
 Open access Proceedings Article DOI:10.1109/ICPP.2010.30

Starling: Minimizing Communication Overhead in Virtualized Computing Platforms
Using Decentralized Affinity-Aware Migration — Source link

Jason D. Sonnek, James Greensky, Robert Reutiman, Abhishek Chandra

Institutions: University of Minnesota

Published on: 13 Sep 2010 - International Conference on Parallel Processing

Topics: Network topology, Overhead (computing), Cloud computing, Virtualization and Resource allocation

Related papers:

 Improving the Scalability of Data Center Networks with Traffic-aware Virtual Machine Placement

 Memory buddies: exploiting page sharing for smart colocation in virtualized data centers

 Live migration of virtual machines

Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in Cloud data centers

 Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing

Share this paper:

View more about this paper here: https://typeset.io/papers/starling-minimizing-communication-overhead-in-virtualized-
2lxdpumz5y

https://typeset.io/
https://www.doi.org/10.1109/ICPP.2010.30
https://typeset.io/papers/starling-minimizing-communication-overhead-in-virtualized-2lxdpumz5y
https://typeset.io/authors/jason-d-sonnek-4armovg30x
https://typeset.io/authors/james-greensky-3s2rb6nlj1
https://typeset.io/authors/robert-reutiman-59npov85j4
https://typeset.io/authors/abhishek-chandra-27ghra153h
https://typeset.io/institutions/university-of-minnesota-2bv8nbl3
https://typeset.io/conferences/international-conference-on-parallel-processing-nzrlrp9t
https://typeset.io/topics/network-topology-3w57cbb3
https://typeset.io/topics/overhead-computing-1ddqien5
https://typeset.io/topics/cloud-computing-23j8n0mk
https://typeset.io/topics/virtualization-y3bxbinu
https://typeset.io/topics/resource-allocation-3696qy02
https://typeset.io/papers/improving-the-scalability-of-data-center-networks-with-2orx1c99p1
https://typeset.io/papers/memory-buddies-exploiting-page-sharing-for-smart-colocation-3h1sqvbsu2
https://typeset.io/papers/live-migration-of-virtual-machines-o3cs0reg9z
https://typeset.io/papers/optimal-online-deterministic-algorithms-and-adaptive-f33nptok9l
https://typeset.io/papers/energy-aware-resource-allocation-heuristics-for-efficient-1y6vqdhvlm
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/starling-minimizing-communication-overhead-in-virtualized-2lxdpumz5y
https://twitter.com/intent/tweet?text=Starling:%20Minimizing%20Communication%20Overhead%20in%20Virtualized%20Computing%20Platforms%20Using%20Decentralized%20Affinity-Aware%20Migration&url=https://typeset.io/papers/starling-minimizing-communication-overhead-in-virtualized-2lxdpumz5y
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/starling-minimizing-communication-overhead-in-virtualized-2lxdpumz5y
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/starling-minimizing-communication-overhead-in-virtualized-2lxdpumz5y
https://typeset.io/papers/starling-minimizing-communication-overhead-in-virtualized-2lxdpumz5y

Starling: Minimizing Communication Overhead in Virtualized Computing Platforms Using Decentralized

Affinity-Aware Migration

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 09-030

Starling: Minimizing Communication Overhead in Virtualized

Computing Platforms Using Decentralized Affinity-Aware Migration

Jason Sonnek, James Greensky, Robert Reutiman, and Abhishek

Chandra

December 02, 2009

Starling: Minimizing Communication Overhead in

Virtualized Computing Platforms Using

Decentralized Affinity-Aware Migration

Jason Sonnek, James Greensky, Robert Reutiman and Abhishek Chandra

Department of Computer Science and Engineering

University of Minnesota

Minneapolis, MN 55455

{sonnek, greensky, reutiman, chandra}@cs.umn.edu

Abstract—Virtualization is being widely used in large-scale
computing environments, such as clouds, data centers, and
grids, to provide application portability and facilitate resource
multiplexing while retaining application isolation. In many ex-
isting virtualized platforms, it has been found that the network
bandwidth often becomes the bottleneck resource, causing both
high network contention and reduced performance for com-
munication and data-intensive applications. In this paper, we
present a decentralized affinity-aware migration technique that
incorporates heterogeneity and dynamism in network topology
and job communication patterns to allocate virtual machines on
the available physical resources. Our technique monitors network
affinity between pairs of VMs and uses a distributed bartering
algorithm, coupled with migration, to dynamically adjust VM
placement such that communication overhead is minimized. Our
experimental results running the Intel MPI benchmark and a
scientific application on a 7-node Xen cluster show that we can
get up to 42% improvement in the runtime of the application over
a no-migration technique, while achieving up to 85% reduction in
network communication cost. In addition, our technique is able
to adjust to dynamic variations in communication patterns and
provides both good performance and low network contention with
minimal overhead. We also present a topology-aware extension
to our migration algorithm that provides an additional 26-31%
reduction in runtime.

I. INTRODUCTION

The emergence of cloud computing (e.g., Amazon EC2 [1])

has led to a growing interest in deploying a wide variety of

applications [2], [3], [4] on shared computing environments. In

particular, because of the relative abundance of resources and

low cost of resource outsourcing, clouds are highly attractive

for compute-intensive applications [5], [6]. The success of

clouds has been driven in part by the use of virtualization as

their underlying technology. Virtual machines (VMs) provide

flexibility and mobility through easy migration, which enables

dynamic mapping of VMs to available resources. Virtual

machines also provide performance isolation and security that

facilitates multiplexing and utilization of shared resources.

For these reasons, virtualization has also become popular

in other domains such as scientific and high-performance

computing [7], [8], [9], [10].

A virtualized computing platform provides an abstraction of

a “pool of resources” where different application components

(or jobs1) can be placed on any resource. This property

has been exploited for executing “embarrassingly” parallel

or largely independent bag-of-tasks applications [10], [5] in

virtual computing environments. However, several compute-

intensive applications in the scientific and data analytics do-

mains have intricate patterns of communication and data de-

pendencies, requiring exchanges of large amounts of data and

state for carrying out their computation. For such applications,

the communication patterns between different components are

a key factor that must be considered during resource allocation.

However, for most cloud environments, such information is

not readily available to the infrastructure provider, and the

volume of traffic exchanged between any two VMs is both

job-dependent and time-varying, so VMs are largely placed

on servers based solely on available capacity.

At the same time, in many existing virtualized platforms, it

has been found that the network bandwidth often becomes the

bottleneck resource. This is because the physical topology in

a large-scale computing platform typically has a hierarchical

structure [11]: a given pair of compute nodes may be located

on the same rack, may be part of the same cluster sharing a

common LAN, or may be on separate clusters communicating

through a slow link (e.g., a wide-area link for distributed

computing platforms). Because of the high speeds and large

number of CPU cores sitting on each rack, cluster, etc.,

their interconnect switches and links become bottlenecks [12],

reducing the capacity of the infrastructure to support more

applications. As a result, it is in the interest of the cloud

provider to reduce the network overhead as much as possible.

This implies that in addition to considering the physical

characteristics (CPU speed, memory and storage) of nodes on

which virtual machines are placed, the network topology must

also be considered in order to increase the efficiency of the

platform, and reduce network contention.

