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Abstract: A novel string-inspired gravitational theory in four spacetime dimensions is proposed as
a sum of the modified (R + αR2) gravity motivated by the Starobinsky inflation and the leading
Bel–Robinson-tensor-squared correction to the gravitational effective action of superstrings/M-theory
compactified down to four dimensions. The possible origin of the theory from higher dimensions
is revealed. The proposed Starobinsky–Bel–Robinson action has only two free parameters, which
makes it suitable for verifiable physical applications in black hole physics, cosmological inflation and
Hawking radiation.
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1. Introduction

General relativity theory with the Einstein–Hilbert (EH) action for gravity in D = 4
spacetime dimensions is well confirmed by precision measurements inside the solar system.
However, the EH action has to be modified in the UV regime (for high energies and
curvatures, in the early universe), in the IR regime (for cosmological distances), and (beyond
any doubt) in quantum gravity. When preserving the general coordinate invariance and
locality, the EH gravity action can only be modified (besides a cosmological constant) by
extra terms of the higher order in spacetime curvature. These higher-derivative terms in the
gravitational effective action are supposed to describe quantum gravity corrections to the
EH action, while they are necessary for physical applications in the UV regime because the
EH gravity is non-renormalizable. This issue is well known in the literature about gravity
but the main problem is a well-motivated derivation of the gravitational effective action
from quantum gravity or a reasonable selection of the higher-order terms because there are
infinitely many of them.

Solving this problem requires a practical framework for quantum gravity in order
to perform calculations, which is another problem. Superstring theory is a mathemati-
cally consistent framework for quantum gravity, but its applications to observed physics
are limited by the necessity of compactification of extra (D − 4) spacetime dimensions
and related huge uncertainties in verifiable predictions. Moreover, superstring theory in
D = 10 dimensions is defined as a quantum perturbation theory and is not background-
independent. In fact, string theory can only be formulated on Ricci-flat backgrounds and
does not allow de Sitter vacua.

Nevertheless, it makes sense to use insights from superstrings/M-theory together
with other insights into quantum gravity, coming from early universe cosmology, black
hole physics and particle physics beyond the standard model, in order to motivate the
leading quantum gravity corrections to the EH action of gravity.

In this manuscript, we formulate a new proposal for those corrections needed in the
high-curvature regime, motivated by the compactified D = 10, type-II superstrings or
M-theory in D = 11 dimensions, together with the simplest viable model of cosmological
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inflation in four spacetime dimensions, known as the Starobinsky model. The resulting
gravity action is called the Starobinsky–Bel–Robinson (SBR) gravity.

Our paper is organized as follows. In Section 2, we recall the Starobinsky model of
inflation in four spacetime dimensions and its possible origin from higher dimensions. In
Section 3, we recall the low-energy effective action of M-theory in eleven dimensions and
its compactification to four dimensions. In Section 4, we formulate the novel SBR gravity in
four dimensions and give our conclusions.

2. Starobinsky Gravity and Extra Dimensions

The Starobinsky model of inflation is defined by the modified gravity action [1]

SStar. =
M2

Pl
2

∫
d4x

√
−g
(

R +
1

6m2 R2
)

, (1)

where we have introduced the scalar curvature R, reduced Planck mass MPl = 1/
√

8πGN ≈
2.4× 1018 GeV and the mass parameter m. We use the spacetime signature (−,+,+,+, ).

In the low-curvature spacetime, the R2 term can be ignored and the action (1) reduces
to the EH action. During inflation in the early universe (with strong spacetime curvature),
the EH term can be ignored and the action (1) reduces to the no-scale R2 gravity with
the dimensionless coupling constant in front of the action. The R2 term with a positive
coupling constant is the only term in a generic Lagrangian, quadratic in the curvature tensor,
that does not lead to ghosts, i.e., it is well theoretically motivated. The quantized gravity
theory (1) is, however, non-renormalizable, with the UV cutoff being given by MPl; see, e.g.,
Ref. [2] for more details.

