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Abstract: In this paper, we introduce and study a new subclass of multivalent functions with respect
to symmetric points involving higher order derivatives. In order to unify and extend various
well-known results, we have defined the class subordinate to a conic region impacted by Janowski
functions. We focused on conic regions when it pertained to applications of our main results. Inclusion
results, subordination property and coefficient inequality of the defined class are the main results of
this paper. The applications of our results which are extensions of those given in earlier works are
presented here as corollaries.
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1. Introduction and Definitions

Throughout this paper, we let C, Z− and N to denote the sets of complex numbers,
negative integers and natural numbers, respectively. LetH(a, n) be the class comprising of
all analytic functions defined in unit disc E = {z ∈ C : |z| < 1} and having a power series
representation of the form h(z) = a + anzn + an+1zn+1 + · · · . Furthermore, let A(p, n)
denote the class of functions h analytic in E and having a power series representation of
the form

h(z) = zp +
∞

∑
k=p+n

akzk, (p, n ∈ N) (1)

and let A(1, 1) = A. Two prominent subclasses of A are the so-called families of starlike
functions and convex functions which have the analytic characterization of the form

Re
(

zh′(z)
h(z)

)
> 0 and Re

(
1 +

zh′′(z)
h′(z)

)
> 0,

respectively. Here we let S∗ and C to denote the class of starlike functions and convex
functions, respectively. The two preceding descriptions reveal an interesting close analytic
characterization between starlike and convex functions. This says that h(z) ∈ C if and only
if zh′(z) ∈ S∗. For detailed study and developments pertaining to various subclasses of
A(p, n), refer to [1,2]. We let the collection P of functions ψ(z) that are analytic in the unit
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disc E with ψ(0) = 1 and Re ψ(z) > 0. Hereafter, we let ψ ∈ P and ψ, has a power series
expansion of the form

ψ(z) = 1 + L1z + L2z2 + L3z3 + · · · , z ∈ E, L1 > 0. (2)

Subordination, quasi-subordination and Hadamard product (or convolution) are the
three main tools that are predominantly used in the study of univalent functions theory. We
let ≺, ≺κ and ∗ to denote the subordination, quasi-subordination and Hadamard product,
respectively. For detailed discussion and formal definition of the quasi-subordination and
Hadamard product, refer to [3,4].

Using the principal of subordination, Ma and Minda [5] defined the classes S∗(ψ) and
C(ψ) as follows:

S∗(ψ) =
{

h ∈ A :
zh′(z)
h(z)

≺ ψ(z)
}

and C(ψ) =
{

h ∈ A : 1 +
zh′′(z)
h′(z)

≺ ψ(z)
}

,

where ψ(z) is defined as in (2). They assumed the superordinate function ψ maps the
open unit disc E onto a starlike region with respect to 1 and symmetric with respect to the
real axis. The classes S∗(ψ) and C(ψ) consolidated the study of several generalizations of
starlike and convex functions. By restricting the ψ to a specific conic region for example
to parabola, cardioid and Bernoulli lemniscate, several authors studied the properties of
starlike functions with respect to conic regions. Most popular among the study of starlike
functions associated with conic regions are the classes S∗(

√
1 + z) defined by Sokół [6] and

followed by S∗(z +
√

1 + z2) defined by Raina and Sokół [7]. For studies related to conic
region, refer to [8–15] and references provided therein.

The famous Janowski starlike functions and Janowski convex functions (see [16]), are
denoted by the special case of S∗(ψ) and C(ψ), although they are still in spotlight due to
their versatility. We denote by S∗(F, G) and C(F, G) the class of Janowski starlike functions
and Janowski convex functions, defined by

S∗(F, G) :=
{

h ∈ A :
zh′(z)
h(z)

≺ 1 + Fz
1 + Gz

,−1 ≤ G < F ≤ 1
}

,

and

C(F, G) :=
{

h ∈ A : 1 +
zh′′(z)
h′(z)

≺ 1 + Fz
1 + Gz

,−1 ≤ G < F ≤ 1
}

,

respectively. It should be noted that all the classes mentioned above were extended for
h(z), which belongs to A(p, 1). Extending the well-known Janowski class of functions [16],
Aouf [17] (Equation (1.4)) defined the class `(z) ∈ P(F, G, p, α) if and only if

`(z) =
p + [pG + (F− G)(p− α)]w(z)

[1 + Gw(z)]
, (−1 ≤ G < F ≤ 1, 0 ≤ α < 1) (3)

for all z ∈ E = {z : |z| < 1} where w(z) is the Schwartz function. Recently, Breaz et al. [18]
(Equation (4)) used the following expression to study a new class of multivalent function

ℵ(p; F, G; α; ψ; z) =
[(1 + F)p + α(G− F)]ψ(z) + [(1− F)p− α(G− F)]

[(G + 1)ψ(z) + (1− G)]
, (4)

where ψ(z) is defined as in (2). ℵ(p; F, G; α; ψ; z) is an extension of the class P(F, G, p, α).
Refer to [18,19], for an explanation of the purpose and motivation in order to define a class
of functions superordinate to ℵ(p; F, G; α; ψ; z).
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Recently, Aouf, Bulboacă and Seoudy in [20] (Definition 1) introduced a class so-called
multivalent non-Bazilevič functions as follows: A function h ∈ A(p, n) is said to be in
N n

p (λ, β, m; F, G) if it satisfies

(1 + λ)

(
δ(p, m)zp−m

h(m)(z)

)β

− λ
zh(1+m)(z)

(p−m)h(m)(z)

(
δ(p, m)zp−m

h(m)(z)

)β

≺ 1 + Fz
1 + Gz

(λ ∈ C, 0 < β < 1, p, n ∈ N, m ∈ N0 = N∪ {0}, p > m and − 1 ≤ G < F ≤ 1),

where ≺ denotes usual subordination of analytic functions and δ(p, m) = p!
(p−m)! .

Using Hadamard product (or convolution), Karthikeyan et al. [21] (Definition 1.1)
defined a class PSλ

δ (β, θ; b; ψ; h; F, G) of A(1, 1) subject to satisfying the condition

1 +
(1 + i tan θ)

b

[
z1−λ[R′(z)]δ

[(1− β)R(z) + βz]1−λ
− 1

]
≺ ℵ(1; F, G; 0; ψ; z),

whereR = h ∗ g,−π
2 < θ < π

2 , δ ≥ 1, 0 ≤ β ≤ 1, λ ≥ 0, b ∈ C \ {0} and ℵ(p; F, G; α; ψ; z)
is defined as in (4).