The goal of this work is to improve application performance

in the presence of data dependencies and communication

patterns, while reducing the network communication cost

1In the rest of this paper, we will use “job” to mean an independently
executable application component encapsulated within a VM.

imposed on the underlying platform. Towards this end, we

present Starling2: a decentralized affinity-aware migration

technique that incorporates heterogeneity and dynamism in

network topology and job communication patterns to allocate

virtual machines on the available physical resources. Intu-

itively, by placing two co-communicating VMs as close to

one another as possible within the hierarchy, we can reduce

network transfer costs and improve performance. Thus, our

technique attempts to place two heavily data-dependent or

communicating VMs as close to each other as possible (same

node, rack, cluster or local network), in order to reduce

traffic over bottleneck network links, while improving the

overall performance of the applications. This paper makes the

following contributions:

• Affinity-based virtual machine placement and migration:

While several existing virtual machine placement and migra-

tion techniques [11], [13] employ resource usage and load

information, they do not consider affinities between VMs

in making these decisions. Our technique explicitly incor-

porates inferred job dependency information along with the

underlying network topology information to make placement

and migration decisions. In addition, while most existing

VM management algorithms focus only on load-balancing or

consolidation as their objective, our technique also enables

better application performance without adversely impacting

these system-level goals.

• Implicit inference of dynamic job dependencies: Our tech-

nique infers the communication/data dependencies between

different jobs of an application by monitoring the network traf-

fic between different pairs of VMs in a non-intrusive manner. It

does not require any workflow or data dependency information

to be provided explicitly by the application, and can also infer

changes in these dependencies during the execution of the ap-

plication. This technique could be especially valuable in cloud

computing or other outsourced computing environments, in

which obtaining application profiles is especially challenging

since the the application is typically a black box from the

perspective of the platform provider.

• Decentralized control: Another key feature of our technique

is that we have implemented it in a completely distributed

manner. We use a distributed bartering algorithm in which

physical servers independently negotiate affinity-based VM

relocations on the basis of local information. The decentralized

nature of our technique makes it easier to scale to large-scale

systems with thousands of nodes, and would be particularly

amenable to use in computing environments distributed across

a wide area (such as distributed Grids or clouds). At the

same time, such a decentralized approach enables the use of

localized and diverse policies for resource allocation, rather

than having a single, centralized system-wide policy.

We have implemented our affinity-based migration tech-

nique on a 7-node Xen cluster. Our experiments with the

Intel MPI benchmark suite [14] and a scientific simulation-

2Starlings are communicative birds that tend to flock together in large,
close-knit groups.

��� ��� ���

����	�
����
�

�����
�
��	���

������	�

����
����

��
	�
����

���
�	���

�����������	��
�

��
	������	��
�

����������������

Fig. 1. System Architecture.

based application [15] show that we can get up to 42%

improvement in the runtime of the application over a no-

migration technique, while achieving up to 85% reduction

in network communication cost. In addition, our technique

is able to adjust to dynamic variations in communication

patterns and provides both good performance and low network

contention with minimal overhead. We also present a topology-

aware extension to our migration algorithm that provides an

additional 26-31% reduction in runtime.

II. SYSTEM MODEL AND ARCHITECTURE

We consider our system model to consist of a virtualized

computing platform, in which physical servers are connected

to each other in a hierarchical network topology. For in-

stance, the topology may consist of server clusters connected

through a bottleneck link, and servers within a cluster further

partitioned into racks, so that the inter-server bandwidth is

dependent on whether the servers are on the same rack, within

the same cluster or on different clusters. In general, any

hierarchical network topology can be considered.

For our application model, we consider an application con-

sisting of multiple computational jobs that may have various

data dependencies and communication patterns between them,

arising due to reasons we discuss in detail in the next section.

These data and communication dependencies in general can be

thought of as forming a communication graph. However, we

do not require such a communication graph to be explicitly

provided or known a priori. We assume that each computa-

tional job can be encapsulated within a virtual machine, and

the VMs can be placed and/or migrated to any physical server

in the system, though the cost of migration would depend on

the location of the VM in the network hierarchy.

Figure 1 shows the architecture of our proposed affinity-

aware migration algorithm. This algorithm is completely dis-

tributed and runs on each node in the system. It consists of

the following main components:

• Traffic Monitoring and Fingerprinting: Monitors the traf-

fic flowing into/out of each VM hosted on a node, and

keeps track of this traffic over time by fingerprinting the

traffic volume in a succinct way.

• Affinity Inference: Determines the affinities between each

VM running on a node and the other VMs that it commu-

nicates with. Note that the VM pairs being fingerprinted

could be physically located on the same node or across

nodes.

• Bartering and migration: Based on the affinity infer-

ence between different VM pairs, it negotiates a better

placement for its VMs (if needed) or responds to such

negotiation requests from other nodes. Through such

negotiations, it migrates VMs which exchange a large

volume of network traffic closer to each other.

III. TRAFFIC MONITORING AND AFFINITY INFERENCE

In this section, we describe the monitoring, fingerprinting

and affinity inference components, which capture network

statistics on each of the physical servers, and use this informa-

tion to infer job dependencies as well as network traffic flow

and bottlenecks.

A. Monitoring and Affinity Inference

First, we want to infer the dependencies between different

jobs running within the VMs, and in particular the dependency

of a job on various physical servers it is interacting with. A

compute job may have high communication dependency on a

physical server for two main reasons:

• The job may require data which is generated by another

job located on the server. This kind of dependence

is common in many scientific applications, especially

those that require frequent coordination and data ex-

changes amongst the jobs (i.e., not embarrassingly paral-

lel). Examples include applications parallelized via data

partitioning but needing data exchanges, or multi-step

simulations that need jobs to synchronize and exchange

data/state at each step.

• The job may require data stored on the server for carrying

out its computation. This kind of dependence is common

in data-intensive applications, which perform computa-

tions on large quantities of data. The physical server in

this case may be a file server, but may also support exe-

cuting compute jobs. This paradigm is particularly com-

mon in data-intensive computational frameworks such as

MapReduce [16] or Hadoop [17], in which block storage

on each physical machine is abstracted into a global

distributed storage system, and the data in this global

store is utilized by computing jobs which are distributed

amongst the physical machines.

The primary goal of the monitor is to capture such depen-

dencies between pairs of jobs, as well as between jobs and

physical servers. Given this information, we can infer that a

set of jobs is co-communicating, or that a job is dependent on

data hosted on a certain physical machine, so that they can be

placed closer to each other.

The monitoring service observes all incoming and outbound

traffic on a physical server in real-time, capturing statistics

about traffic source, destination and volume. In our Xen-

based [18] implementation, traffic statistics are obtained by

dynamically filtering streams obtained from tcpdump running

in dom0. Traffic information is represented in the form of a

set of < sourceID, destinationID, volume > tuples, where

the source ID and destination ID are the IP addresses of VMs,

and the volume is the amount of traffic exchanged between

them over a time window W . Note that we also record traffic

sent directly between VM i and a physical server j to handle

the case where applications use data stored in a distributed

storage system [16], [17], but do not refer to it explicitly in

this discussion for ease of exposition, and rather assume all

communication is between pairs of VMs.

