although(because the level spacing is smaller for
higher levels) the range of fields where the perturbation cal-
culation is valid is much smaller.

Although the sixfold degeneracy of the 1s levels is lifted
by the valley-orbit interaction, the complete manifold is rela-
tively well separated from the higher levels[the separation of
the highest 1ssG3d level to closest exited levels2p0d is
roughly twice as large as the separation between the 1ssG1d
and 1ssG3d levels]. Therefore, we consider the 1s manifold as
a whole in a single perturbation calculation, taking only the
coupling among the 1s levels themselves into account.

The electric field couples to the(induced) dipole moment
D=er of the impurity state and gives rise to an additional
term in its Hamiltonian −E ·D, reflecting the energy associ-
ated with the dipole in the field. By making use of the
Wigner-Eckart orthogonality theorem from group theory,24 it
is possible to find the vanishing matrix elements as well as
the dependencies between the nonvanishing matrix elements,
as they follow from the symmetry of the system. The 1s
submatrixfHg of the total Stark HamiltonianH=H0+E ·D
is given by

1
E1 0 0 p15Ex p15Ey p15Ez

0 E3 0 − p35Ex − p35Ey 2p35Ez

0 0 E3 p35
Î3Ex − p35

Î3Ey 0

p̄15Ex − p̄35Ex p̄35
Î3Ex E5 p5Ez p5Ey

p̄15Ey − p̄35Ey p̄35
Î3Ey p̄5Ez E5 p5Ex

p̄15Ez 2p̄35Ez 0 p̄5Ey p̄5Ex E5

2 .

The elements of this matrix are given byfHgi j =kwiuHuw jl,
where the wave functionswi are taken from the basis
sCg,Cr ,Cs,Cx,Cy,Czd as defined before. The energiesE1,
E3, and E5 are the eigenvalues of the unperturbed Hamil-
tonian H0, that is, the zero-field energies of the 1ssG1d,
1ssG3d, and 1ssG5d level, respectively. For phosphorus in sili-
con, the values areE1=−45.59 meV,E3=−32.58 meV, and
E5=−33.89 meV with respect to the conduction band edge.1

The parametersp15, p35, and p5 describe the coupling be-
tween the 1s levels. As can be seen, these are the only three
independent parameters describing the coupling between the
levels. They can be expressed in terms of integrals over

products of wave functions, e.g.,p15=ekCguxuCxl and p5

=ekCyuxuCzl.
Perturbation theory is invoked by calculating the eigen-

values and eigenvectors of this 636 matrix up to second
order inE. This yields the 1s energy levels and wave func-
tions as a function of electric field forE along the three main
crystallographic directions. The energy levels are presented
in the last column of Table III. From Table III it can be seen
that the 1ssG1d ground state experiences an isotropic qua-
dratic shift downward,25 while for the other levels the behav-
ior depends on the direction of the electric field. In Fig. 2 the
results forE i k100l are plotted schematically.
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The corresponding eigenvectors were also obtained from
this calculation. In the limitE→0 they coincide with the
vectors given in Table III, allowing us to label each eigen-
value with the correct representation. These results are di-
rectly applicable in the prediction of allowed optical transi-
tions between the various levels.

We discuss the behavior of the three 1s states in more
detail. The normalized eigenfunctions in an electric field par-
allel to z (again up to second order inE) corresponding to the
eigenvalues already given in Table III are

Fg = S1 −
1

2
ubu2E2DCg + b9E2 · Cr − b̄E · Cz,

Fr = − b̄9E2 · Cg + S1 −
1

2
ub8u2E2DCr + b̄8E · Cz,

Fs = Cs, Fx =
1

2
Î2sCx + Cyd,

Fy =
1

2
Î2sCx − Cyd,

Fz = bE · Cg − b8E · Cr + F1 −
1

2
subu2 + ub8u2dE2GCz,

s4d

where

b =
p15

E5 − E1
, b8 =

2p35

E3 − E5
, b9 = b̄

2p35

E3 − E1
.

The initial zero-field wave functionCg has the highest
spatial symmetry possible in a tetrahedral lattice. To get
more insight into the contribution of the six valleys as a
function of the applied field, we can write the perturbed
ground state wave functionFg in the notation of Eq.(3) as

TABLE III. Reduction of the 1s donor energy levels in an electric field. The basis vectors belonging to these states are given[in the
notation of Eq.(3)] in the limit E→0 sv=e2pi/3d. The eigenvalues(up to second order inE) are the result of the perturbation calculation
described in the text.