The action (1) is also well phenomenologically motivated due to its excellent agreement
with WMAP/Planck/BICEP/KECK precision measurements of the cosmic microwave
background radiation [3]. Then, the parameter m is the inflaton mass that can be fixed by
the COBE/WMAP normalization as

m ≈ 3× 1013 GeV or
m

MPl
≈ 1.3× 10−5. (2)

The action (1) can be deduced from higher (D) spacetime dimensions, while preserving
the hierarchy of physical scales, Hinf. � MKK � MPl, where Hinf. is the Hubble scale
of inflation, and MKK is the Kaluza–Klein scale. The relevant field theory in D > 4
dimensions should have the modified gravity Lagrangian of the form (R + αRn) in terms
of the D-dimensional scalar curvature R, coupled to a (p− 1)-form gauge field A and a
having cosmological constant. Then, the warped compactification from D dimensions on
a sphere SD−4 with a non-vanishing flux of the gauge field strength F = d ∧ A down to
four spacetime dimensions leads to the Starobinsky action (1). As was demonstrated in
Refs. [4,5], it is only possible when n = D/2 and p = n. In particular, when D = 8, the
modulus (radius) of the hidden four-sphere S4 of extra dimensions can be stabilized, while
the modified D = 8 gravity can be embedded into the modified D = 8 (Salam–Sezgin)
gauged supergravity [6]. In turn, as was argued in Ref. [5], the modified D = 8 supergravity
may be derived by compactifying the modified 11-dimensional supergravity on a three-
sphere S3. As a result, the Starobinsky action (1) may be derivable from the 11-dimensional
supergravity modified by the term quartic in the scalar curvature and compactified on the
product S4 × S3 of extra dimensions. Unfortunately, a supersymmetric completion of such
action in D = 11 was never found. The significance of eleven dimensions is due to the fact
that the supergravity theory in D = 11 is unique [7], while its extension to quantum gravity,
known under the name of M-theory, is presumably also unique, with local supersymmetry
in D = 11 playing the essential role. 1
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3. Bel–Robinson-Tensor-Squared Term

Having recognized the importance of eleven spacetime dimensions, it is natural to
ask what could be the next term in the effective gravity Lagrangian beyond the R2 term in
D = 4, when starting from M-theory beyond the supergravity action in D = 11, after its
(flux) compactification to four spacetime dimensions.

The bosonic terms (when all fermionic fields are ignored) of M-theory in the leading
order beyond the D = 11 supergravity action read [8,9]

SM =
1

2κ2
11

∫
d11x

√
−g
[

R− 1
2 · 4!

F2 − 1
6 · 3! · (4!)2 ε11CFF

]
(3)

− T2

(2π)4 · 32 · 213

∫
d11x

√
−g
(

J11 −
1
2

E8

)
+ T2

∫
C ∧ X8,

where κ11 is the 11-dimensional gravitational constant, T2 is the M2-brane tension,

T2 =

(
2π2

κ2
11

)1/3

, (4)

C is the three-form gauge field of the eleven-dimensional supergravity [7], F = d ∧ C is
the four-form gauge field strength, R is the gravitational scalar curvature in D = 11, ε11
stands for the Levi–Civita symbol in eleven dimensions, while (J, E8, X8) are the quartic
polynomials with respect to the eleven-dimensional Riemann curvature. In particular, the
J11 is given by

J11 = 3 · 28
(

RmijnRpijqRm
rspRq

rsn +
1
2

RmnijRpqijRm
rspRq

rsn

)
, (5)

the E8 can be written in terms of the Euler density in eight dimensions,

E8 =
1
3!