1.1. Motivation, Novelty and Discussion

Motivated by the classes N n
p (λ, β, m; F, G) and PSλ

δ (β, θ; b; ψ; h; F, G), we aim to
define and study an interesting subclass of multivalent functions with respect to symmetric
points subordinate to ℵ(p; F, G; α; ψ; z). However, the present study is not a direct gen-
eralization or unification of N n

p (λ, β, m; F, G) and PSλ
δ (β, θ; b; ψ; h; F, G), but is closely

related to the above defined function classes.
This paper is structured as follows. In this section, we will begin by illustrating that im-

pact of ℵ(p; F, G; α; ψ; z) is not same on all conic regions and it varies from region to region.
Subsequently, we define a class of multivalent functions using higher order derivatives
superordinated by ℵ(p; F, G; α; ψ; z). In the Section 2, we discuss some elementary and
known results which would be used to obtain our main results. Sections 3 and 4 are devoted
to provide our main results namely solution to the Fekete-Szegö problem and interesting
subordination conditions. Finally attempting the discretization of our results, we study the
same defined function class by replacing the ordinary derivative with q-difference operator.

In [18], the geometrical interpretation and the impact of ℵ(p; F, G; α; ψ; z) on various
conic region was not discussed in detail. Here we will consider few conic regions and
we will illustrate the impact of ℵ(p; F, G; α; ψ; z) on ψ(z). For uniformity, the colour of
graphs have been based on the parameter values, which are as follows: Red colour is used
when ℵ(1; 1,−1; 0; ψ; z); Blue colour is used if ℵ(1; 0,−0.3; 0.9; ψ; z); Green colour is used if
ℵ(1; 0.9, 0.0; 0.5; ψ; z); and Yellow colour is used if ℵ(1; 0.9, 0.8; 0.8; ψ; z).

1.2. Comparison on The Impact of ℵ(p; F, G; α; ψ; z) on Two Different Conic Regions

The behaviour or impact of ℵ(p; F, G; α; ψ; z) is not same on all conic region ψ. To il-
lustrate this fact, we consider two functions which maps unit disc on to a conic region of
same shape namely

1. Cardioid region with cusp on the right hand side, (ψ(z) = 3+2z−z2

2 ).

2. Cardioid region with cusp on left hand side,
(

ψ(z) = 1 + z
k

(
k+z
k−z

)
, k = 1 +

√
2
)

.

We begin the illustration with the following.

1. It is well-known that ψ(z) = 3+2z−z2

2 is univalent in E and maps the unit disc onto
the interior of the cardioid with cusp on the right hand side in the right half plane
(see Figure 1a). Note that while Re[ψ(z)] = Re

[
3+2z−z2

2

]
> 0, it does not have the

usual normalization ψ(0) = 1. The impact of ℵ(p; F, G; α; ψ; z) on ψ(z) = 3+2z−z2

2 is
that the map is circular if F and G are chosen remotely (far off), while the curves are
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polygonal (see Figure 1d) if F and G are chosen close enough. The presence of α is
helpful in translation.

0.0 0.5 1.0 1.5 2.0
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0.0
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(a)

0.7 0.8 0.9 1.0 1.1
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0.2
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-0.3
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0.00

0.02

0.04

(d)

Figure 1. Impact of ℵ(p; F, G; α; ψ; z) on the conic region ψ(z) = 3
2 + z − z2

2 . (a) Mapping
of E under the transformation ψ(z) = 3

2 + z − z2

2 . (b) Mapping of E under the transfor-
mation ℵ(1; 0,−0.3; 0.9; ψ; z) if ψ(z) = 3

2 + z − z2

2 . (c) Mapping of E under the transforma-
tion ℵ(1; 0.9, 0.0; 0.5; ψ; z) if ψ(z) = 3

2 + z − z2

2 . (d) Mapping of E under the transformation
ℵ(1; 0.9, 0.8; 0.8; ψ; z) if ψ(z) = 3

2 + z− z2

2 .

2. Now, if we choose

ψ(z) = 1 +
z
k

(
k + z
k− z

)
, (k = 1 +

√
2),

= 1 +
z

1 +
√

2
+

2z2(
1 +
√

2
)2 + · · ·+ 2zn(

1 +
√

2
)n + O[z]n+1.

We can easily see that the function has a normalization ψ(0) = 1, Re[ψ(z)] > 0 and
maps unit disc on to the cardioid with cusp on the left hand side (see Ahuja et al. [22]).
From Figure 2a–d, we find that there is no major changes to the conic.
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(b)
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0.998 1.000 1.002 1.004

-0.004

-0.002

0.000

0.002

0.004

(d)

Figure 2. Impact of ℵ(p; F, G; α; ψ; z) on the conic region ψ(z) = 1 + z
k

(
k+z
k−z

)
. (a) Mapping

of E under the transformation ψ(z) = 1 + z
k

(
k+z
k−z

)
. (b) Mapping of E under the transforma-

tion ℵ(1; 0,−0.3; 0.9; ψ; z) if ψ(z) = 1 + z
k

(
k+z
k−z

)
. (c) Mapping of E under the transforma-

tion ℵ(1; 0.9, 0.0; 0.5; ψ; z) if ψ(z) = 1 + z
k

(
k+z
k−z

)
. (d) Mapping of E under the transformation

ℵ(1; 0.9, 0.8; 0.8; ψ; z) if ψ(z) = 1 + z
k

(
k+z
k−z

)
.

Notice that Figures 1 and 2 have been assigned same set parameter values, the only
difference being different ψ(z). Comparing Figures 1 and 2, we see that the behaviour of
ℵ(p; F, G; α; ψ; z) on various conic regions are not same (also see Noor and Malik [19]).

If ψ ∈ P , then ℵ(p; F, G; α; ψ; 0) = p and Re(ℵ(p; F, G; α; ψ; z)) > 0. We say that
ℵ(p; F, G; α; ψ; z) ∈ P(F, G, p, α) if and only if it satisfies (3). We denote by S∗p (F, G; α; ψ)

and Cp(F, G; α; ψ), the classes of functions satisfying the condition zh′(z)
h(z) ≺ ℵ(p; F, G; α; ψ; z)

and 1 + zh′′(z)
h′(z) ≺ ℵ(p; F, G; α; ψ; z), respectively. Additionally, S∗1 (1,−1; 0; ψ) := S∗(ψ)

and C1(1,−1; 0; ψ) := C(ψ).