Field
direction E=0 EÞ0 Basis vector(s) Eigenvalue

z G1sTdd G1sC2vd s1,1,1,1,1,1d /Î6 E1− up15u2/ sE5−E1dE2

G3sTdd G1sC2vd s1,1,1,1,−2,−2d /Î12 E3+ u2p35u2/ sE3−E1dE2

G3sC2vd s1,1,−1,1,0,0d /2 E3

G5sTdd G1sC2vd s0,0,0,0,1,−1d /Î2 E5+fup15u2/ sE5−E1d+ u2p35u2/ sE3−E1dgE2

G2sC2vd s1,−1,1,−1,0,0d /Î2 E5+ up5uE
G4sC2vd s1,−1,−1,1,0,0d /Î2 E5− up5uE

w G1sTdd G1sC3vd s1,1,1,1,1,1d /Î6 E1− up15u2/ sE5−E1dE2

G3sTdd G3sC3vd sv2,v2,v ,v ,1 ,1d /Î6 E3+2up35u2/ sE3−E5dE2

sv ,v ,v2,v2,1 ,1d /Î6

G5sTdd G1sC3vd s1,−1,1,−1,1,−1d /Î6 E5± s2/3dÎ3up5uE+fup15u2/ sE5−E1d−4up35u2/ sE3−E5dgE2

G3sC3vd sv2,−v2,v ,−v ,1 ,−1d /Î6 E57 s1/3dÎ3up5uE
sv ,−v ,v2,−v2,1 ,−1d /Î6

v G1sTdd G1sCsd s1,1,1,1,1,1d /Î6 E1− up15u2/ sE5−E1dE2

G3sTdd G1sCsd s1,1,1,1,−2,−2d /Î12 E3+ up35u2/ sE3−E1dE2

G2sCsd s1,1,−1,1,0,0d /2 E3+3up35u2/ sE3−E1dE2

G5sTdd G1sCsd s0,0,0,0,1,−1d /Î2 E5+ up5uE−s1/2dfup35u2/ sE3−E1d− up15u2/ sE5−E1dgE2

G1sCsd s1,−1,1,−1,0,0d /Î2 E5− up5uE−s1/2dfup35u2/ sE3−E1d− up15u2/ sE5−E1dgE2

G2sCsd s1,−1,−1,1,0,0d /Î2 E5−3up35u2/ sE3−E1dE2

FIG. 2. (Color online) Schematic plot of the 1s energy levels as
a function of the electric fieldE. The values of the parametersp5,
p15, andp35 have been chosen such that the plot clearly illustrates
the qualitative features of the Stark effect in the energy levels.
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s1,1,1,1,1,1d + s0,0,0,0,−g9,g9dE
+ s− g,− g,− g,− g,− g8,− g8dE2,

where

g =
1

2
subu2 + b9Î2d, g8 =

1

2
subu2 − 2b9Î2d,g9 = b̄Î3

and an overall factor 1/Î6 was omitted. From these expres-
sions, we see that the contribution of the valley in the −z
direction increases linearly with the field, while the contribu-
tion of the opposite valley decreases linearly with the field.
This reflects the field-induced dipole moment of the ground
state.

The results of this calculation could be made quantitative
if the values of the parametersp5, p15, andp35 were known.
This can be done by evaluating the integrals defining these
parameters and using, e.g., the EMT wave functions from
Eq. (1). However, due to the strongly oscillating integrants,
this is numerically a nontrivial task. Furthermore, the EMT
wave functions have a higher symmetry than the lattice, and
the value forp5 obtained in this way is always zero. An
estimate forp5 can be obtained only using more sophisti-
cated approximations for the wave functions. More impor-
tantly, the applicability of such results is limited, especially
for the 1s state, as the effects of valley-orbit interaction are
not included in the EMT wave functions.

It is important to note that the energies in Table III and the
eigenstates in Eq.(4) are based on symmetry properties only
and not on the explicit form of the EMT wave functions.
Therefore, these results remain valid, even if valley-orbit in-
teraction and central cell corrections are fully included. Such
modifications would influence only the values of the param-
etersp5, p15, andp35.