To capture dynamic changes in traffic volume between two

VMs over time, we maintain volume as an exponential average

over its past values:

volume[t] = α · volume[t − 1] + (1 − α) · traf [t],

where, α is the averaging constant with a value between 0 and

1, volume[t] and volume[t−1] are the volumes computed for

windows at time t and t − 1 respectively, and traf [t] is the

traffic measured at time t.

The communication fingerprint CFPi of a VM i is then

defined as a vector of its traffic tuples to all other VMs:

CFPi[j] = volumei,j∀j 6= i,

where, volumei,j is the traffic volume between VMs i and j.

Intuitively, the communication fingerprint of a VM specifies

its communication patterns and traffic volumes to the other

VMs, and corresponds to the data dependencies and commu-

nication affinities of the job running inside the VM. Using the

communication fingerprint of a VM, we can infer a job’s data

dependencies, and identify instances in which the job could

benefit from relocation to another physical server.

B. Network Traffic and Topology Inference

The information in the communication fingerprints can be

aggregated in a number of interesting ways to infer the overall

network traffic flow, as well as the topology of the network

to some extent. For instance, to determine the quantity of

information that a given VM exchanges with VMs residing

on different physical servers, we can compute the volume of

traffic exchanged between that VM and each of the physical

servers in the system. We refer to this aggregation as the

network footprint NFPi(m) of the VM i w.r.t. physical server

m:

NFPi(m) =
∑

j∈V Mm

CFPi[j],

where V Mm is the set of VMs running on physical server

m. Similarly, we can infer the VM-generated network traffic

NTm,n flowing between two physical servers m and n using

the communication footprints as follows:

NTm,n =
∑

i∈V Mm

NFPi(n).

These values can be aggregated further to obtain the network

traffic between different parts of the network hierarchy such

as between two racks or two clusters, etc.

To compute the above network footprints, we need to be

able to identify which virtual machines are running on each

physical server. To acquire this information, we use a dis-

tributed naming service, which maintains a mapping between

VM IDs and the IDs of the corresponding physical servers.

At the time of initial placement, each VM registers its current

location with the naming service; these mappings are updated

as part of the relocation process.

The network footprints can also be used to infer topology

information about the underlying network. For instance, we

can couple the traffic information from the network footprints

with the communication time information to get estimates of

latency and bandwidth. However, such topology inference is

beyond the scope of this work, and we assume that the topol-

ogy of the network is known. There are several mechanisms

for topology inference in the literature [19], [20], [21], and

we expect to use some of them to broaden the applicability of

our technique in more dynamic environments.

IV. AFFINITY-AWARE BARTERING AND MIGRATION

In this section, we present our affinity-aware bartering and

migration algorithm, that combines the job dependency in-

formation with the network topology information to minimize

communication overhead. We begin by formulating this place-

ment problem as an optimization problem, and then present a

distributed bartering algorithm that dynamically migrates VMs

to move the system towards this optimal placement.

A. Optimal Affinity-Aware Placement

To achieve an optimal placement which minimizes the

network communication overhead between different VMs, our

goal can be specified as the following optimization problem:

Minimize
∑

i,j

CCi,j

s.t. |V Mm| ≤ Cm∀ physical servers m.

Here, CCi,j is the network communication cost (defined

below) between two VMs i and j, and Cm is the maximum

number of VMs that can be hosted on the server m. The value

of Cm would depend on the total server capacity and VM

resource usage requirements (in terms of CPU, memory, disk,

etc.). Intuitively, the formulation above says that the VMs

should be placed on the physical servers in a manner that

minimizes the inter-VM communication cost, while meeting

the server capacity constraints.

The network communication cost CCi,j can be defined as

the time it takes for two VMs i and j to communicate and

exchange data with each other. This cost can be thought of as

the component of an application’s total runtime, corresponding

to the network communication between jobs encapsulated

within VMs i and j. The communication cost is a function

of the traffic volume volumei,j between the two VMs and

the bandwidth BWi,j available between them, which depends

on the physical servers that the two VMs are running on.

The traffic volume can be computed using the communication

footprints described in Section III, while the bandwidth can

Fig. 2. Distributed Bartering Algorithm: In this scenario, VM2 and VM3
have a high traffic volume, leading to (1) the bartering agent on A sending a
migration request to B, (2) acceptance of request because of available capacity,
and (3) migration of VM2 to B.

be determined from the network topology information3. We

compute the communication cost as:

CCi,j =
volumei,j

BWi,j

, (1)

so that two VMs placed close to each other (on the same

server, same rack, etc.) would have a smaller cost for the same

amount of traffic compared to two VMs located far away (on

different servers, different racks, etc.). Furthermore, besides

improving an application’s performance, minimizing the com-

munication cost will also reduce the network overhead of the

underlying infrastructure by moving traffic from bottleneck

links to high bandwidth links.

B. Distributed Bartering Algorithm

The optimization problem described above is an instance

of the graph partitioning problem, which is known to be NP-

complete [22]. As a result, heuristics are typically employed

to solve such problems. However, many existing heuristics

are centralized and assume prior information about the job

dependencies, which are also assumed to be static. To mini-

mize overhead and increase the scalability of our solution, we

propose a distributed bartering algorithm that allows VMs

to negotiate placement on a physical server that is closer

to the data they require. This algorithm avoids bottlenecks

and central points of failure associated with a centralized

solution, and can also adapt more quickly to dynamic local

changes in job dependency patterns and network topology.

In addition, such a decentralized approach enables the use of

different policies by different agents based on their location

as well as application-specific requirements of the VMs they

are managing.

Each physical server runs a bartering agent which analyzes

network traffic fingerprints and topology information, and

determines when a job could benefit from relocation. When

the total traffic between a given virtual machine and physical

server exceeds some threshold, the bartering agent negotiates

3Network topology inference is beyond the scope of this work, and we
assume that the topology of the network is known.

a relocation with a desired server and initiates a migration if

successful. Next, we describe how relocation negotiations are

carried out between different servers and how the migration

eventually takes place.

1) Negotiating a Migration: Figure 2 illustrates the barter-

ing algorithm, which works as follows. The bartering agent

on a physical server (e.g., server A in Figure 2) periodically

checks the communication footprint CFPi for each VM

hosted on that server to determine if the VM’s inter-server

traffic (traffic being sent to another physical machine, such

as server B in Figure 2) exceeds intra-server traffic (traffic

being sent to other VMs hosted on the same physical server)4.

If this is the case (e.g., assume VM2’s traffic to B is higher

than its intra-server traffic), and the total volume of traffic

exceeds migration thresholds (computed as discussed below),

the bartering agent (on A) will attempt to negotiate a new

home by sending a migration request to the physical server

(B) receiving the most traffic from the VM. In the following,

we will use Figure 2 to refer to the requesting server (A), the

target server (B) and the VM to be migrated (VM2).

Upon receipt of the migration request, the bartering agent

on B will take one of the following actions:

1) If B has capacity available to host VM2, it will send an

‘accept’ response to A. In this case, the bartering agent

on A will initiate live migration of VM2 to B.

2) If B does not have capacity available, it will return a list

of swap candidates: a subset of its hosted VMs suitable

for possible swapping with VM2. If the agent on A

finds a desirable swap candidate (say, VM4), then the

swap will be carried out with VM2 migrating to B and

the selected swap candidate (VM4) migrating to A. The

choice of swap candidates and the swapping mechanism

is discussed in more detail below.