Fractal Fract. 2022, 6, 116 6 of 21

The function pν,σ(ζ), that plays the role of an extremal function related to the conic
domain, is given by

p̂ν,σ(z) =



1+(1−2σ)z
1−z , if ν = 0

1 + 2(1−σ)
π2

(
log 1+

√
z

1−
√

z

)2
, if ν = 1

1 + 2(1−σ)
1−ν2 sinh2[( 2

π arccos ν
)
arc tanh

√
z
]
, if 0 < ν < 1

1 + 2(1−σ)
1−ν2 sin

(
π

2R(t)

∫ u(z)
t

0
1√

1−x2
√

1−(tx)2
dx
)
+ 1

ν2−1 , if ν > 1,

(5)

where u(z) = z−
√

t
1−
√

tz
, t ∈ (0, 1) and t is chosen such that ν = cosh

(
πR′(t)
4R(t)

)
, R(t) is Legen-

dre’s complete elliptic integral of the first kind and R′(t) is the complementary integral of
R(t). Clearly, p̂ν,σ(z) is in P with the expansion of the form

p̂ν,σ(z) = 1 + τ1z + τ2z2 + · · · , (τj = pj(ν, σ), j = 1, 2, 3, . . .), (6)

we obtain

τ1 =


8(1−σ)(arccos ν)2

π2(1−ν2)
, if 0 ≤ ν < 1,

8(1−σ)
π2 , if ν = 1

π2(1−σ)

4
√

t(ν2−1)R2(t)(1+t)
, if ν > 1.

(7)

To avoid repetition, we let once for all throughout this paper

−1 ≤ G < F ≤ 1, 0 ≤ α < 1, −π

2
< θ <

π

2
, p, n ∈ N, m ∈ N0.

Additionally, let

χ(z) = d0 + d1z + d2z2 + · · · (d0 6= 0) and |d0| ≤ 1. (8)

Motivated by the study of Tang, Karthikeyan and Murugusundaramoorthy [23] and
definition of N n

p (λ, β, m; F, G), we now introduce the following class of functions:

Definition 1. For t ∈ C, with |t| ≤ 1, t 6= 1, λ ≥ 0, and χ(z) is defined as in (8), we
say that the function h ∈ A(p, 1) belongs to the class Sm

p (b; ψ; α; λ; F; G; θ) if it satisfies the
subordination condition

1 + i tan θ

b

[
Υp

λ(m; t)z1−λ(p−m)h(m+1)(z)[
h(m)(z)− h(m)(tz)

]1−λ
− p + m

]
≺κ ℵ(p; F, G; α; ψ; z)− p (9)

where p is an odd integer, Υp
λ(m; t) = (1− tp)(1−λ)[δ(p, m)]−λ and ℵ(p; F, G; α; ψ; z) defined

as in (4).

Remark 1. Now we will present some special cases of our class.

(i) Let p = b = 1, α = m = θ = λ = 0, χ(z) = 1 and ψ = p̂ν,σ(z) (see (5)) in
Definition 1, then the class Sm

p (b; ψ; α; λ; F; G; θ) reduces to class k − US(F, G, σ, t) de-
fined by Arif et al. [24] (Definition 1.3) (also see [25]).

(ii) If we replace p = b = 1, α = t = θ = λ = 0, χ(z) = 1 and ψ(z) = p̂ν,0(z) in
Sm

p (b; ψ; α; λ; F; G; θ), where p̂ν,0(z) is defined as in (5), we can obtain η − ST [F, G] and
η −UC[F, G] classes defined by Noor and Malik in [19] (Definition 1.3 and Definition 1.4)
by choosing m = 0 and m = 1, respectively.

(iii) If we let α = λ = m = θ = 0, b = 1, p = 1, F = 1 and G = −1, then Sm
p (b; ψ; α; λ; F; G; θ)

reduces to the classes S s
∗(ψ) defined by Shanmugam, Ramachandran and Ravichandran [26]

(Definition 1.3).
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(iv) If we let t = θ = m = α = 0, p = b = 1, F = 1, G = −1 and ψ(z) = 1 + z/1− z, then
the class Sm

p (b; ψ; α; λ; F; G; θ) reduces to well-known class Bazilevič function defined by

B(λ) =
{

h ∈ A(1, 1); Re
z1−λh′(z)
[h(z)]1−λ

> 0
}

.

Apart from the above classes of functions, several classes of functions which were defined in
earlier works are closer to the class of functions defined in Definition 1, for example see [21,27–33].

2. Preliminaries

In this section, we will state some results, which we will be using to establish our main
results namely subordination properties and coefficient inequalities.

Lemma 1. Ref. [34] If ϑ(z) = 1 +
∞
∑

k=1
ϑkzk ∈ P , then |ϑk| ≤ 2 for all k ≥ 1, and the inequality

is sharp for ϑµ(z) =
1 + µz
1− µz

, |µ| ≤ 1.

Lemma 2. Ref. [5] Let ϑ(z) = 1 +
∞
∑

k=1
ϑkzk ∈ P and also let v be a complex number, then

|ϑ2 − vϑ2
1| ≤ 2 max{1, |2v− 1|},

the result is sharp for functions given by

ϑ(z) =
1 + z2

1− z2 , ϑ(z) =
1 + z
1− z

.

Lemma 3. Ref. [35] Let r be convex in E, with r(0) = a, δ 6= 0 and Re δ ≥ 0. If k ∈ H(a, n) and

k(z) +
zk
′
(z)
δ
≺ r(z),

then
k(z) ≺ q(z) ≺ r(z),

where
q(z) =

δ

n zδ/n

∫ z

0
r(t) t(δ/n)−1dt.

The function q is convex and is the best (a, n)-dominant.

Throughout this paper, we let

ℵ(p; F, G; α; ψ; z) =
[(1 + F)p + α(G− F)]ψ(z) + [(1− F)p− α(G− F)]

[(G + 1)ψ(z) + (1− G)]
(10)

From [18] (Theorem 2), with

w(z) =
1
2

ϑ1z +
1
2

(
ϑ2 −

1
2

ϑ2
1

)
z2 +

1
2

(
ϑ3 − ϑ1ϑ2 +

1
4

ϑ3
1

)
z3 + · · · , z ∈ E,

we can obtain

bχ(z)
1+i tan θ {ℵ(p; F, G; α; ψ; w(z))− p} = bd0L1ϑ1(F−G)(p−α)

4(1+i tan θ)
z+

b(F−G)(p−α)d0L1
4(1+i tan θ)

[
ϑ2 − ϑ2

1

(
(G+1)L1+2

(
1− L2

L1

)
4

)
+ d1ϑ1

d0

]
z2 + . . . .

(11)
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3. Fekete-Szegö Inequalities for the Class Sm
p (b; ψ; α; λ; F; G; θ)

Obtaining the solution to the Fekete-Szegö problem has been a main focus of re-
searchers in this field, as it plays an very important role in obtaining the algebraic proper-
ties of a function. It continues to remain in spotlight to date, refer [36–38] where authors
have obtained the Fekete-Szegö inequality for classes of functions with respect to symmet-
ric points.