III. ACCEPTORS

Acceptor wave functions can be equally well used for
ASE as donors. Recent experiments showing that the coher-
ence time of spins of bound holes is more than 1 ms,26 even
justify the prospective use of acceptor wave functions as qu-
bits. We therefore also briefly outline the properties of silicon
acceptors in an electric field, taking the silicon valence band
structure into account. The initially threefold degenerate va-
lence band maximum is split by spin-orbit interaction, which
causes one of the bands to shift downward by,43 meV.1

Due to the spin-orbit interaction, spin is not a good quantum
number anymore and the bands must be characterized by the
total angular momentum, which is32 for the upper two bands.
Due to the half-valued angular momentum, the Bloch wave
function at the valence band maximum transforms according

to one of the double-valued representations ofT̄d, namely,
G8. As a result, the total impurity wave functions transform
according to representations of the same group. The ground
state wave function, as well as the first few excited levels
belong to theG8 representation and they are all fourfold de-
generate(including spin).

A. Linear Stark effect

To derive the small-field splitting of acceptors in silicon in
an electric field, we use degenerate perturbation theory for
each level individually. To that end, the Hamiltonian subma-
trix kwiuHuw jl of the level under consideration must be cal-
culated and diagonalized, where thewi form a suitable basis
for the subspace of that particular level.

As mentioned before, the components of the electric di-
pole operatorer transform according to the rows of theG5

representation ofT̄d. Because the antisymmetrized direct
products hG63G6j=hG73G7j=G1 do not containG5, the
first-order Stark matrix vanishes for levels withG6 or G7
symmetry. Hence, such levels do not experience a linear
Stark effect. On the other hand,hG83G8j=G1+G3+G5 does
containG5, so that a linear Stark effect is possible for aG8
level.27

The effective linear Stark Hamiltonian28 for a G8 level is
given by29

fHg8
lin =

2
Î3

p8sExhJy,Jzj + EyhJz,Jxj + EzhJx,Jyjd,

where the parameterp8 is related to the effective dipole mo-
ment of such a state. TheJi si =x,y,zd are matrices of the
components of the angular momentum operator with respect
to some convenient basis andhA,Bj= 1

2sAB+BAd is the anti-
commutator. The eigenvalues of this matrix are given by

E8 ± up8uE,

where both eigenvalues occur twice. This is a symmetric
splitting of the level, which is independent of the direction of
E. Note thatp8 vanishes within the EMT, similar top5 be-
fore. Estimates ofp8 obtained in literature range from 0.01 D
(Ref. 29) to 0.26 D.12

B. Quadratic Stark effect

BecausehG63G6j=hG73G7j=G1, the quadratic effective
Stark Hamiltonian for aG6 andG7 level is simply given by

Heff,quad= aiE2Î ,

whereÎ is the identity matrix and theai si =6,7d are phenom-
enological parameters, which can be expressed in terms of
integrals over wave functions. It follows that theG6 andG7
levels experience an isotropic quadratic shift

Ei + aiE2,

whereEi is the unperturbed energy of aGi level. The twofold
degeneracy due to time-reversal symmetry is obviously not
removed by the electric field.

The quadratic part of the effective Hamiltonian for aG8
level, such as the ground state, is given by29
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fHg8
quad= a8E2Î + b8FJx

2Ex
2 + Jy

2Ey
2 + Jz

2Ez
2 −

1

3
J2G

+
2
Î3

c8fhJx,JyjExEy + hJy,JzjEyEz + hJz,JxjEzExg,

wherea8, b8, andc8 are again phenomenological parameters.
The total Hamiltonian has two distinct eigenvalues

a8E2 ± fp8
2E2 + b8

2E4 + sc8
2 − 3b8

2dsEy
2Ez

2 + Ex
2Ez

2 + Ex
2Ey

2d

+ 6p8c8ExEyEzg1/2, s5d

each of which is still doubly degenerate(due to time-reversal
symmetry).30 For E i k100l this expression reduces to(up to
second order inE)

E8 ± up8uE + a8E2.

For E i k111l we find

E8 ± up8uE + Sa8 ±
1

3
Î3c8DE2,

and forE i k110l we have

E8 ± up8uE + a8E2,

both up to second order inE. The results forE i k100l and for
E i k110l are the same in this approximation, but different in
third order.

Obviously, the wave functions of donors and acceptors are
very different and this is reflected in their respective electric
field behavior. The donor ground state undergoes an isotropic
quadratic shift. The acceptor ground state has an isotropic
linear splitting, superposed on an anisotropic quadratic shift.

To demonstrate the applicability of these results, we con-
sider White’s spectroscopic measurements of boron accep-
tors in silicon subject to an electric field parallel to thek110l
direction.11 He observes four peaks, which are associated
with transitions from the ground state to excitedG8 levels
(peaks 1, 2, and 3) and aG7 level (peak 4).31 Level splitting
was not observed, most likely due to limited resolution. In-
deed, assuming thatp8 for the levels involved has the same
order of magnitude as the ground state value(0.26 D; Ref.
12), the expected splitting is only,1 mV. However, all
peaks do show a quadratic shift, which can directly be linked
to the value ofa8 for each of the three excitedG8 levels and
a7 for the G7 level.