3) If there are no suitable swap candidates, then B returns a

list of neighbors: nodes which are nearest to it in terms

of network bandwidth/latency. In this case, the bartering

agent on A will contact each of the neighbors in turn by

recursively initiating the relocation process. To limit the

number of attempts, each node is contacted at most once.

Also, the bartering agent will only migrate a VM to a

neighbor if the neighbor has significantly (e.g., factor of

10) higher bandwidth to the desired server (B) than the

original host (A). If none of the neighbors which meet

the migration criteria can host the VM, the server will

give up the migration attempt.

To avoid unnecessary migrations and oscillations due to

transient communication patterns, each bartering agent uses

an inertia factor > 1, so that a migration is attempted only if

the inter-server traffic exceeds the intra-server traffic by inertia

factor. Intuitively, the inertia factor forces a VM to stay at its

current location, unless there is substantial benefit in migrating

it. To avoid deadlocks (where two machines simultaneously

send requests to each other and wait for each other’s response),

4In Section V-F, we extend this condition to also compare the VM’s inter-
cluster and intra-cluster traffic.

as well as to avoid redundant migrations arising due to race

conditions (e.g., VMs 2 and 3 being migrated to each other’s

servers simultaneously), a bartering agent only allows a single

ongoing relocation transaction at any point of time at its

server. This means that if the agent has sent or received a

migration request, it refuses all incoming requests and avoids

sending any outgoing requests until the migration process

completes (successfully or not). The requesting agent selects

a random wait-time based on an exponential backoff before

retrying a request that has been denied due to an ongoing

transaction. The agents also maintain timers to timeout long-

standing requests that have not received a response. Also, the

actual migration of a VM (through xm_migrate in our Xen

implementation) is carried out by a separate thread to avoid

system hangs or crashes occurring due to failed migrations.

2) VM Swapping: As described above for Case 2 in the

bartering algorithm, in some cases, a VM migration may be

desirable even if the destination machine is full. For instance,

considering the setup shown in Figure 2, assume that each

server can fit only 2 VMs each. In this case, to enable

migration of VM2 to machine B, the bartering algorithm

allows VM swapping, where the bartering agents on the two

machines swap VMs to honor the resource limitations at each

server. This swapping is done only if the swap will result in a

better placement of the VMs in terms of their communication

affinities.

There are two decisions involved in the swapping process:

• Selecting swap candidates: When a bartering agent on a

full server receives a migration request (e.g., machine B

from A for VM2), it needs to select a set of local VMs

for possible swapping if they exist. There are two kinds

of VMs that are possible swap candidates in this case:

Type1 : A VM that will benefit by moving to A from B.

This could be a VM whose traffic to machine A is

higher than its intra-machine traffic and may have

tried migrating to A unsuccessfully in the past. A

could also be in the neighbor list of such a VM’s

desired server, so that it may benefit from moving

to A anyway.

Type2 : An isolated VM, i.e., one which does not com-

municate with any other VMs (whose inter-VM

communication to any VM in the system is below an

isolation threshold). Intuitively, such a VM would

not be affected irrespective of where it is placed.

Each agent maintains a list of such swap candidates

running on its machine, and sends the appropriate ones

depending on the requesting server.

• Making a swap decision: Once the requesting server

receives the list of swap candidates, it needs to select

one of them. If there are multiple swap candidates,

then the requesting server will give higher preference to

type 1 candidates, picking the one with the maximum

differential in inter-vs.-intra-machine traffic. In this case,

it will also ensure that the preferred swap candidate in

fact will end up with higher intra-machine traffic after the

swap. This check is needed to ensure an overall benefit

from the swap. For instance, in the example above, VM2

may be communicating a lot with both VM3 and VM4.

In that case, swapping VM2 and VM4 would not make

any difference in the overall traffic while incurring the

unnecessary overhead of migration. A type 2 candidate

is selected only if no type 1 candidate exists. In addition,

since migration is not free, we also use a swap inertia

parameter to weigh the cost of swapping, so that we avoid

swapping when it results in only minor benefit.

The swap is done by triggering each migration in suc-

cession, so that temporarily one of the machines will be

overloaded, however, this enables synchronized swaps with

each VM in a consistent state between any migrations. In some

cases, the use of temporary servers may be needed to avoid

overloading the servers participating in the swap [13], but we

do not consider this scenario in our implementation.

3) Computing Migration Thresholds: As mentioned above,

to ensure that the application will benefit from a VM mi-

gration, we must ensure that the performance benefit due to

the relocation outweighs the cost of migration. This can be

accomplished by computing the migration cost (in time) for

a VM from one server to another, and comparing it to the

communication cost savings that would be achieved due to

the relocation in terms of reduced application runtime.

A VM’s migration cost is typically dependent on its memory

size as well as the bandwidth of the link over which migration

has to take place. Thus, for a given VM and target physical

server, we can compute a migration cost estimate proportional

to the VM’s memory size and inversely proportional to the

bandwidth of the link connecting the host physical server to

the destination server. Using this estimate, we can determine

the migration threshold: the traffic volume a VM must be

exchanging with the destination server within each measure-

ment window in order to benefit from relocation to that

server. Intuitively, this migration threshold will be higher for

bigger VMs and over slow, bottleneck links, preventing costly

migrations until they provide a large enough benefit. Note that

the actual downtime of a VM could be reduced further by

techniques such as pre-copying of inactive memory pages [23].

At the same time, migration over WAN without shared storage

may require copying of local storage as well [24], resulting in

much higher migration cost and thus much larger migration

thresholds (proportional to storage size).

V. EVALUATION

A. Experimental Setup

We conducted our experiments on a 7-node cluster, where

each node is a 2xdual-core 2800 MHz AMD Opteron Pro-

cessor 2220 with 4 GB RAM and 250 GB disk space, and

the nodes are connected via Gigabit Ethernet. Each node

runs Xen 3.2.1, with the Dom0 and the DomU’s running

Debian Etch Linux kernel 2.6.18-6-xen-amd64 for one set of

experiments (Intel MPI benchmarks) and running Ubuntu 8.04

Linux kernel 2.6.24-24-xen for the second set of experiments

��� ��� ���

��� ��� ���

��� ��� ���

��� ��� ���

Fig. 3. Cube MDH Jet application structure: Each process communicates
with all its neighbors. A 2-dimensional spatial layout is shown here.

(Cube Application), due to library dependencies. Due to space

constraints, we present a subset of results, and more detailed

results can be found in a technical report [25].

1) Benchmarks and Application: We have used the follow-

ing benchmarks/applications for our evaluation:

• The Intel MPI benchmark suite [14] consists of multiple

MPI-based benchmark programs that can test different

communication patterns. Examples of such benchmarks

include Ping-pong which sets up pairwise communica-

tion between sets of processes, Exchange which sets

up a chain of processes doing two-way communication,

Scatter-gather which carries out scattering and gathering

of data among a set of randomly placed processes, All-

to-all in which each process sends and receives data from

all other processes, and Broadcast where a root process

broadcasts data to all other processes.