In this section, we obtain the solution to the Fekete-Szegö problem for functions
belonging to the class Sm

p (b; ψ; α; λ; F; G; θ).

Theorem 1. If h(z) = zp +
∞
∑

j=p+1
ajzj, p ∈ N = {1, 2, 3, . . .} and h(z) ∈ Sm

p (b; ψ; α; λ; F; G; θ),

then for odd values of p + m we have

∣∣ap+1
∣∣ ≤ L1|b|(F− G)(p− α)|Γ1|

2(p + 1) sec θ
, (12)

and ∣∣ap+2
∣∣ ≤ L1|b|(F−G)(p−α)|Γ2|

2 sec θ

[∣∣∣ d1
d0

∣∣∣+ max
{

1;
∣∣∣ (G+1)L1

2

− L2
L1
− bd0(F−G)(p−α)L1Γ2

1Γ3
4(1+i tan θ)

∣∣∣∣}],
(13)

where Γ1, Γ2 and Γ3 are given by

Γ1 =
(p−m + 1)(1− tp)

(p−m + 1)(1− tp) + (p−m)(λ− 1)(1− tp+1)

Γ2 =
(p−m + 1)(p−m + 2)(1− tp)

(p + 1)(p + 2)[(p−m + 2)(1− tp) + (p−m)(λ− 1)(1− tp+2)]

Γ3 =
(1− tp+1)[2(p−m + 1)(1− tp)(λ− 1) + (p−m)(λ− 1)(λ− 2)(1− tp+1)]

(p−m + 1)2(1− tp)2 .

In addition, for all µ ∈ C we have∣∣∣ap+2 − µa2
p+1

∣∣∣ ≤ L1 | b | (F− G)(p− α) | Γ2 |
2 sec θ

[∣∣∣∣d1

d0

∣∣∣∣+ max{1, |2H1 − 1|}
]

,

whereH1 is given by

H1 =
1
4

{
(G + 1)L1 + 2

(
1− L2

L1

)
−

bd0(F− G)(p− α)L1Γ2
1Γ3

2(1 + i tan θ)

+
µbd0(F− G)(p− α)L1Γ2

1
(p + 1)2(1 + i tan θ)Γ2

}
.

The inequality is sharp for each µ ∈ C.

Proof. By Definition 1, h(z) ∈ Sm
p (b; ψ; α; λ; F; G; θ) implies

1 + i tan θ

b

[
Γp

λ(m; t)z1−λ(p−m)h(m+1)(z)[
h(m)(z)− h(m)(tz)

]1−λ
− p + m

]
= χ(z)[ℵ(p; F, G; α; ψ; w(z))− p], (14)

where ℵ(p; F, G; α; ψ; w(z)) is defined as in (10). For odd values of p, the left hand side
of (14) is given by
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Γp
λ(m; t)z1−λ(p−m)h(m+1)(z)

[h(m)(z)−h(m)(tz)]
1−λ

= (p−m)

{
1 +

[
(λ−1)(p+1)
1!(p−m+1)

(
1−tp+1

1−tp

)
+ p+1

p−m

]
ap+1z

+

[(
(λ−1)(p+1)(p+2)

1!(p−m+1)(p−m+2)

(
1−tp+2

1−tp

)
+ (p+1)(p+2)

(p−m+1)(p−m)

)
ap+2

+

(
(λ−1)(λ−2)(p+1)2

2!(p−m+1)2

(
1−tp+1

1−tp

)2
+

(λ−1)(p+1)2

1!(p−m)(p−m+1)

(
1−tp+1

1−tp

))
a2

p+1

]
z2 + · · ·

}
.

(15)

From (15) and (11), the coefficients of z and z2 are given by

ap+1 =
bd0(F− G)(p− α)L1ϑ1Γ1

4(p + 1)(1 + i tan θ)
(16)

and

ap+2 =
bd0(F− G)(p− α)L1Γ2

4(1 + i tan θ)

[
ϑ2 −

ϑ2
1

4

(
L1(G + 1) + 2

(
1− L2

L1

)
−

bd0(F− G)(p− α)L1Γ2
1Γ3

2(1 + i tan θ)

)
+

d1ϑ1

d0

]
. (17)

Applying Lemma 1 on (16), we can obtain (12). Using (17) together with Lemma 1,
we have

∣∣ap+2
∣∣ = | b | |d0|(F− G)(p− α)|L1|Γ2

4 sec θ

∣∣∣∣∣ϑ2 −
ϑ2

1
4

(
(G + 1)L1 + 2

(
1− L2

L1

)

−
bd0(F− G)(p− α)L1Γ2

1Γ3

2(1 + i tan θ)

)
+

d1ϑ1

d0

∣∣∣∣∣
≤ |b|(F− G)(p− α)|L1|Γ2

2 sec θ

[∣∣∣∣d1

d0

∣∣∣∣+ max
{

1;
∣∣∣∣ (G + 1)L1

2
− L2

L1

−
bd0(F− G)(p− α)L1Γ2

1Γ3

4(1 + i tan θ)

∣∣∣∣∣
}]

.

Hence the proof of (13).
Now to prove the Fekete-Szegö inequality for the classSm

p (b; ψ; α; λ; F; G; θ), we consider
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∣∣∣ap+2 − µa2
p+1

∣∣∣ = ∣∣∣∣ bd0(F−G)(p−α)L1Γ2
4(1+i tan θ)

[
ϑ2 −

ϑ2
1

4

(
(G + 1)L1 + 2

(
1− L2

L1

)
− bd0(F−G)(p−α)L1Γ2

1Γ3
2(1+i tan θ)

)
+ d1ϑ1

d0

]
− µd2

0b2(F−G)2(p−α)2L2
1ϑ2

1Γ2
1

16(p+1)2(1+i tan θ)2

∣∣∣∣∣
=

∣∣∣∣∣ bd0(F−G)(p−α)L1Γ2
4(1+i tan θ)

[
ϑ2 −

ϑ2
1

2 +
ϑ2

1
4

(
2L2
L1
− (G + 1)L1

+
bd0(F−G)(p−α)L1Γ2

1Γ3
2(1+i tan θ)

− µb(F−G)(p−α)L1Γ2
1

(p+1)2(1+i tan θ)Γ2

)
+ d1ϑ1

d0

]∣∣∣∣∣
≤ |b|(F−G)(p−α)|L1|Γ2

4 sec θ

[
2 + |ϑ1|2

4

(∣∣∣∣∣ 2L2
L1
− (G + 1)L1

+
bd0(F−G)(p−α)L1Γ2

1Γ3
2(1+i tan θ)

− µbd0(F−G)(p−α)L1Γ2
1

(p+1)2(1+i tan θ)Γ2

∣∣∣∣∣− 2

)
+ 2
∣∣∣ d1

d0

∣∣∣].