IV. LARGE ELECTRIC FIELDS IN THE SHM

In this section, we will calculate energy levels of an im-
purity in a semiconductor as a function of electric field in the
range from zero to,5 MV/m. This is done within the
scaled hydrogen model, where the band structure of the
semiconductor is accounted for by a single effective mass
and the dielectric constant only.

For this calculation it is convenient to express all quanti-
ties in so-called effective atomic units. For instance, energies
are expressed in units of twice the effective ionization energy

and length in units of the effective Bohr radius. Conversion
of units of the relevant quantities for both vacuum and sili-
con are given in Table IV.

In the past, several algorithms have been described in the
literature to calculate electric field dependence of the energy
levels of the hydrogen atom. However, very few results in
the range of interest for ASE(fields up to,0.1 a.u.; Ref. 3)
have been published. Therefore, we found it important to fill
this gap by fully presenting the results of our calculation. For
this purpose, we used the slightly adapted version of a varia-
tional algorithm that yields not only the energy levels, but
also their lifetimes.4

For completeness, we will very briefly outline the main
features of this method. The hydrogen Schrödinger equation
(including the electric field) in parabolic coordinates can be
separated, which allows for high numerical accuracy without
too much computational effort. In order to be able to find the
energy positions of the resonances as well as their lifetimes,
the complex scaling method was applied.32 Then, for each
coordinate the Hamiltonian(including the electric field) is
expanded with respect to a truncated basis of unperturbed
wave functions. This can be done analytically. Finally, the
energy levels and lifetimes are obtained by tracking(sepa-
rately for each level) the eigenvalues of this matrix from zero
field in small steps to larger fields.

By using the method described above, we calculated the
energies of all states withn=1,2,3 for 0øEø0.2 a.u. The

TABLE IV. Atomic units for some relevant physical quantities
in vacuum and in silicon. For silicon the values«s=11.4 andm*

=0.26 (appropriate for electrons) were taken.

Quantity Unit Value in vacuum Value in Si

Energy 2 Ry 27.2 eV 54 meV

Length a0 0.053 nm 2.3 nm

Electric field 2 Ry/ea0 510 GV/m 24 MV/m

Time " /2 Ry 2.4310−17 s 1.2310−14 s

FIG. 3. (Color online) Evolution of the lowest-lying energy lev-
els sn=1,2,3d of a hydrogenlike system versus electric fieldE. For
conversion of a.u. to conventional units, see Table IV.
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results for the energy levels are depicted in Fig. 3. The levels
are labeled by parabolic quantum numbers33 sn1,n2,md,
which are more suitable for hydrogen in an electric field than
the more common spherical quantum numberssn, l ,md. The
magnetic quantum numberm has the same meaning in both
representations. The main quantum numbern is related to the
parabolic quantum numbers byn=n1+n2+ umu+1. The elec-
tric field lifts all degeneracies except for spin and
sn1,n2, ±md. So (including spin) there are both twofold de-
generate levelssm=0d and fourfold degenerate levelssm
Þ0d.

Figure 3 shows that the ground statesn=1d exhibits a
small second-order shift down-ward. Then=2 level splits
into three levels. Two of them are(for smallE) linearly shift-
ing upward and downward. The middle one has no first-order
shift, consistent with the well-known results from perturba-
tion theory.33 Finally, the ninefold degeneraten=3 level can
be seen to split into six levels. As expected, the effect of the
electric field on higher levels is larger, due to their larger
spatial extent. At large values of the field, several levels cross
each other34 and some of them show nonmonotonic behavior.

The few results of calculations that can be found in the
literature (obtained by different methods) and overlap with
our results are in very good agreement, both for the ground
state6 and for the first excited statesm=1d.5

Not only can the method we used for our calculations be
extended to very large fields, but it also has the advantage of
yielding the width of the energy levels. The increasing en-
ergy width of the hydrogenlike levels in an electric field is
the results of the ability of the field to ionize the atom. The
finite probability for the carrier to tunnel out of the nucleus’
potential well leads to a finite lifetime36 of the level. In Fig.
4, the evolution of the width of several hydrogen energy
levels is depicted. Obviously, the width of all levels is zero at
zero field, which is equivalent to an infinitely long lifetime.
For any nonzeroE, the lifetimes have a finite value, which
decreases monotonically with the field. The stronger the
binding energy of a level at zero field, the faster the lifetime
decreases when the field increases.