• Cube MHD Jet (Cube) [15] is an astrophysics application

that performs numerical magnetohydrodynamic (MHD)

simulations: it simulates a jet of plasma travelling through

a magnetic field in three-dimensional space. It consists of

multiple computational processes communicating inter-

mediate state with each other. As part of this simulation,

the space is divided into different regions, each of which

is assigned to a computation process. The simulation

starts with an initial state. During each time step, each

process does computations for its region. At the end

of each time step, each process exchanges its current

boundary conditions with all its neighboring processes

corresponding to its surrounding regions of space, and

the next time step is started with the updated state

information. Figure 3 illustrates an example layout of

the processes and their interactions. The application can

be configured to communicate in arbitrary grid patterns

depending on how many nodes are available.

In our experiments, we place the processes for each bench-

mark/application within VMs which are assigned to physical

machines. The goal is to have the VMs be placed in a

�

�

�

�

�

�

������

������� �������

Fig. 4. Hierarchical network topology consisting of two clusters of 3
machines each, with an inter-cluster bandwidth of 5 Mbps and intra-cluster
bandwidth of 25 Mbps.

communication-optimal manner.

2) Network Topology Setup: We create a logical network

hierarchy on top of 6 nodes in our cluster as shown in Figure 4.

Our hierarchy consists of two logical clusters each consisting

of 3 machines. We used the Linux token bucket packet

scheduler to rate control the traffic going between different

sets of machines. Another node in our physical cluster is set

up as an NFS server to export the file system for the cluster,

which is needed for migration purposes. Since the benchmarks

and applications used in our experiments are designed to be

run on clusters with ∼1000 nodes connected over 1-10Gbps

links, while we used only 24 cores, we had to throttle the

intra-cluster and inter-cluster network bandwidth to 25 and

5 Mbps respectively in order to show meaningful network

contention. At the same time, to achieve realistic migration

times expected in real platforms, the inter-machine bandwidth

throttling for migration purposes was set to 500Mbps intra-

cluster and 100Mbps inter-cluster respectively. Since each VM

is assigned a separate MAC address visible over the network,

and the packets are addressed to these virtual MAC addresses

(and not the physical machine MAC address), the rate control

has to be done on per-VM pair basis. To carry out this VM-

pair based rate control in the presence of VM migrations

while maintaining the desired network topology, we maintain a

global VM-to-physical machine mapping file, which is updated

upon each migration. A VM-to-physical machine mapping file

is used by our bartering algorithm as its lookup service for

locating VMs. This mapping file is exported by the NFS server,

and the bartering agent on each machine polls it periodically

to update the VM-to-physical machine mapping.

3) Comparison Algorithms: In our experiments, we com-

pared the following placement/migration algorithms:

• No migration: The VMs are run as initially assigned.

• Affinity-based migration: Here, a VM is migrated closer

to other VMs with which it has higher affinity using the

distributed bartering algorithm described in Section IV-B.

• Best/Optimal placement: Here, the VMs are pre-placed

in an optimal configuration in terms of minimizing the

network overhead, based on their communication pattern,

and no migration takes place during the execution. The

Intel MPI benchmarks select the communication pattern

at runtime when they are started, and hence, it was

not possible to determine the communication pattern

beforehand. For these benchmarks, we ran trials with

multiple “near-optimal” (closely-placed) configurations

and selected the best among all runs.

4) Metrics: We use the following metrics to compare the

performance of the different placement/migration algorithms:

• Application runtime: This metric provides a measure of

the application performance.

• Total network communication cost: This metric is defined

as the sum of the cumulative network communication cost

between all VM pairs in the system, using the definition

of communication cost (CCi,j for VMs i and j) from

Equation 1 (Section IV). We assume BWi,j for two VMs

running on the same server to be ∞ as there is no network

traffic in this case (VMs communicate through memory).

• Intra/Inter-machine traffic: These metrics provided a

measure of how much traffic was flowing between co-

located VMs against that flowing through the network,

providing a measure of how much network traffic was

actually eliminated for the application communication.

• Intra/Inter-cluster traffic: These metrics provided a mea-

sure of how much traffic was flowing within each logical

cluster against that flowing through the bottleneck link

between the two logical clusters, providing a measure of

how much network traffic was moved to faster links.

All results are based on averages taken over multiple trials

and all graphs show 95% confidence intervals. For our affinity-

based migration algorithm, we used the following monitoring

and migration parameters: a monitoring window W of 20

seconds. an exponential averaging constant α= 0.125 for

computing the traffic volume, and inertia factor of 1.2 and

swap inertia factor of 1 for the migration and swapping

decisions respectively.

B. Benefit for Static Configurations

In our first set of experiments, we show the benefit of using

affinity-based migration when the communication pattern of

the applications remains fixed.

1) Intel MPI Benchmarks: We first ran different bench-

marks from the MPI benchmark suite to see the impact on the

application runtime. For each benchmark, we used 6 processes

each running within one VM, and each physical server was

assigned one VM chosen at random. The benchmarks were

run under several different configurations matching the above

initial placement methodology, with and without affinity-based

migration. For migration purposes, each server was limited

to 3 VMs as its limit. We also compared these results to

“best” configurations, where 2 servers in the same cluster

were manually assigned 3 VMs each to minimize the network

communication cost.

Figure 5 shows the average runtime results for these exper-

iments. As seen in the figure, the benchmarks show about

6.7-33.9% average reduction in runtime, compared to No

Migration, when using our algorithm. However, the gains in

the Alltoall benchmark are not statistically significant. This

(a) Intra-Machine Traffic (b) Intra-Cluster Traffic

Fig. 7. Intra-machine and intra-cluster traffic ratios for MPI benchmarks - static configuration (Higher is better)

Fig. 5. Runtimes for MPI benchmarks - static configuration

Fig. 6. Normalized communication cost for MPI benchmarks - static
configuration

may be attributed to a higher amount of inter-machine and

inter-cluster traffic caused due to the communication patterns

of this benchmark, as it involves data exchanges involving

all processes. If Alltoall is excluded, the average reduction

is 28.9-33.9%. We also see that the Best runtimes are on

an average 32-43% of Migration runtimes. There are two

main reasons for this gap. First of all, the Migration runtimes

include the migration time which is shown as the shaded

bar within the migration bars in the graph. This migration

time forms 14-23% of the total runtime. Secondly, since our

affinity-based algorithm is completely distributed and uses

only local information, it sometimes settles into a non-optimal

configuration, explaining the gap in its performance from Best.

Next, we look at the network communication cost of the

different algorithms to understand how much network over-

head savings they provide. Figure 6 shows the communication

cost for these algorithms normalized with respect to that

of No Migration. As shown in the figure, we see that the

normalized communication cost of the affinity-based migration

algorithm is 0.18-0.32 compared to 0.11-0.15 for Best on

average. This shows that our migration algorithm is able to

substantially reduce the network communication cost. Again,

the confidence interval for Alltoall benchmark was very large,

indicating a lot of variation because of the extreme nature of

its communication pattern.