(18)

Denoting

H :=

∣∣∣∣∣2L2

L1
− (G + 1)L1 +

bd0(F− G)(p− α)L1Γ2
1Γ3

2(1 + i tan θ)
−

µbd0(F− G)(p− α)L1Γ2
1

(p + 1)2(1 + i tan θ)Γ2

∣∣∣∣∣.
If H ≤ 2, from (18) we obtain∣∣∣ap+2 − µa2

p+1

∣∣∣ ≤ | b | (F− G)(p− α) | L1 | Γ2

2 sec θ

∣∣∣∣d1

d0

∣∣∣∣. (19)

Further, if H ≥ 2 from (18) we deduce

∣∣∣ap+2 − µa2
p+1

∣∣∣ ≤ |b|(F−G)(p−α)|L1|Γ2
2 sec θ

(∣∣∣∣∣ 2L2
L1
− (G + 1)L1

+
bd0(F−G)(p−α)L1Γ2

1Γ3
2(1+i tan θ)

− µbd0(F−G)(p−α)L1Γ2
1

(p+1)2(1+i tan θ)Γ2

∣∣∣∣∣+ ∣∣∣ d1
d0

∣∣∣).

(20)

Equality of (19) will be attained if ϑ1 = 0, ϑ2 = 2 and d0 = 1. Equivalently,

by Lemma 2 we have ψ(z2) = ψ2(z) =
1 + z2

1− z2 . Therefore, the extremal function of the class

Sm
p (b; ψ; α; λ; F; G; θ) is given by

1 + i tan θ

b

[
Γp

λ(m; t)z1−λ(p−m)h(m+1)(z)[
h(m)(z)− h(m)(tz)

]1−λ
− p + m

]

=
[(1 + F)p + α(G− F)]ψ(z2) + [(1− F)p− α(G− F)]

[(G + 1)ψ(z2) + (1− G)]
− p.

Similarly, equality of (20) will be attained if ϑ2 = 2. Equivalently, by Lemma 2 we

have ψ(z) = ψ1(z) =
1 + z
1− z

and χ1(z) = 1 + z + z2 + · · · . Therefore, the extremal function

in Sm
p (b; ψ; α; λ; F; G; θ) is given by

1 +
1 + i tan α

γ

[
z1−t[H′(z)]λ

[(1− β)H(z) + βz]1−t − 1

]

= χ1(z)
[
[(1 + F)p + α(G− F)]ψ1(z) + [(1− F)p− α(G− F)]

[(G + 1)ψ1(z) + (1− G)]
− p

]
,
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and the proof of the theorem is complete.

If we let p = b = 1, α = θ = λ = 0, χ(z) = 1 and ψ = p̂ν,σ(z) and m = 0 in Theorem 1,
we obtain the following result.

Corollary 1. Ref. [24] (Theorem 2.3) If h(z) ∈ k−US(F, G, σ, t) (see Remark 1 (i)), then we have

|a2| ≤
(F− G)|τ1|

2|1− t| ,

and

|a3| ≤
(F− G)|τ1|
2|2− t− t2| max

{
1;
∣∣∣∣ (G + 1)τ1

2
− τ2

τ1
+

(F− G)τ1(1 + t)
2(1− t)

∣∣∣∣},

In addition, for all µ ∈ C we have∣∣∣a3 − µa2
2

∣∣∣ ≤ (F− G) | τ1 |
2|1− t− t2| max{1, |2H1 − 1|}

whereH1 is given by

H1 =
1
4

{
(G + 1)τ1 + 2

(
1− τ2

τ1

)
+

(F− G)τ1(1 + t)
2(1− t)

+
µ(F− G)τ1[2− t− t2]

(1− t)2

}
.

The inequality is sharp for each µ ∈ C.

If we let p = b = 1, α = θ = λ = 0, χ(z) = 1, F = 1, G = −1 and m = 0 in
Theorem 1, we obtain the following result which was obtained by Shanmugam et al. [26]
for real valued µ.

Corollary 2. Ref. [26] (Theorem 2.1)
If h(z) ∈ S s

∗(ψ) (see Remark 1 (iii)), then we have

|a2| ≤ L1,

and

|a3| ≤
L1

2
max

{
1;
∣∣∣∣ L2

L1
− 4L1

∣∣∣∣},

In addition, for all µ ∈ C we have∣∣∣a3 − µa2
2

∣∣∣ ≤ L1

2
max

{
1,
∣∣∣∣ L2

L1
− 2L1(1 + µ)

∣∣∣∣}.

The inequality is sharp for each µ ∈ C.

Some Applications Involving Bernoulli Lemniscate and Shell Shaped Region

Raina and Sokół [7] (also see [39]) defined the class S∗(z +
√

1 + z2). The function
ψ(z) = z +

√
1 + z2 maps the unit disc onto the interior of lune-shaped (shell-shaped)

starlike region (see Figure 3a). The impact of ℵ(p; F, G; α; ψ; z) on the shell-shaped region
is illustrated in Figure 3. It could be seen that if the distance between F and G are increased,
then the mapping of unit disc becomes convex. If they are closer to each other, then the
mapping is starlike. Furthermore, notice that in Figure 3, we have shown by the varying
parameters involved that a shell-shaped region with corner −2i is rotated to π radians in a
counterclockwise direction and corner +2i is rotated to π radians in clockwise direction.
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Figure 3. Impact of ℵ(p; F, G; α; ψ; z) on the conic region ψ(z) = z +
√

1 + z2. (a) Mapping
of E under the transformation ψ(z) = z +

√
1 + z2. (b) Mapping of E under the transforma-

tion ℵ(1; 0,−0.3; 0.9; ψ; z) if ψ(z) = z +
√

1 + z2. (c) Mapping of E under the transforma-
tion ℵ(1; 0.9, 0.0; 0.5; ψ; z) if ψ(z) = z +

√
1 + z2. (d) Mapping of E under the transformation

ℵ(1; 0.9, 0.8; 0.8; ψ; z) if ψ(z) = z +
√

1 + z2.

Corollary 3. Ref. [32] If h ∈ S∗(z +
√

1 + z2), then |a2| ≤ 1, |a3| ≤ 3
4 and |a3 − µa2

2| ≤
max

{
1
2 , |µ− 3

4 |
}

.

Proof. The function ψ(z) = z +
√

1 + z2 has a Maclaurin series expansion of the form

ψ(z) = 1 + z +
z2

2
− z4

8
+

z6

16
− 5z8

128
+

7z10

256
− 21z12

1024
+ O[z]13.

