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Abstract
Calculations of line shapes of highly excited (Rydberg) atoms and ions are important for many
topics in plasma physics and astrophysics. However, the Stark broadening of the radiative
transitions originating from high-n levels of hydrogen or hydrogen-like ions is rather complex,
making the detailed calculations of their spectral structure very cumbersome. Here, we
suggest a simple analytical method for an approximate calculation of such line shapes. The
utility of the method is demonstrated in application to the line broadening in plasma, where a
very good accuracy is achieved over a range of transitions, species and plasma parameters.
Although the method is especially suitable for transitions with �n � 1, it describes rather
well even first members of the spectroscopic series with �n as low as 2. Accurate computer
simulations are used to verify the validity of the method.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Stark broadening of transitions involving Rydberg states is
used for diagnostics of laboratory and space plasmas. Density
measurements in tokamak [1–3], pinch [4], and laser-produced
[5] plasmas, high-pressure arc discharges [6], flames [7],
stellar atmospheres [8] and solar prominences [9] are examples
of such studies. However, radiative transitions originating
from high-n levels of hydrogen or hydrogen-like ions have
a complex structure of the Stark effect, which poses a
few calculational challenges. While effective and accurate
methods for evaluating the atomic transition matrix elements
are now readily available [10], the complexity due to the
large number of different atomic states involved in such a
transition remains an impeding factor in applying computer
simulation methods employing directly solving the time-
dependent Schrödinger equation for Stark broadening of high-
n transitions in plasmas. The fast growth of the computational
requirements with n makes such calculations unfeasible for,
say n � 20, using present personal computers.

For a group of degenerate levels with the principal
quantum number (PQN) n, the number of distinct Stark
sublevels is 2n − 1. Therefore, a transition between n and

n′ has, in general, (2n − 1)(2n′ − 1) components (though, in
the dipole approximation, several may have the same energy
and/or zero intensity due to the selection rules). For transitions
with high n, but relatively small �n = n − n′ � n, it
was found [11] that the expressions for the intensities of the
components can be simplified by aggregating the components
into a few (of the order of �n) groups of transitions,
with the intensity distributions within each of such groups
approximated analytically. This approach, therefore, allows
for faster Stark broadening calculations [12, 13] which are in
particular useful for a small �n (say �10).

If n � n′, the Stark effect of the lower levels can be
neglected. The number of distinct transition components is
then 2n − 1, which is still very large for high n. Among
these 2n − 1 components, the central (unshifted) one is of a
special importance in the Stark broadening calculations. In
the electric-dipole approximation, and neglecting the second-
and higher-order corrections, its shift is exactly zero, while
its intensity may be either finite or, if the PQN of the upper
and the lower levels differ by an even number, exactly zero.
Accordingly, the line shapes of hydrogen-like transitions with
and without the central component tend to be quite different
for the first members of the Lyman, Balmer and Paschen series.
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However, as n goes higher, the relative intensity of the central
component when it is present, or the relative intensity decrease
at the line centre in its absence, becomes smaller. At the same
time, the relative ‘density’ of the components (i.e., the number
of distinct components per typical linewidth) becomes larger.
Therefore, when there is a broadening mechanism (e.g., the
Doppler effect or the electron-impact broadening) that exceeds
the splitting between the adjacent static components, the entire
line profile can be accurately described as a contiguous one,
even for a constant value of the quasistatic micro-field. This
‘quasi-contiguous’ (QC) line shape can further be convolved
with an appropriate distribution of the micro-fields in order
to obtain the line shape in the quasistatic approximation.
Furthermore, it will be shown that, within this approach,
the dynamics of the electric fields and correlation effects in
plasma can be accounted for in a simple semi-empirical way,
thus providing a straightforward method for calculating Stark
broadening in plasma; such calculations in many practical
cases can be fully analytical.