To understand this reduction in communication cost further,

Figures 7(a) and (b) show the intra-machine and intra-cluster

traffic as a ratio of the total traffic for these benchmarks re-

spectively. Note that higher values are better in these graphs, as

it is preferable to have more traffic within a server and within

a cluster. This is because all intra-machine communication

happens via the server memory and does not go onto the

wire, while the intra-cluster traffic avoids bottleneck inter-

cluster links. First, from Figure 7(a), we observe that the

intra-machine traffic ratio is 0 for the No Migration case,

since it consists of each VM placed on a different physical

machine. The intra-machine traffic is 43-64% of the total

traffic on average for Migration as opposed to 35-49% for

Best. Migration has better average values than Best, though the

error bars for Migration and Best overlap for all benchmarks,

which shows that they are statistically identical in terms of the

total network traffic eliminated. Figure 7(b) shows the intra-

cluster traffic, corresponding to the traffic diverted from the

bottleneck link. In this case, Best is at 100% since all VMs

are on the same cluster in this case. We see that the intra-

cluster traffic for Migration is an average of 87-94% of the

total traffic as opposed to 36-46% for No Migration, showing

how Migration is able to bring most of the traffic to the same

side of the bottleneck link. These results show that affinity-

based migration is able to migrate many of the communicating

VMs to the same machine or the same cluster, thus eliminating

network traffic altogether or moving it to faster links, thus

reducing the demands on the underlying network.

2) Cube MHD Jet Application: In the next set of exper-

iments, we ran the Cube application with 12 VMs, and a

(a) Intra-Machine Traffic (b) Intra-Cluster Traffic

Fig. 10. Intra-machine and intra-cluster traffic ratios for Cube

Fig. 8. Normalized Runtimes for Cube application

Fig. 9. Normalized communication cost for Cube application

limit of 4 VMs per machine. The application was set up to

communicate in a 4x3 grid pattern, and was run for 5000

steps of the simulation. For the initial configuration, 2 VMs

were placed at random on each of the 6 physical machines,

and the application was run with migration enabled and also

with migration disabled. Here, based on the application’s

communication pattern, the optimal configuration had 4 VMs

per physical machine on 3 machines within the same cluster.

Figures 8 and 9 show the runtime and communication

cost results for the application normalized by those of the

No Migration algorithm. We see an average improvement of

Fig. 11. Runtimes for MPI benchmarks - dynamic configuration

13% in runtime and a normalized communication cost of

0.35 w.r.t. No Migration. This is in comparison to a 77%

improvement in runtime and a 0.11 normalized communication

cost for Optimal. Figures 10(a) and (b) show the intra-machine

and intra-cluster traffic ratios of 0.48 and 0.86 for Migration

vs. 0.52 and 1 for Optimal respectively, showing again that

the affinity-based migration algorithm is able to reduce the

network traffic as well as divert it from the bottleneck link

substantially.

C. Benefit for Dynamic Configurations

We now show the benefit of using affinity-based migration

when the communication pattern of the applications changes

over time. In this set of experiments, we chained multiple Intel

MPI benchmarks to execute in succession to emulate changing

communication patterns. In this case, each of the benchmarks

was started in the same configurations as before, however,

the communication pattern between the VMs changed on

switching from one benchmark to the next. This was done to

demonstrate how each of the algorithms responds to changes in

application behavior. In this case, for No Migration, each VM

remains in its initial location, while for the Migration case,

the VMs are migrated based on the communication patterns

observed in the system (thus re-migrating some of the VMs

after the switch to a different benchmark). For the Best case,

Fig. 12. Normalized communication cost for MPI benchmarks - dynamic
configuration

Fig. 13. Runtimes for multiple concurrent benchmarks

the VMs were started on a favorable placement based on the

first benchmark, and were kept at those locations throughout

the execution. However, we ran multiple such configurations,

and picked the best overall execution.

Figures 11 and 12 show the runtimes and the commu-

nication cost respectively for these dynamic configurations.

As seen in the figures, affinity-based migration improves

performance while reducing the network cost (an average of

25-42% for runtime and normalized communication cost of

0.15-0.51). The Best case runtime is 39-46% of the migration

runtime and it has a normalized communication cost of 0.13-

0.17. These results show the benefit of dynamic inference of

affinity in the face of changing communication patterns.

D. Multiple Concurrent Benchmarks

In the next set of experiments, we examine the behavior

of the migration algorithm in the presence of multiple con-

currently running applications, when the platform is already

completely provisioned. The goal here is to show that even if

the system is completely full (in terms of its CPU and memory

resources), there can still be benefit in terms of reducing

network contention and improving application performance

even further. These experiments also show the benefit of VM

swapping explicitly as migrations could not take place here

without swapping being enabled. Here, each physical machine

was set to a cap of 2 VMs. 1 VM running the Cube benchmark

and 1 VM running the Bcast benchmark was randomly placed

Fig. 14. Normalized communication cost for multiple concurrent benchmarks

Fig. 15. Monitoring overhead

on each physical machine. The algorithm was able to swap

the VMs so that each physical machine ended up with two

VMs running the same benchmark. Figures 13 and 14 show

the normalized runtime and communication cost respectively

for this scenario with similar results as before.

E. Migration and Monitoring Overhead

The migration time overhead has been shown in the earlier

results - it ranges from 8-23% in most cases. In terms of the

network overhead of migration, it depends on the RAM size

of the VMs. For our experiments, we set the RAM size to be

632 MB per VM, and we saw an average migration overhead

of 620,906 packets for Etch VM images, and 616,519 packets

for Hardy VM Images.

Figure 15 shows the monitoring overhead by comparing

the runtime of the Broadcast benchmark with and without

monitoring enabled (here we do not carry out any migrations).

As seen in the figure, there is no statistically significant

difference in the two runtimes, thus showing minimal impact

of monitoring on the application performance.

F. Topology-aware Migration

So far, our algorithm has used only the inter-server traffic

as the criterion to determine when to migrate a VM. As

discussed in Section III-B, the communication footprints can

be aggregated in different ways to get a view of the traffic

flow at different parts of the network hierarchy, such as over

(a) AllReduce (b) Exchange

Fig. 16. Runtimes for Topology-aware migration

(a) AllReduce (b) Exchange

Fig. 17. Normalized communication cost for topology-aware migration

(a) AllReduce (b) Exchange

Fig. 18. Intra-cluster traffic ratios for topology-aware migration

a rack, cluster, etc. We now consider an extension to our

migration algorithm that uses such aggregation to incorporate

inter-cluster traffic information in its migration decisions as

well. In particular, the extended algorithm compares not only

the intra-server and inter-server traffic for a VM, but also its

intra-cluster and inter-cluster traffic, before making a migration

decision. Thus, if a bartering agent finds a VM to be a

candidate for migration based on its inter-server traffic to

another machine which is in a different cluster, it allows

the migration only after it ensures that this migration would

not result in increased inter-cluster traffic. Such a calculation

requires knowledge of network topology (e.g., which machines

are in which clusters). In our experiments, we use the neighbor

list (described in Section IV-B) to represent machines in the

same cluster, so that the aggregate traffic for a set of neighbors

is used while making cluster-based traffic comparisons.

Figure 16 shows the runtime results for two MPI bench-

marks: AllReduce and Exchange. Here, the results for the

other algorithms are the same as those from the static MPI

benchmark runs in Section V-B1. In the results, we refer to

our original server traffic-based migration algorithm as Local

migration, and the extended algorithm as Topology-aware

migration. As seen in the figure, the benchmarks running the

topology-aware migration algorithm gained an additional 26-

31% improvement over the local migration algorithm, which

corresponds to a 49-51% improvement over the no migration

case. The extended algorithm also reduced the migration over-

head by 33% from the original algorithm in both benchmarks,

, and reduced the runtime variance of the benchmark. We

believe this is due to a decrease in the number of unnecessary

migrations that happen across clusters. The topology-aware

algorithm determines when an inter-cluster migration is not

worth the migration cost and will abort instead of migrating.