Now if we let t = α = θ = λ = 0, p = F = 1, G = −1, L1 = 1 and L2 = 1
2 in

Theorem 1, we obtain the assertion of the Corollary.

The function ψ(z) =
√

1 + z maps E onto a set bounded by Bernoulli lemniscate (see [6]).
Subigures in Figure 4 describes the impact of ℵ(p; F, G; α; ψ; z) on Bernoulli lemniscate.

Corollary 4. Ref. [6] (Theorem 2) If h ∈ S∗(
√

1 + z), then |a2| ≤ 1
2 , |a3| ≤ 1

4 and |a3 − µa2
2| ≤

max
{

1
4 , |µ− 7

4 |
}

.
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Proof. The function ψ(z) =
√

1 + z has a Maclaurin series expansion of the form

ψ(z) = 1 +
z
2
− z2

8
+

z3

16
− 5z4

128
+

7z5

256
− 21z6

1024
+

33z7

2048
− 429z8

32768
+ O[z]9.

Now if we let t = α = θ = λ = 0, p = F = 1, G = −1, L1 = 1
2 and L2 = − 1

8 in
Theorem 1, we obtain the assertion of the Corollary.

Remark 2. By specializing the parameters involved, we can easily obtain the coefficient inequalities
of starlike functions with respect to symmetric points associated with Bernoulli lemniscate and
Shell-shaped region.
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0.00
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(c)

0.90 0.92 0.94 0.96 0.98 1.00

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

(d)

Figure 4. Impact of ℵ(p; F, G; α; ψ; z) on the conic region ψ(z) =
√

1 + z. (a) Mapping of E under the
transformation ψ(z) =

√
1 + z. (b) Mapping of E under the transformation ℵ(1; 0,−0.3; 0.9; ψ; z) if

ψ(z) =
√

1 + z. (c) Mapping of E under the transformation ℵ(1; 0.9, 0.0; 0.5; ψ; z) if ψ(z) =
√

1 + z.
(d) Mapping of E under the transformation ℵ(1; 0.9, 0.8; 0.8; ψ; z) if ψ(z) =

√
1 + z.

4. Subordination Results for Functions with Respect to Symmetric Points

Researchers have investigated and obtained several interesting subordination condi-
tions, see for example [20,21,40,41]. In this section we follow the steps detailed in Goyal
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and Goswami [42], to obtain some sufficient conditions for functions to be in our defined
function class. We let

ωθ = (1 + i tan θ) and Gm(z, t) =
[

h(m)(z)− h(m)(tz)
]
.

We begin with the following

Theorem 2. Let h ∈ A(p, 1) with h(m)(z), h(m+1)(z) and Gm(z, t) 6= 0 for all z ∈ E \ {0}.
Moreover, let ℵ(p; F, G; α; ψ; z) be convex univalent in E with ℵ(p; F, G; α; 0) = p and
Re ℵ(p; F, G; α; ψ; z) > 0. Further suppose that(

p + ωθ
bχ(z)

[
Υp

λ(m; t)z1−λ(p−m)h(m+1)(z)

[Gm(z,t)]1−λ − p + m
])2

[
1 + 2

{
(λ−1)zGm+1(z,t)

Gm(z,t)

+ (1−λ)zGm+1(z,t)[pbχ(z)−(p−m)ωθ ][Gm(z,t)]−λ+pbzχ′(z)[Gm(z,t)]1−λ

[pbχ(z)−(p−m)ωθ ][Gm(z,t)]1−λ+ωθ Υp
λ(m; t)z1−λ(p−m)h(m+1)(z)

+
ωθ Υp

λ(m; t)z1−λ(p−m)[(1−λ(p−m))h(m+1)(z)+zh(m+2)(z)]
[pbχ(z)−(p−m)ωθ ][Gm(z,t)]1−λ+ωθ Υp

λ(m; t)z1−λ(p−m)h(m+1)(z)

(21)

− zχ′(z)
χ(z)

}]
≺ ℵ(p; F, G; α; ψ; z). (22)

Then

1 + i tan θ

b

[
Υp

λ(m; t)z1−λ(p−m)h(m+1)(z)[
h(m)(z)− h(m)(tz)

]1−λ
− p + m

]
≺κ φ(z) =

√
Q(z)− p (23)

where
Q(z) =

1
z

∫ z

0
ℵ(p; F, G; α; ψ; t) dt

and φ is convex and is the best dominant.

Proof. Let

k(z) = p +
1 + i tan θ

bχ(z)

[
Υp

λ(m; t)z1−λ(p−m)h(m+1)(z)[
h(m)(z)− h(m)(tz)

]1−λ
− p + m

]
(z ∈ E),

then k(z) ∈ H(p, 1) with k(z) 6= 0.
Since ℵ(p; F, G; α; ψ; z) is convex, it can be easily seen that Q is convex and univalent

in E. If we make the change of the variables K(z) = k2(z), then K(z) ∈ H(p, 1) with
K(z) 6= 0 in E.

By a straight forward computation, we have

zK
′
(z)

K(z)
= 2

 ωθΥp
λ(m; t)z1−λ(p−m)

[
(1− λ(p−m))h(m+1)(z) + zh(m+1)(z)

]
[pbχ(z)− (p−m)ωθ ][Gm(z, t)]1−λ + ωθΥp

λ(m; t)z1−λ(p−m)h(m+1)(z)

+
(1− λ)zGm+1(z, t)[pbχ(z)− (p−m)ωθ ][Gm(z, t)]−λ + pbzχ′(z)[Gm(z, t)]1−λ

[pbχ(z)− (p−m)ωθ ][Gm(z, t)]1−λ + ωθΥp
λ(m; t)z1−λ(p−m)h(m+1)(z)

− zχ′(z)
χ(z)

+
(λ− 1)zGm+1(z, t)

Gm(z, t)

]
.

Thus, by (22), we have

K(z) + zK
′
(z) ≺ r(z) (z ∈ E). (24)
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Now by Lemma 3, we deduce that

K(z) ≺ Q(z) ≺ r(z).

Since Re r(z) > 0 and Q(z) ≺ r(z) we also have Re Q(z) > 0. Hence the univalence
of Q implies the univalence of

√
Q(z) and k2(z) ≺ Q(z) implies that k(z) ≺

√
Q(z). Since

subordination is invariant under translation and using the fact that g/χ ≺ r implies g ≺κ r,
we have

1 + i tan θ

b

[
Υp

λ(m; t)z1−λ(p−m)h(m+1)(z)[
h(m)(z)− h(m)(tz)

]1−λ
− p + m

]
≺κ

√
Q(z)− p,

and the proof is complete.