2. The method

2.1. Static effect

Let us first consider a high-n Lyman transition. In the presence
of a static, uniform electric field F, neglecting any deviation
from the linear Stark effect, the upper level (and hence the
spectral line) is split into 2n − 1 equispaced components (see,
e.g., [14]):

�En1n2m = 3

2
n(n1 − n2)

ea0

Z
F, (1)

where n1, n2 and m are the parabolic quantum numbers,
satisfying the

n = n1 + n2 + |m| + 1 (2)

condition, e is the electron charge, a0 is the Bohr radius and Z
is the core charge of the radiator (in units of |e|). In the dipole
approximation, the relative intensity of a given component,
averaged over all directions of observation, is proportional to
the square of the respective radius-vector matrix element:

In1n2m = C|〈0|�r|n1n2m〉|2, (3)

where |0〉 denotes, for brevity, the ground state and C is a
proportionality factor (unimportant here). Because of the
selection rules, only transitions originating from the states
with m = 0 (π-transitions) and m = ±1 (σ -transitions) are
allowed. Noticing that |〈0|x|n1n2 ± 1〉| = |〈0|y|n1n2 ± 1〉|,
|〈0|x|n1n21〉| = |〈0|x|n1n2 − 1〉|, and |〈0|x|n1n20〉| =
|〈0|z|n1n2 ± 1〉| = 0, equation (3) can be re-written for the π

and σ components separately, namely:

I (π)
n1n2

= C|〈0|z|n1n20〉|2, (4a)

I (σ)
n1n2

= 4C|〈0|x|n1n21〉|2. (4b)

Inserting the actual expressions for the matrix elements (see,
e.g., equations (65.4) of [14]), we obtain

I (π)
n1n2

= C∗(n1 − n2)
2, (5a)
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Figure 1. Static Stark effect of the Lyman n = 9 line. Intensities of
the π and σ components form two parabolae, that, on average, can
be substituted with a simple rectangular shape.

I (σ)
n1n2

= 4C∗(n1 + 1)(n2 + 1), (5b)

where C∗ is a complex numeric factor that depends only
on n and is common to both the 〈|x|〉 and 〈|z|〉 matrix
elements. Substituting n1 − n2 by δ (sometimes called the
‘electric quantum number’) and noticing that for |m| = 1 (σ
transitions), (n1 + 1)(n2 + 1) ≡ 1

4 (n2 − δ2) (see equation (2)),
we finally obtain:

Iδ =
{
C∗δ2, δ = −(n − 1),−(n − 3), . . . , (n − 1),

C∗(n2 − δ2), δ = −(n − 2),−(n − 4), . . . , (n − 2).

(6)

On the other hand, according to equation (1), δ uniquely
determines the shift of a Stark component. For n � 1, we
can neglect the displacement offsets between the interleaving
π and σ components and simply sum up the two branches
of equation (6), which gives that the total line intensity
distribution is constant over a symmetric range of the allowed
values of δ, from −δQC to δQC. This is demonstrated in
figure 1, where a static Stark splitting of the Lyman n = 9
transition is shown. In order to define the value of δQC, we let
the height of the resulting QC rectangle be half of the height of
the parabolic envelopes in equations (6), i.e., it is C∗n2/2 (see
figure 1). Since the total intensity of the line is C∗n(n2 − 1),
then, in order to preserve the line intensity, one must assign

δQC = n − 1

n
. (7)

Following the discussion above, it is therefore possible to
represent a static high-n Lyman QC profile (relative to the
zero-field line position) as

In(ω) =
⎧⎨
⎩

I (0)
n

2αnF/h̄
for |h̄ω| � αnF

0 for |h̄ω| > αnF,

(8)

where I (0)
n is the total line intensity, and αn is the linear-Stark-

effect coefficient:

αn = 3

2
(n2 − 1)

ea0

Z
. (9)
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Figure 2. Linear static Stark effect of the Balmer n = 9 line,
calculated for F = 10 kV cm−1. Doppler broadening for different
temperatures of the radiator (shown in the legend) is assumed. Also
shown is the QC line shape calculated for a temperature of 100 eV.
The line shapes are area normalized.

Although the derivation above was made for transitions
from the high-n states to the ground state (the Lyman series), it
is readily generalized to other transitions between levels with
the principal quantum numbers n and n′ by using, instead of
αn,

αnn′ = 3

2
(n2 − n′2)

ea0

Z
. (10)

Evidently, for the QC approach to be applicable, the number of
groups of components of such a transition must be sufficiently
large, i.e., n − n′ � 1.