In Fig. 5, the results of Figs. 3 and 4 are combined into

one “intensity map,” where the levels are displayed as nor-
malized Lorentzian line shapes, the width of which is taken
from Fig. 4. The figure shows clearly that for the realistic
electric fieldE=0.04 a.u.(about 1 MV/m; see Table IV) the
energy width of all levels except the ground state is already
larger than or comparable to their binding energy. The
ground state lifetime is only 10 ns at that field. We also note
that for our purpose it is not very useful to extend the calcu-
lation to higher fields, as already atE=0.2 a.u. all levels are
very much broadened and strongly overlapping. Although in
the case of hydrogen atoms in vacuum such large fields
s0.2 a.u.,100 GV/md are realized only in astronomy, in
semiconductors they can be easily achieved under laboratory
conditionss0.2 a.u.,5 MV/md.

Though the SHM oversimplifies the band structure, it is in
our opinion particularly useful to estimate lifetimes. Figure 4
shows that the lifetimes are primarily a function of the zero-
field binding energies. Assuming this is still true when the
silicon band structure is included, interpolation of the results
can be expected to provide a good first-order approximation
of the level’s true lifetime. For example, then=1 value in
Fig. 4 underestimates the phosphorus donor ground state life-
time, because it is more strongly bound than assumed in
EMT.

When the electric field is generated by a small local gate,
this gate is usually separated from the semiconductor by a
potential barrier that is sufficiently high to prevent tunneling.
If the distance of the dopant atom to the barrier is not too
small, ionization of the dopant atom can still occur in large
fields (and the lifetimes discussed before still apply). How-
ever, the charge carrier will not be “lost,” but transferred to
the potential well created by the biased gate.8

V. DISCUSSION AND CONCLUSION

In the preceding sections, we have used two distinct ap-
proaches to study the behavior of impurity wave functions in
an electric field. The first includes details of the band struc-
ture, but is valid only for small fields and is somewhat quali-

FIG. 4. (Color online) Energy width and lifetime of the lowest-
lying energy levels of hydrogen-like systemssn=1,2,3d versus
electric field E. For conversion of a.u. to conventional units, see
Table IV.

FIG. 5. Map of the energy levels from Fig. 3, converted to
Lorentzians using the data of Fig. 4. For conversion of a.u. to con-
ventional units, see Table IV.
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tative. From this symmetry-based analysis, we derived the
energy level shift and splitting for donors and acceptors in
small electric fields, as well as the modification of the donor
wave function. Furthermore, the symmetry classification of
the resulting levels provides for straightforward prediction of
allowed optical transitions.

The second approach, the scaled hydrogen model, is fully
quantitative and applicable up to large fields, but neglects
most features of the silicon band structure. Still, the SHM
offers a manageable and valuable way to describe important
phenomena in atomic scale electronics. We presented the en-
ergy width and lifetime of the impurity levels in large elec-
tric fields, calculated within this framework.

It is possible to combine the two approaches and treat Eq.
(2) in a way similar to that presented in Sec. IV. Although
this is in principle straightforward, the reduced symmetry
and lack of separability will make this approach numerically
very involved. Furthermore, it is important to note that the
direction of the electric field with respect to the valley axis is
not the same for all valleys. As an example, forE iz the
energy levels ofF5 and F6 are affected in a different way
from those of the other fourFm. If the solutions for the vari-
ous valley wave functions are known, they can be combined
into impurity wave functions using the data in Table II.

Although potentially interesting, such an effort is not
likely to yield a good description of the dopant’s wave func-
tion at high electric fields, despite the tremendous increase of

necessary computational power. The reason is the omission
of valley-orbit interaction, which affects not only the ground
state, but also the coupling to excited states. Especially for
large fields, the coupling influences the properties ofall en-
ergy levels. It has been shown that intervalley coupling ac-
counts for the splitting of the 1s state for P in Si.37 Inclusion
of this effect appears to be a minimum requirement for ob-
taining accurate quantitative results valid at large fields.

Recently, calculations of a silicon donor in an electric
field in the tight binding approach have been presented.38

This approach seems to be a useful alternative to calculations
based on effective mass theory. Given the fact that this
method inherently includes the band structure of the semi-
conductor host, it is striking how similar the results are to
calculations based on the SHM.8 This underlines the power
of the SHM in this type of calculation.

In summary, we have calculated the Stark effect of impu-
rities in silicon in two different approaches. Moreover, we
discussed the results and the computation methods used in
the context of atomic scale electronics and quantum compu-
tation.
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