This is also the reason that the migration overhead is reduced.

Figures 17 and 18 show the normalized communication cost

and the intra-cluster traffic ratios, respectively. The topology-

aware algorithm gained an additional 35-46% improvement in

the normalized communication cost over the local migration

algorithm, which corresponds to a 81-83% improvement over

the no migration case. The amount of intra-cluster traffic was

also slightly increased over the original algorithm by 4%,

keeping more traffic within a cluster, while also avoiding extra

inter-cluster migrations.

These results illustrate the opportunity for enhancing our

migration algorithm with more topology information and in-

ference based on our VM-centric monitoring technique, and

this is an area of active future research.

VI. RELATED WORK

Affinity-aware job placement: The VM placement problem

presented in this paper is an instance of the graph partitioning

problem which is known to be NP-complete [22], and several

heuristics (e.g., [26], [27]) have been developed to solve the

general graph partitioning problem. There has also been lot of

work in partitioning jobs among processors for the purpose of

minimizing communication overhead [28], [29], [30]. These

approaches have been largely centralized and assume that the

job dependencies are static and are known a priori. Our goal,

on the other hand, is to perform dynamic job allocation in

a completely distributed manner through VM migration and

placement.

There has been recent work on topology-aware application

mapping and load balancing for scientific applications [31],

[32]. However, our work differs in some key aspects because it

is geared towards virtualized clusters and cloud environments,

as opposed to supercomputing systems targeted in this work.

Thus, while this work assumes knowledge about application

structure for its mapping, we rely on non-intrusive monitoring-

based inference of this information. Secondly, we use a

decentralized approach targeted towards a heterogeneous and

hierarchical network topology, as compared to a centralized

algorithm suitable for a homogeneous and tightly-coupled

network topology considered in this work. Another recent

work [33] aims at providing location-aware cluster manage-

ment for cloud environments for data-intensive applications.

The goals of this work are similar to ours, though we have also

considered communication-intensive applications, and focus

on inferring dynamic communication patterns in addition to

file and data dependencies.

Load balancing: There is a large body of work in load

balancing in distributed systems [34], [35], [36], and recent

work in virtual machine migration, placement and load bal-

ancing [13], [11]. Most of these approaches mainly consider

the local load (e.g., CPU load) on the processors in making

their load balancing decisions, while our work also exploits

the communication affinities between VMs to achieve better

placement and migration. MOSIX [37] is a Linux-based cluster

computing system that also achieves runtime load balancing,

while our focus is on virtualized environments. MOSIX has a

centralized communication-aware algorithm [38] while we use

a decentralized algorithm that can be useful for larger systems.

Distributed resource allocation and scheduling: Several

resource allocation techniques [39], [40], [41], [42] for high-

performance, cluster, and Grid computing have focused on the

discovery and scheduling of resources that match the capacity

requirements (e.g., CPU, memory, etc.) of compute jobs. Most

of these techniques rely on application specification of job

resource requirements. Recent work [10] has proposed using

a control-theoretic feedback algorithm to dynamically change

the resource allocation in a virtualized computing platform.

Our work is complementary to some of these techniques as it

incorporates network affinity and data dependencies between

computation jobs as an additional criterion for doing the re-

source allocation. In addition, through VM-level observations,

our technique performs dynamic and non-intrusive inference of

the communication dependencies, and does not rely on explicit

application-level specification of these dependencies.

Virtual machine performance optimization: Several mech-

anisms have been proposed for improving the networking

performance of virtual machines. Xen and co. [43] extends co-

scheduling [44] to improve the performance of communicating

VMs. Xenloop [45] improves the communication performance

between collocated Xen VMs through an inter-VM shared

memory channel that bypasses the virtualized network in-

terface. Our work can utilize some of these mechanisms to

improve the communication performance among collocated

VMs, and in fact, it attempts to find more opportunities

for such optimizations by moving heavily communicating

VMs closer to each other. At the same time, our technique

provides a more general approach for minimizing network

communication cost over a large distributed system.

Our work is similar in nature to recent work [46], [47] that

have considered memory sharing affinities between VMs for

load-balancing and consolidation, except that we are focusing

on network bandwidth instead of memory usage. In fact, we

believe such affinities should be considered across multiple

resources to provide a unified framework for optimal VM

placement and migration [48].

VII. CONCLUSIONS

As virtualization gains in popularity for large computing

environments, management of VMs is becoming an important

problem. The efficiency of the platform as well as the per-

formance of applications running in the platform are critically

dependent on the characteristics of the applications and the

topology of the infrastructure. In particular, in many existing

virtualized platforms, it has been found that the network

bandwidth often becomes the bottleneck resource due to

the hierarchical topology of the underlying network, causing

both high network contention and reduced performance for

communication and data-intensive applications.

In this paper, we presented a decentralized affinity-aware

migration technique that incorporates heterogeneity and dy-

namism in network topology and job communication pat-

terns to allocate virtual machines on the available physical

resources. Our technique monitors network affinity between

pairs of VMs and uses a distributed bartering algorithm cou-

pled with migration to dynamically adjust VM placement such

that communication overhead is minimized. Our experimental

results running the Intel MPI benchmark and a scientific

application on a 7-node Xen cluster showed that we can get up

to 42% improvement in the runtime of the application over a

no-migration technique, while achieving up to 85% reduction

in network communication cost. In addition, our technique was

able to adjust to dynamic variations in communication patterns

and provides both good performance and low network con-

tention with minimal overhead. We also presented a topology-

aware extension to our migration algorithm that provides an

additional 26-31% reduction in runtime. Incorporating and

inferring more topology information for such affinity-aware

migration is an area of future research.

REFERENCES

[1] “Amazon Elastic Compute Cloud (EC2),” http://aws.amazon.com/ec2/.

[2] “Zmanda case study: Amazon web services,”
http://aws.amazon.com/solutions/case-studies/zmanda/.

[3] “Lotuslive inotes,” https://www.lotuslive.com/en/services/inotes.

[4] “Nasdaq market replay,” http://www.infoq.com/articles/nasdaq-case-
study-air-and-s3?

[5] “Amazon Web Services: Case Studies,”
http://aws.amazon.com/solutions/case-studies/.

[6] “Amazon Elastic MapReduce,” http://aws.amazon.com/elasticmapreduce/.

[7] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen, “Autonomic
Live Adaptation of Virtual Computational Environments in a Multi-
Domain Infrastructure,” in Proceedings of the 2006 IEEE International

Conference on Autonomic Computing, 2006.

[8] R. J. Figueiredo, P. Dinda, and J. Fortes, “A Case for Grid Computing
on Virtual Machines,” in Proceedings of International Conference on

Distributed Computing Systems (ICDCS), Apr. 2003.

[9] K. Keahey, K. Doering, and I. Foster, “From Sandbox to Playground:
Dynamic Virtual Environments in the Grid,” in Proceedings of the 5th

International Workshop in Grid Computing (Grid 2004), Nov. 2004.

[10] S.-M. Park and M. Humphrey, “Feedback-controlled resource sharing
for predictable eScience,” in Proceedings of the 2008 ACM/IEEE Con-

ference on Supercomputing, 2008.