As an example, consider the H Balmer n = 9 transition.
In figure 2, a static-Stark-splitting pattern is convolved
with several Gaussians corresponding to different Doppler
temperatures TD (convolutions with Lorentzian or Voigt
profiles produce similar results). What seems to be a
rather complex pattern gradually becomes a simple rectangle
(convolved with the respective Gaussian). For comparison, the
QC line shape, convolved with the 100 eV Gaussian, is also
given in the figure, and, as seen, it is almost indistinguishable
from the respective accurate calculation. We note that the
specific conditions assumed in this example may not have a
sound physical importance, and were selected for the sole
purpose of demonstrating the equivalence of the static Stark
profile to the rectangular QC shape, provided a sufficient
broadening mechanism exists.

2.2. The quasistatic approximation

We now proceed to evaluating the line shape in the quasistatic
approximation. Convolution of equation (8) with a distribution
of the field magnitudes W(F) gives

I (ω) =
∫ ∞

h̄ω/αnn′

W(F) dF

2αnn′F/h̄
, (11)
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Figure 3. Quasistatic Stark effect of the Lyman n = 9 and n = 10
lines (the central component of the Ly10 line, which is a δ-function
in the non-quenching quasistatic approximation, is not shown). The
accurately calculated line shapes are compared to the QC
approximation.

or, using the reduced field strength β = F/F0 and the reduced
detuning ω̄ = h̄ω/αnn′F0,

I (ω̄) = 1

2

∫ ∞

β

W̄ (β)

β
dβ, (12)

where

W̄ (β) = W(F)F0 (13)

and F0 is the Holtsmark normal field strength [15]:

F0 = 2π

(
4

15

)2/3

ZpeN2/3
p . (14)

Here, Zp and Np are, respectively, the charge and the
density of the perturber particles. In the limit of the ideal
plasma (i.e., with omission of particle screening and other
correlations effects), the distribution function W̄ (β) becomes
the Holtsmark function H(β) [15]:

H(β) = 2

π
β

∫ ∞

0
x sin(βx) exp(−x3/2) dx. (15)

In this case, the line shape according to equation (12) is
merely

I (ω̄) = S(ω̄), (16)

where the S function is analytically defined as

S(β) = 1

π

∫ ∞

0
cos(βx) exp(−x3/2) dx. (17)

It is easy to see that S(β) is symmetric, parabolic around
β = 0, and scales as ∝ |β|−5/2 for |β| � 1. Some properties
of S(β) are given in the appendix.

As an example, we apply equations (16) and (17) to
evaluations of the QC line shapes of Ly9 and Ly10. In
figure 3, the computed line shapes (which, in the ω̄-scale, are
just the S function) are compared to those computed accurately
in the quasistatic approximation (an ideal plasma with the
Holtsmark distribution of the field magnitudes was assumed).
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As one can see, the agreement is very good for ω̄ � 0.5, and
becomes excellent at half-width at half-maximum (HWHM)
of the S curve and farther away from the line centre (ω̄ � 1.5).
We also note that the shapes of Ly9 and Ly10 are practically
indistinguishable except for a rather narrow central region.

2.3. Dynamical effects

The line broadening in plasma can be correctly described
in the quasistatic approximation only in rare cases. While
the quasistatic approximation does work very well for the
broadening caused by the ions (the ion dynamical effects,
often important for hydrogen transitions with �n ∼ 1, tend to
be negligible [16] for the high-n transitions discussed here),
the electron contribution to the linewidth should usually be
considered beyond this approximation. The validity criterion
for the quasistatic approximation is that Stark shifts caused
by a perturber are larger than the inverse duration of the
corresponding perturber–radiator collision. For a spectral line
profile as a whole, the criterion can be expressed quantitatively
using a ratio between the quasistatic Stark full-width at
half-maximum (FWHM) and the typical frequency of the
micro-field fluctuations, i.e.,

R = wqs

wdyn
. (18)

Then, R � 1 corresponds to the quasistatic limit, while R � 1
means the impact approximation is applicable.