If we let p = b = 1, λ = m = θ = 0 in Theorem 2, we have

Corollary 5. Let h ∈ A with h(z), h′(z) and [h(z)− h(tz)] 6= 0 for all z ∈ E \ {0}. Furthermore,
let ℵ(p; F, G; α; ψ; z) is convex in E with ℵ(p; F, G; α; ψ; 0) = p and Re ℵ(p; F, G; α; ψ; z) > 0.
Further suppose that(

1 +
1

χ(z)

[
zh′(z)

[h(z)− h(tz)]
− 1
])2

[
1 + 2

{
zh′(z) + z2h′′(z)

[χ(z)− 1][h(z)− h(tz)] + zh′(z)

+
z[h(z)− h(tz)]′[χ(z)− 1] + zχ′(z)[h(z)− h(tz)]

[χ(z)− 1][h(z)− h(tz)] + zh′(z)

− z[h(z)− h(tz)]′

[h(z)− h(tz)]
− zχ′(z)

χ(z)

}]
≺ ℵ(p; F, G; α; ψ; z).

Then
zh′(z)

[h(z)− h(tz)]
− 1 ≺κ φ(z) =

√
Q(z)− 1

where
Q(z) =

1
z

∫ z

0
ℵ(p; F, G; α; ψ; t) dt

and φ is convex and is the best dominant.

From the Corollary 5, we deduce that on letting p = b = 1, m = α = θ = λ = 0,
χ(z) = 1 and ψ = p̂ν,σ(z) (see (5)) in Theorem 1, then we can obtain the sufficient conditions
for functions to be in k−US(F, G, σ, t) (see Remark 1 (i)).

Corollary 6. Let h ∈ A with h
′
(z) and [h(z)− h(−z)] 6= 0 for all z ∈ E \ {0}. If

Re


(

zh
′
(z)

[h(z)− h(−z)]

)2[
3 +

2 zh
′′
(z)

h′(z)
− 2 z[h(z)− h(−z)]′

[h(z)− h(−z)]

] > α,

then

Re
zh
′
(z)

[h(z)− h(−z)]
> η(α),

where η(α) = [2(1− α) · log 2 + (2α− 1)]
1
2 . This result is sharp

Proof. Letting p = 1, F = 1, G = −1 and ψ(z) = 1−z
1+z in (4), we obtain

ℵ(1; 1,−1; α; z) =
1 + (2α− 1)z

1 + z
, (0 ≤ α < 1).
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Additionally, if we let χ(z) = 1, p = b = 1, θ = m = λ = 0, in Theorem 2, we have

Q(z) =
1
z

∫ z

0

1 + (2α− 1)t
1 + t

dt

which is convex in E along with Re Q(z) > 0. Therefore

min
|z|≤1

Re
√

Q(z) =
√

Q(1) = [2(1− α) · log 2 + (2α− 1)]
1
2 .

Hence the proof of the Corollary.

5. Classes of Multivalent Functions Using Quantum Calculus

Now, we give a very brief introduction of the q-calculus. We let

[n]q =
n

∑
k=1

qk−1, [0]q = 0, (q ∈ C).

Srivastava in [43] initiated the study of geometric function theory in dual with quan-
tum calculus in 1988. However, this dulaity theory was brought into the spotlight by
Ismail et al. [44] who introduced and studied the so-called class of q-starlike functions.
For detailed study of the developments and applications of this duality theory, refer to the
recent survey-cum-expository article of Srivastava [45] and references provided therein.

The q-difference operator for a function h ∈ A(p, 1) is defined by

Dqh(z) :=

h′(0), if z = 0,
h(z)− h(qz)
(1− q)z

, if z 6= 0.
(25)

From (25), if h ∈ A(p, 1) we can easily see that Dqh(z) = pzp−1 +
∞
∑

k=p+n
[k]qakzk−1,

for z 6= 0 and note that lim
q→1−

Dqh(z) = h′(z). The q-Jackson integral is defined by (see [46])

Iq[h(z)] :=
∫ z

0
h(t)dqt = z(1− q)

∞

∑
n=0

qnh(zqn) (26)

provided the q-series converges. Further observe that

Dq Iqh(z) = h(z) and IqDqh(z) = h(z)− h(0),

where the second equality holds if h is continuous at z = 0. Ismail et al. in [44] defined the
class S∗q as class of functions which satisfies the condition∣∣∣∣ zDqh(z)

h(z)
− 1

1− q

∣∣∣∣ ≤ 1
1− q

, (h ∈ S).

The class S∗q is the so-called class of q-starlike functions. Equivalently, a function
h ∈ S∗q , if and only if the subordination condition (see ([47], Definition 7))

zDqh(z)
h(z)

≺ 1 + z
1− qz

,

holds.
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Let us define the q-analogue of ℵ(p; F, G; α; ψ; z) (see (4)) as

ℵq(p; F, G; α; ψ; z) =
[(F + 1)[p]q + α(G− F)]ψ(z) +

[
(1− F)[p]q − α(G− F)

]
[(G + 1)ψ(z) + (1− G)]

(27)

Srivastava et al. [47–54] introduced function classes of q-starlike functions related
with conic region and also studied the impact of Janowski functions on those conic
regions. For recent advances pertaining to quantum calculus, refer to Aldawish and
Ibrahim [55] and Zhou et al. [56]. Motivated by aforementioned works on q-calculus, we
define the following class by replacing ordinary derivative with q-derivative in function
class Sm

p (b; ψ; α; λ; F; G; θ) (see Definition 1).

Definition 2. Let Dm
q h = Dm−1

q

(
D1

qh(z)
)

. For t ∈ C, with |t| ≤ 1, λ ≥ 0, p, n ∈ N, m ∈ N0

and ℵq(p; F, G; α; ψ; z) defined as in (27), we say that the function h ∈ A(p, 1) belongs to the
class QSm

p (b; ψ; α; λ; δ; F; G; θ) if it satisfies the subordination condition

1 + i tan θ

b

Γp
λ(m; t)z1−λ(p−m)Dm+1

q h(z)[
Dm

q h(z)−Dm
q h(tz)

]1−λ
− [p−m]q

 ≺κ ℵq(p; F, G; α; ψ; z)− [p]q (28)

where Γp
λ(m; t) = (1− tp)(1−λ)[∆q(p, m− 1)

]−λ, ψ ∈ P is defined as in (2).