[11] A. Singh, M. Korupolu, and D. Mohapatra, “Server-Storage Virtualiza-
tion: Integration and Load Balancing in Data Centers,” in Proceedings

of the 2008 ACM/IEEE Conference on Supercomputing, 2008.

[12] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the Clouds: A Berkeley View of Cloud Computing,” EECS, UC
Berkeley, Tech. Rep. EECS-2009-28, Feb. 2009.

[13] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and
Gray-box Strategies for Virtual Machine Migration,” in Proceedings

of the 4th USENIX Symposium on Networked Systems Design and

Implementation, 2007.

[14] “Intel MPI Benchmarks,” http://www.intel.com/cd/software/products/
asmo-na/eng/cluster/219847.htm.

[15] “Computational Astrophysics at University of Minnesota,” http://www.
astro.umn.edu/groups/compastro/?q=node/1.

[16] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” in Proceedings of the 6th USENIX Symposium on

Operating Systems Design and Implementation, 2004.

[17] “Apache Hadoop,” http://hadoop.apache.org/core/.

[18] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proceedings of Symposium on Operating Systems Principles, 2003.

[19] R. Wolski, “Dynamically forecasting network performance using the
network weather service,” Cluster Computing, vol. 1, no. 1, pp. 119–
132, 1998.

[20] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-
ishnamurthy, and A. Venkataramani, “iplane: an information plane for
distributed services,” in OSDI ’06: Proceedings of the 7th symposium

on Operating systems design and implementation, 2006, pp. 367–380.

[21] A. B. Downey, “Using pathchar to estimate internet link characteristics,”
in SIGCOMM ’99: Proceedings of ACM SIGCOMM, 1999, pp. 241–250.

[22] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman, 1979.

[23] C. Clark, K. Fraser, , S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live Migration of Virtual Machines,” in Proceedings

of NSDI, May 2005.

[24] A. F. Rob Bradford, Evangelos Kotsovinos and H. Schioeberg, “Live
Wide-Area Migration of Virtual Machines Including Local Persistent
State,” in Proceedings of VEE’07, Jun. 2007.

[25] J. Sonnek, J. Greensky, R. Reutiman, and A. Chandra, “Starling: Min-
imizing Communication Overhead in Virtualized Computing Platforms
Using Decentralized Affinity-Aware Migration,” CSE, University of
Minnesota, Tech. Rep. TR09-030, Dec. 2009.

[26] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell Systems Technical Journal, vol. 49, p. 291307,
Feb. 1970.

[27] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on Scientific Computing,
vol. 20, no. 1, pp. 359–392, 1999.

[28] S. H. Bokhari, “Partitioning Problems in Parallel, Pipeline, and Dis-
tributed Computing,” IEEE Transactions on Computers, vol. 37, no. 1,
pp. 48–57, Jan. 1988.

[29] H. Stone and S. Bokhari, “Control of Distributed Processes,” IEEE

Computer, vol. 11, no. 7, pp. 97–106, Jul. 1978.

[30] V. M. Lo, “Heuristic Algorithms for Task Assignment in Distributed
Systems,” IEEE Transactions on Computers, vol. 37, no. 11, pp. 1384–
1397, Nov. 1988.

[31] A. Bhatele and L. V. Kale, “Application-specific Topology-aware Map-
ping for Three Dimensional Topologies,” in Workshop on Large-Scale

Parallel Processing (IPDPS), 2008.
[32] A. Bhatele, L. V. Kale, and S. Kumar, “Dynamic Topology Aware Load

Balancing Algorithms for Molecular Dynamics Applications,” in 23rd

ACM International Conference on Supercomputing, 2009.
[33] M. A. Kozuch, M. P. Ryan, R. Gass, S. W. Schlosser, D. O’Hallaron,

J. Cipar, E. Krevat, J. Lpez, M. Stroucken, and G. R. Ganger, “Tashi:
Location-aware Cluster Management,” in First Workshop on Automated

Control for Datacenters and Clouds (ACDC’09), 2009.
[34] Y.-C. Chow and W. H. Kohler, “Models for Dynamic Load Balancing

in a Heterogeneous Multiple Processor System,” IEEE Transactions on

Computers, vol. 28, no. 5, pp. 354–361, May 1979.
[35] T. Chou and J. Abraham, “Load Balancing in Distributed Systems,”

IEEE Transactions on Software Engineering, vol. SE-8, no. 4, pp. 401–
412, Jul. 1982.

[36] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive load sharing
in homogeneous distributed systems,” IEEE Transactions on Software

Engineering, vol. 12, no. 5, pp. 662–675, May 1986.
[37] B. A. and L. O., “The MOSIX Multicomputer Operating System for

High Performance Cluster Computing,” Journal of Future Generation

Computer Systems, vol. 13, no. 4-5, pp. 361–372, Mar. 1998.
[38] K. A. and B. A., “Opportunity Cost Algorithms for Reduction of I/O and

Interprocess Communication Overhead in a Computing Cluster,” IEEE

Tran. Parallel and Distributed Systems, vol. 14, no. 1, pp. 39–50, Jan.
2003.

[39] “Platform LSF,” http://www.platform.com/Products/platform-lsf.
[40] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and A. Roy,

“A Distributed Resource Management Architecture that Supports Ad-
vance Reservations and Co-Allocation (1999),” in Proceedings of the

International Workshop on Quality of Service (IWQoS), 1999.
[41] R. Raman, M. Livny, and M. Solomon, “Matchmaking: Distributed

Resource Management for High Throughput Computing,” in HPDC’98,
Jul. 1998.

[42] V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao, “Cluster Computing on
the Fly: P2P Scheduling of Idle Cycles in the Internet,” in Proceedings

of the IEEE Fourth International Conference on Peer-to-Peer Systems,
2004.

[43] S. Govindam, A. Nath, A. Das, B. Urgaonkar, and A. Sivasubramaniam,
“Xen and Co.: Communication-aware CPU Scheduling for Consolidated
Xen-based Hosting Platforms,” in Proceedings of the 3rd Intl. Confer-

ence on Virtual Execution Environments, 2007.
[44] J. K. Ousterhout, “Scheduling techniques for concurrent systems,” in

Proceedings of the 3rd Intl. Conf. on Distributed Computing Systems

(ICDCS), Oct. 1982.
[45] J. Wang, K.-L. Wright, and K. Gopalan, “XenLoop: a transparent high

performance inter-vm network loopback,” in Proceedings of the 17th

International Symposium on High Performance Distributed Computing

(HPDC’08), 2008, pp. 109–118.
[46] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,

G. M. Voelker, and A. Vahdat, “Difference Engine: Harnessing Memory
Redundancy in Virtual Machines,” in Proceedings of the 8th USENIX

Symposium on Operating System Design and Implementation, 2008.
[47] T. Wood, G. Tarasuk-Levin, P.Shenoy, P. Desnoyers, E. Cecchet, and

M. Corner, “Memory Buddies: Exploiting Page Sharing for Smart
Colocation in Virtualized Data Centers,” in Proceedings of the 5th ACM

Intl. Conference on Virtual Execution Environments, 2009.
[48] J. Sonnek and A. Chandra, “Virtual Putty: Reshaping the Physical

Footprint of Virtual Machines,” in Workshop on Hot Topics in Cloud

Computing (HotCloud’09), Jun. 2009.