The quasistatic width wqs is

wqs = 2ω̄1/2αnn′F0/h̄, (19)

where ω̄1/2 is the HWHM width of the QC line shape.
Following equation (12), ω̄1/2 is defined implicitly by the
following equation:∫ ω̄1/2

0

W̄ (β)

β
dβ =

∫ ∞

ω̄1/2

W̄ (β)

β
dβ. (20)

In particular, for an ideal plasma, with the Holtsmark micro-
field distribution H(β), ω̄0

1/2 ≈ 1.44. In the general case, it is
convenient to factorize

ω̄1/2 = ω̄0
1/2ηqs, (21)

where ηqs stands for corrections to the micro-field distribution
function due to the correlations between the plasma particles.
ηqs is a function of the particle densities, charges and
temperature(s) in the plasma; it approaches unity in weakly
coupled plasmas.

The dynamic width wdyn in equation (18) can be estimated
by the ratio between the mean relative velocity and the mean
distance to the perturbers, namely:

wdyn = 〈v〉
〈r〉 . (22)

Substituting 〈v〉 for the relative thermal velocity and 〈r〉 for the
mean inter-particle distance of the perturbers, and introducing
ηdyn similarly to ηqs in equation (21) to account for corrections
due to the correlations between the plasma particles, we obtain

wdyn =
√

kTp

mp

+
kTr

mr

(
4π

3
Np

)1/3

ηdyn. (23)

Here, Tp and Tr are, respectively, the temperatures of the
perturber and the radiator species, and mp and mr are their
masses.

After simple arithmetic transformations we obtain

R = 2ω̄0
1/2

(
6π

5

)2/3
Zp(n2 − n′2)

Z

× h̄N
1/3
p

me

√
mpmr

k(mrTp + mpTr)

ηqs

ηdyn
. (24)

Instead of using R, it is convenient to introduce a
‘quasistaticity’ factor f , defined as

f = R

R + R0
, (25)

where R0 is a constant of the order of unity to be determined
below. The full Stark width is then

w = f wqs (26)

(compare, e.g., with similar considerations in [13]). The
meaning of the so-defined R0 is now evident: it is a threshold
determining the transition to the quasistatic limit. Indeed, for
R � R0, f → 1 and w → wqs, recovering the quasistatic
approximation. On the other hand, for R � R0, assuming for
simplicity Tp = Tr = T , one obtains

w � R

R0
wqs ∝ Z2

p(n2 − n′2)2

Z2

Np√
T

η2
qs

ηdyn
. (27)

We note that the leading dependences on all the atomic
and plasma parameters are exactly as those of the impact
approximation (compare with, e.g., equation (109) of [17]).
Therefore, this could in principle be used to derive the value
of R0. However, the applicability of the present method, based
on the QC approximation (equation (8)), should evidently
be questioned if w becomes less than the distance between
the adjacent components, i.e., for f � 1/�n. In practice,
R0 = 0.5 provides rather good results, as will be demonstrated
in section 4.

2.4. Correlations effects

Except for the cases of strongly coupled plasmas, the plasma
particle correlations are mostly restricted to pair correlations;
three-body and higher-order effects are small. Therefore,
the correction factors ηqs and ηdyn can be further factorized,
separating the effects of the perturber–perturber (PP) and
radiator–perturber (RP) interactions, namely:

ηqs = ηpp
qs η

rp
qs, ηdyn = η

pp
dynη

rp
dyn. (28)

The PP correlations result in the Debye screening, which
evidently affects the quasistatic Stark broadening, and thus
η

pp
qs . However, the screening is largely unimportant for the

field dynamics, since neither the mean inter-particle distance
nor the thermal velocities (see equation (22)) are affected by
these correlations in the first order. Thus, we assume that
η

pp
dyn ≈ 1. On the other hand, the RP interactions influence

both the static and dynamic properties of the micro-fields. We
further argue that the ratio of the respective correction factors,
η

rp
qs

/
η

rp
dyn is rather close to unity. The weak dependence of f on
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R and, thus, on η
rp
qs

/
η

rp
dyn, for the practically important values

of R (R � 1), further justifies this simplification. Therefore,
equation (24) becomes

R = 2ω̄0
1/2

(
6π

5

)2/3
Zp(n2 − n′2)

Z

× h̄N
1/3
p

me

√
mpmr

k(mrTp + mpTr)
ηpp

qs . (29)

If only two-particle correlation effects are retained, ηpp
qs is only

a function of 〈r〉/λD, where

λD =
√

kTp

4πNpe2Z2
p

(30)

is the Debye length. To a reasonable accuracy, in weakly
or moderately-coupled plasmas η

pp
qs can be estimated by the

Debye screening of the field of a perturber placed at the mean
inter-particle distance from the radiator, i.e.,

ηpp
qs ≈ (1 + 〈r〉/λD)e−〈r〉/λD . (31)

Similarly, the effect of the RP interactions can be estimated by

ηrp
qs ≈ e−rm/〈r〉, (32)

where

rm = ZZpe2

kTp

(33)

is the classical distance of the minimum approach.