Suppose≺κ is replaced with≺ and let ψ = 1+z
1−qz , q ∈ (0, 1) inQSm

p (b; ψ; α; λ; δ; F; G; θ),
then by definition of subordination of analytic function, a function h ∈ A(p, 1) is said to be
in QSm

p (b; ψ; α; λ; δ; F; G; θ) if and only if (q ∈ (0, 1), z ∈ E),

[p]q +
1 + i tan θ

b

Γp
λ(m; t)z1−λ(p−m)Dm+1

q h(z)[
Dm

q h(z)−Dm
q h(tz)

]1−λ
− [p−m]q


=

{
(F + 1)[p]q + α(G− F)

}
w(z) + 2[p]q +

{
α(G− F)− (1− F)[p]q

}
qw(z)

(G + 1)w(z) + 2 + (G− 1)qw(z)
,

where w(z) is analytic in E and w(0) = 0, |w(z)| < 1.

Remark 3. If we let m = α = λ = θ = 0, b = 1, p = 1, F = 1 and G = −1, then
QSm

p (b; ψ; α; λ; δ; F; G; θ) reduces to the classes S∗q,s(ψ) defined by Ramachandran et al. [57]
(Definition 1).

Main Results Involving Quantum calculus

We just state q-analogue result of Theorems 1 and 2. Here we have omitted the proof,
as it could be obtained by retracing the steps of Theorems 1 and 2.

Theorem 3. If h(z) = zp +
∞
∑

j=p+1
ajzj, p ∈ N = {1, 2, 3, . . .} and h(z) ∈ QSm

p (b; ψ; α; λ; δ;

F; G; θ), then for odd values of p we have

∣∣ap+1
∣∣ ≤ |b|(F− G)(p− α)|L1 Υ1|

2[p + 1]q sec θ
, (29)
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and ∣∣ap+2
∣∣ ≤ |b|(F− G)(p− α)|L1 Υ2|

2 sec θ

[∣∣∣∣d1

d0

∣∣∣∣+ max
{

1;
∣∣∣∣ (G + 1)L1

2
− L2

L1

−
bd0(F− G)(p− α)L1Υ2

1Υ3

4(1 + i tan θ)

∣∣∣∣∣
}]

,

where Υ1, Υ2 and Υ3 are given by

Υ1 =
[p−m + 1]q(1− tp)

[p−m + 1]q(1− tp) + [p−m]q(λ− 1)(1− tp+1)

Υ2 =
[p−m + 1]q[p−m + 2]q(1− tp)

[p + 1]q[p + 2]q
[
[p−m + 2]q(1− tp) + [p−m]q(λ− 1)(1− tp+2)

]
Υ3 =

(1− tp+1)
[
2[p−m + 1]q(1− tp)(λ− 1) + [p−m]q(λ− 1)(λ− 2)(1− tp+1)

]
[p−m + 1]2q(1− tp)2 .

Furthermore, for all µ ∈ C we have∣∣∣ap+2 − µa2
p+1

∣∣∣ ≤ | b | (F− G)(p− α) | L1Υ2 |
2 sec θ

[∣∣∣∣d1

d0

∣∣∣∣+ max{1, |2Q1 − 1|}
]

,

where Q1 is given by

Q1 =
1
4

{
(G + 1)L1 + 2

(
1− L2

L1

)
−

bd0(F− G)(p− α)L1Υ2
1Υ3

2(1 + i tan θ)

+
µbd0(F− G)(p− α)L1Υ2

1
(p + 1)2(1 + i tan θ)Υ2

}
.

The inequality is sharp for each µ ∈ C.

Remark 4. If we let q→ 1− in Theorem 3, then we obtain the solution to the Fekete-Szegö problem
of the class Sm

p (b; ψ; α; λ; F; G; θ).

q-analogue of the Lemma 3 (ordinary derivative replaced with a quantum derivative)
need not be true for all q ∈ (0, 1). It is true only if we could choose a sequence qn that tends
to 1−. Thus, we will use same lemma with ordinary derivative to establish the sufficient
conditions for functions in QSm

p (b; ψ; α; λ; δ; F; G; θ).

Theorem 4. Let h ∈ A(p, 1) with Dm
q h(z), Dm+1

q h(z) and
[
Dm

q h(z)−Dm
q h(tz)

]
6= 0 for all

z ∈ E \ {0}. Furthermore, let ℵq(p; F, G; α; ψ; z) is convex in E with ℵq(p; F, G; α; 0) = [p]q
and Re ℵq(p; F, G; α; ψ; z) > 0. Let Gm

q (t; z) = Dm
q h(z) −Dm

q h(tz), ωθ = 1 + i tan θ and
L(p; b; χ; θ) =

(
[p]qbχ(z)− [p−m]qωθ

)
. Further suppose that
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[p]q + ωθ

b

Γp
λ(m; t)z1−λ(p−m)Dm+1

q h(z)[
Gm

q (t; z)
]1−λ

− [p−m]q




2[
1 + 2

{ (λ− 1)z
[
Gm

q (t; z)
]′[

Gm
q (t; z)

]

+
(1− λ)z

[
Gm

q (t; z)
]′

L(p; b; χ; θ)
[
Gm

q (t; z)
]−λ

+ [p]qbzχ′(z)
[
Gm

q (t; z)
]1−λ

L(p; b; χ; θ)
[
Gm

q (t; z)
]1−λ

+ ωθΓp
λ(m; t)z1−λ(p−m)(Dm+1

q h(z))′

+
ωθΥp

λ(m; t)z1−λ(p−m)
(
[1− λ(p−m)]qDm+1

q h(z) + z(Dm+1
q h(z))′

)
L(p; b; χ; θ)

[
Gm

q (t; z)
]1−λ

+ ωθΓp
λ(m; t)z1−λ(p−m)(Dm+1

q h(z))′

− zχ′(z)
χ(z)

}]
≺ ℵq(p; F, G; α; ψ; z).

Then

ωθ

b

Γp
λ(m; t)z1−λ(p−m)Dm+1

q h(z)[
Gm

q (t; z)
]1−λ

− [p−m]q

 ≺κ φ(z) =
√

R(z)− [p]q

where
R(z) =

1
z

∫ z

0
ℵ)q(p; F, G; α; ψ; t) dt

and φ is convex and is the best dominant.

Remark 5. As q→ 1−, the Theorem 4 reduces to Theorem 2.

6. Conclusions

The study of geometrical implications is an integral part of research in geometric
function theory. Here we have shown that a function ℵ(p; F, G; α; z) which was defined
analytically in [18] indeed has beautiful geometric implications.

Extension and unification of various well-known classes of functions were the main
objective of this paper. We defined a new family of multivalent functions of complex
order using higher order derivatives. Inclusion relations, Fekete-Szegö inequalities and
subordination conditions for starlikeness of the defined function class have been established.
Attempting discretization of the results, we extend the defined function class using q-
derivative. All the results involving quantum calculus were just stated, as the method of
proof though cumbersome but is similar to our main results.
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