2.5. Multicomponent plasmas

For the calculations of line broadening in plasmas, the effect of
both electrons and (a few types of) ions need to be considered
simultaneously. In the general case, the total linewidth can be
approximated (cf equation (26)) by the following expression:

wtot =
[∑

s

(
f (s)w(s)

qs

)3/2

]2/3

, (34)

where the index s runs over all the plasma particle species.
The expression given above is exact if the density dependence
of each of the partial widths f (s)w(s)

qs is proportional to N
2/3
s ,

where Ns is the particle density of species s. This is evidently
the case in the quasistatic limit, i.e., when f (s) ≈ 1. If one
of the contributions departs strongly from the quasistatic limit
(i.e., f (s) � 1), equation (34) is, strictly speaking, no longer
correct. However, the relative error is rather small, since
the corresponding width f (s)w(s)

qs is small compared to other
(quasistatic) contributions.

3. Accuracy and applicability

Let us review the accuracy of the present method.
The precision of the QC line shapes in the quasistatic
approximation is rather high. Indeed, except for the narrow
central region (characterized by the deviation from the line
centre �ω � HWHM/�n), the line shape is evaluated
accurately. The only approximation used, a neglect of the
relative shifts of the interleaving π and σ components (see

equation (6)), results in a relative error of the order of
O(1/(�n)2). Furthermore, the central region of the line shape
can also be described accurately provided that there exists
another broadening mechanism (either a genuine physical one
like, e.g., the Doppler effect, or an instrumental broadening)
that contributes � HWHM/�n to the total line width.

Evidently, the accuracy in the quasistatic approximation
(equation (12)) crucially depends on the accuracy in knowing
the distribution of the micro-field magnitudes W̄ (β). In the
case of an ideal plasma, the analytical expression (17) is given,
which, however, should not be used if the correlation effects
are significant. These effects can be approximately accounted
for using equations (31) and (32). Evidently, they should
not be relied upon if a high accuracy is required; nor should
they be used for strongly coupled plasmas, where the number
of particles in the Debye sphere is �1. In these cases, an
accurate calculation of the micro-field distribution function
W̄ (β) is desired (see, e.g., [18]).

The treatment of the dynamical corrections given by
equations (24)–(26) is a semi-empirical one. It is difficult to
evaluate its accuracy in a rigorous way. As was mentioned at
the end of section 2.3, one should require that the dynamically-
narrowed (due to the f factor) line width still exceed the
splitting between the adjacent static components (or groups
of components, if n′ is not negligibly small compared to n),
i.e., R/R0 � 1/�n. This can be conveniently re-written using
dimensionless combinations of parameters as

(n2 − n′2)(n − n′)
(
N1/3

p λe

)Zp

Z

(
m∗

p

me

)1/2

� 0.1, (35)

where m∗
p is the reduced mass of the perturber (in the centre-of-

mass frame of the radiator and the perturber), λe is the electron
de Broglie length h̄/(mekT )1/2, and, for simplicity, equal
temperatures Tp = Tr = T of the perturbers and the radiators
were assumed. In particular, for electrons this criterion reads
as

(n2 − n′2)(n − n′)
(
N1/3

e λe

)/
Z � 0.1. (36)

For example, for a plasma with Ne = 1015 cm−3 and kT =
1 eV, the electron broadening of the Balmer series (n′ = 2) is
described correctly by the present method starting with n = 5,
i.e., for Hγ and above. Evidently, for ions criterion (35) is
significantly weaker; e.g., the broadening of the same Hγ line
due to the protons can be calculated using this method for
much lower densities, Ne � 1010 cm−3, kT = 1 eV.

Finally, we examine the applicability of the physical
approximations used. The use of the dipole approximation is
justified for electric fields that are weak enough for the higher-
order-multipole corrections to remain small. An obvious
criterion is that the change of the plasma electric field is small
on the spatial scale of the radiator size, i.e., for each perturber
species p

n2

Z
a0N

1/3
p � 1. (37)

The neglect of the quenching interactions (i.e., those involving
levels with different PQN), resulting in deviations from the
linear Stark effect can be used when the linear Stark effect of
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a given level is significantly smaller than the distance to the
next neighbouring level:

ω̄1/2αnF0 � Z2e2

2a0

[
1

n2
− 1

(n + 1)2

]
≈ Z2e2

a0n3
. (38)

This can be conveniently re-written as

5.6ηqs
Zpn5

Z3
a2

0N
2/3
p � 1. (39)

Criteria (37) and (39) are derived assuming a typical
micro-field magnitude. However, the quasistatic QC line
shape (equation (12)) is a convolution that also includes
much stronger fields (β � 1). Nevertheless, the fields that
determine the line width are moderate (β ∼ 1), since the low
probability of the strong fields make them unimportant.

The last issue that needs to be considered is whether the
inelastic collisions are important. This is relevant for high-
n transitions, however, with rather small n − n′ ∼ 1, for
example, the high-n radio recombination lines. Here, the
smallness of n−n′, and thus of all non-quenching contributions
to the line width, makes the broadening due to the inelastic
collisions with plasma particles relatively large (or even
dominant) [19].

4. Examples of calculations

We compare results of the present method with those of a
computer simulation modelling (CSM) [20], applied to three
different cases. In the examples, thermal equilibrium was
always assumed, i.e., the temperatures of all plasma species
were set equal. The only free parameter of the present method,
R0, was assumed to be 0.5 in all examples. In addition, in
order to examine the sensitivity of the method to the choice of
this parameter, the calculations were repeated for R0 = 0.25
and 1.0.

The first set of calculations was performed for the
Balmer lines of hydrogen in a plasma with Ne = 1.2 ×
1013 cm−3, kT = 0.16 eV (such plasma parameters are typical
for radio-frequency discharge setups). In figure 4 the results
are compared to the CSM values1, where it is seen that the
agreement is very good (all differences are less than 10%).
Overall, the results are rather insensitive to a specific choice
of R0; varying it between 0.25 and 1.0 sweeps a very narrow
band, designated by the hashed area in figure 4 (the other
examples considered below confirm this). There, the lower
boundary of the hashed area corresponds to R0 = 1.0 while
the upper boundary corresponds to R0 = 0.25. Furthermore,
while the spread in the results due to different R0’s increases
with n, the relative uncertainty it introduces actually decreases.
This is expected, since the higher n is, the better all perturbers
are described by the quasistatic approximation, therefore, a
specific choice of the ‘quasistaticity threshold’ becomes less
important.

The second set of calculations was done for the Balmer
lines of deuterium in a plasma with Ne = 5 × 1014 cm−3,

1 The details of the CSM calculations, as well as an accuracy analysis,
are given in [16] (referred to as ‘CSM2’ there). The agreement with other
calculations and, where available, with experimental data was shown to be
very good.
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Figure 4. Stark broadening of the H Balmer transitions.
Ne = 1.2 × 1013 cm−3, kT = 0.16 eV. The solid line corresponds to
R0 = 0.5, while the hashed area designates results obtained by
varying R0 between 0.25 and 1.0 (see the text).

2 4 6 8 10 12
n

0

10

20

30

40

50

60

70
FW

H
M

 (
cm

-1
)

This method
Computer simulations

Figure 5. Stark broadening of the D Balmer transitions.
Ne = 5 × 1014 cm−3, kT = 4 eV.

kT = 4 eV, conditions typical for magnetic fusion
experiments. The results are given in figure 5. Most of the
CSM calculations in this case are from [16], but in addition,
the calculations were also performed for lower-n members
of the series, down to Hα . The agreement with the CSM
calculations is excellent (within ≈5%), starting with �n = 3.
Even for �n as small as 2 (i.e., Hβ), the accuracy is reasonable,
≈10%.

Finally, analysed were the Lyman series of neon in a
deuterium plasma with Ne = 1021 cm−3, kT = 1000 eV
(such a plasma may exist in a mega-ampere gas-puff z-pinch
setup, with neon used as a dopant). The agreement in this
case is also very good, <10%, see figure 6. No transitions
from levels with n higher than 7 were considered, since for
the plasma parameters assumed, these levels vanish because
of the plasma continuum lowering.

5. Discussion

A line shape of an electric-dipole (E1) transition can be
expressed via the autocorrelation function

C(t) = Tr〈 �D(0) · �D(t)〉 (40)

6
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Figure 6. Stark broadening of the Ne x Lyman transitions.
Ne = 1021 cm−3, kT = 1000 eV. Neon is assumed as a minority in
the deuterium plasma.

of the dipole moment of the radiator �D(t), namely [17]:

I (ω) = 1

π
Re

∫ ∞

0
dt exp(iωt)C(t). (41)

The brackets 〈 〉 in equation (40) denote averaging over a
statistical ensemble. Correspondingly,

C(t) =
∫ ∞

−∞
dω exp(−iωt)I (ω). (42)

Using equations (16) and (A.6), we obtain for the QC line
shape in the ideal plasma limit:

C(t̄) = exp(−|t̄ |3/2), (43)

where, similarly to ω̄, the reduced time t̄ is defined by
t̄ = tαnn′F0/h̄.

Due to the large difference in the masses of electrons
and ions, it is not uncommon to address situations where,
simultaneously, ions are nearly quasistatic while electrons
are fully in the impact regime. In such cases, the total line
shape can be obtained by a convolution of the quasistatic ion
contributions to the line shape with that of the electrons. The
latter is a Lorentzian with the width determined by the so-
called impact operator, for which an analytical expression
in the dipole, non-quenching approximation (i.e., under the
assumptions also used throughout the present work) has been
recently made available [21]. The convolution implies that the
impact operator is largely independent of the ionic field, an
assumption that is often correct [22] (see, however, [23]). The
total dipole autocorrelation function is a product of the ionic
and electronic autocorrelation functions:

C(t̄) = C(i)(t̄)C(e)(t̄). (44)

In the ideal plasma limit, C(i)(t̄) is given by equation (43),
thus

C(t̄) = exp(−|t̄ |3/2 − γ̄ |t̄ |), (45)

where γ̄ is the reduced (in units of αnn′F0/h̄) HWHM of the
Lorentzian. Therefore, using equations (41) and (A.7):

I (ω̄) = 1

π

∫ ∞

0
cos(ω̄x) exp(−γ̄ x − x3/2) dx. (46)

We note that the asymptotic behaviour of C(t) for sufficiently
large t̄ � γ̄ 2 is exp(−|t̄ |3/2), different from the exp(−γ̄ |t̄ |)
dependence of the impact approximation2.

Using considerations similar to those laid out in
section 2.3, one can extend the notion of the ‘quasistaticity’,
defined by equation (25) as a mean value for an entire line
shape, to be a function of the detuning ω from the unperturbed
spectral line position. In the sufficiently far wings of the line,
say beyond some ωc, f (ω) approaches unity, ensuring that the
quasistatic approximation holds. An estimate of the critical
detuning ωc is given (see, e.g., [16]) by

ωc = 4kT me

3h̄(n2 − n′2)m∗
p

, (47)

While, as was mentioned earlier, for the high-n transitions
the ions are quasistatic practically over the entire line shape
(f (i)(ω) ≡ 1), for electrons ωc is often comparable to or
exceeds the total linewidth. In this spirit, it was suggested
[24] that an entire line shape can adequately be described
by a quasistatic line shape, however, the effective quasistatic
perturber density Neff ≡ (1+f (e)(ω))Ne becomes a parameter,
varying from Ne (|ω| � ωc) to 2Ne (|ω| � ωc). The f (e)(ω)

dependence was sought in [25] in an empirical way, satisfying
the f (e)(0) = 0 and f (e)(|ω| � ωc) → 1 conditions. We
note that the f (e)(0) = 0 condition implies a negligible
contribution due to the electrons to the spectral region of the
line core, which, however, becomes less justified for higher
PQN. Indeed, it was shown [16] that the higher n, the relative
contribution to the linewidth due to the electrons becomes
larger. Furthermore, for high-n transitions the effect of the
electrons becomes closer to the quasistatic limit, so that the
Ne dependence of the total linewidth approaches ∼N

2/3
e , i.e.,

that of the quasistatic approximation. Therefore, we expect
that f (e)(0) is larger than zero, and, as n approaches infinity,
f (e)(0) approaches unity.

For convenience, a scaled (in the β domain) variant of
S(β) can be defined as follows:

Sf (β) ≡ f −2/3S(f −2/3β), (48)

or, in the integral representation,

Sf (β) = 1

π

∫ ∞

0
cos(βx) exp(−f x3/2) dx. (49)

In particular, S2(β) corresponds to the Holtsmark distribution
of a doubled density. Then, if the correlation effects are small,
the line shape of any high-n transition can be expected to lie
between the S1(β) and S2(β) curves. In the far wings, where
both electrons and ions can safely be treated quasistatically,
the line shape should asymptotically approach S2(β), and the
higher n is, the closer to the line core this should happen (for
the same plasma parameters).

These assumptions can be tested by looking at the
computer-simulated [16] line shapes of the Balmer lines of
hydrogen whose widths are given in figure 4. The line shapes
are shown in figure 7 (for clarity, only the H6, H9, H12 and

2 The latter should be expected (and, indeed, was observed in simulations)
for spectral lines with a strong, well-resolved, unshifted component, such as
Lyman α or Balmer α in sufficiently dilute plasmas. Treatment of such line
shapes is evidently beyond the applicability of the QC approach.
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Figure 7. Stark line shapes of the Balmer H6, H9, H12, and H15

transitions. The plasma parameters assumed are
Ne = 1.2 × 1013 cm−3 and kT = 0.16 eV.

H15 line shapes are given). Indeed, the cores of the profiles fill
in the area between the S1 and S2 curves, with H6 almost
matching S1, while higher-n lines gradually shift towards
S2. Moreover, the far-wing profiles of all transitions closely
approach the S2 curve, seen clearly on the semi-logarithmic
scale in the inset.

6. Conclusions

Numerical calculations of the Stark broadening of radiative
transitions originating from high-n levels of hydrogen or
hydrogen-like ions tend to be complicated. Here, we suggested
a simple analytical method for the Stark-width calculations for
such lines. The method is applicable when using the dipole
approximation is sufficient. Accurate computer simulations
were used to verify the validity of the method. A � 10%
accuracy is achieved over a broad range of transitions, species
and plasma parameters. Although for the derivation it was
assumed that �n � 1, even first members of the spectroscopic
series with �n as low as 2 are described very well by the
method suggested.
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Appendix. Some properties of S(β)

Definition

S(β) = 1

π

∫ ∞

0
cos(βx) exp(−x3/2) dx. (A.1)

Relation to the Holtsmark function H(β)

dS(β)

dβ
= −1

2

H(β)

β
. (A.2)

Peak value

S(0) = 2

3π
�

(
2

3

)
≈ 0.287. (A.3)

Small-β limit

S(β) = S(0) − β2

3π
+ O(β4). (A.4)

Large-β limit

S(β) = 3√
32π

|β|−5/2 + O(|β|−7/2). (A.5)

The Fourier transform

S̄(τ ) =
∫ ∞

−∞
dβ e−iβτ S(β)

= 1

2π

∫ ∞

−∞
dβ

∫ ∞

0
dx[eiβ(x−τ) + e−iβ(x+τ)] exp(−x3/2)

=
∫ ∞

0
dx[δ(x − τ) + δ(x + τ)] exp(−x3/2)

= exp(−|τ |3/2). (A.6)

Convolution with (unshifted) Lorentzian L(β; a) =
1
π

a
β2+a2

S(β) ∗ L(β; a) = 1

2π

∫ ∞

−∞
dx eiβxS̄(x)L̄(x)

= 1

2π

∫ ∞

−∞
dx eiβx exp(−|x|3/2 − a|x|)

= 1

π

∫ ∞

0
cos(βx) exp(−ax − x3/2) dx.

(A.7)

Similarly, convolution with (unshifted) Gaussian
G(β; σ) = 1√

2πσ
exp

(− β2

2σ 2

)
S(β) ∗ G(β; σ) = 1

π

∫ ∞

0
cos(βx) exp

(
−σ 2x2

2
− x3/2

)
dx.

(A.8)
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