εabcm1n1 ...m4n4 εabcm′1n′1 ...m′4n′4 Rm′1n′1 m1n1 · · · R
m′4n′4 m4n4 (6)

and the X8 is given by the gravitational eight-form

X8 =
1

192 · (2π2)4

[
trR̂4 − 1

4
(trR̂2)2

]
, (7)

where R̂ stands for the spacetime curvature two-form in eleven dimensions, and the traces
are taken with respect to (implicit) Lorentz indices in D = 11 dimensions. All (Latin) vector
indices take values i, j, k, . . . = 0, 1, 2, . . . , 10, while they are all suppressed in Equation (3)
for simplicity. See Ref. [10] for the notation of the exterior differential forms describing
gravitational quantities in any dimension.

The D = 11 gravity theory (3) can be compactified with the warp factors on the
product S3 × S4 of extra dimensions down to four spacetime dimensions, in the presence of
fluxes needed for moduli stabilization [11]. Being interested in the gravitational sector of the
effective field theory in D = 4 dimensions, we can apply a simple dimensional reduction to
the action (3) and ignore details of its compactification together with all moduli. Then, only
one term survives [12],

S4 =
1

2κ2

∫
d4x

√
−g
(

R + κ6βJ4

)
(8)

where all quantities are now in D = 4 with κ = 1/MPl, and β is the new dimensionless
coupling constant whose value is supposed to be determined from the compactification. In
particular, the J4 is dictated by its D = 11 origin from J11 of Equation (5) and has the same
structure in D = 4,

J4 = RmijnRpijqRm
rspRq

rsn +
1
2

RmnijRpqijRm
rspRq

rsn. (9)
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with i, j, k, . . . = 0, 1, 2, 3.
The peculiar structure and physical meaning of the quartic curvature terms in

Equation (9) is revealed via their connection to the four-dimensional Bel–Robinson (BR)
tensor that is well known in general relativity [13–15]. The BR tensor is defined as

Tiklm ≡ Ripql Rk
pq

m + ∗Ripql∗Rk
pq

m = Ripql Rk
pq

m + RipqmRk
pq

l − 1
2

gikRpqrl Rpqr
m (10)

by analogy with the energy–momentum tensor of the Maxwell theory of electromagnetism,

TMaxwell
ij = FikFj

k + ∗Fik
∗Fj

k, Fij = ∂i Aj − ∂j Ai, (11)

where the superscript (∗) means the dual tensor in D = 4. As regards the curvature tensor,
we have

∗Riklm =
1
2

EikpqRpq
lm, (12)

where Eiklm =
√−g εiklm is the Levi–Civita tensor.

Then, one finds [12,15]

T2
ijkl = 8J4 = −1

4
(∗R 2

ijkl)
2 +

1
4
(∗Rijkl Rijkl)2 =

1
4
(P2

4 − E2
4) =

1
4
(P4 + E4)(P4 − E4), (13)

where we have also introduced the Euler and Pontryagin topological densities in D = 4,

E4 =
1
4

εijklε
mnpqRij

mnRkl
pq = ∗Rijkl

∗Rijkl (14)

and
P4 = ∗Rijkl Rijkl , (15)

respectively. We use the book-keeping notation A2
ijlk ≡ Aijlk Aijlk for any rank-4 tensor A.

On-shell (by using the equations of motion in the EH gravity), one can show [13,14]
that the BR tensor is fully symmetric and traceless,

Tijkl = T(ijkl), Ti
ikl = 0, (16)

is covariantly conserved,
∇iTijkl = 0, (17)

and has a positive “energy’ density”,

T0000 > 0. (18)

The BR tensor is also related to the symmetric gravitational Landau–Lifshitz (LL)
energy–momentum pseudo-tensor [16]

(tLL)
ij =− ηipη jqΓk

pmΓm
qk + Γi

mnΓj
pqηmpηnq −

(
Γm

npΓj
mqηinηpq + Γm

npΓi
mqη jnηpq

)
+ hijΓm

npΓn
mqηpq (19)

and the non-symmetric Einstein (E) gravitational energy–momentum pseudo-tensor [17]

(tE)i
j =

(
−2Γi

mpΓm
jq + δi

jΓ
n
pmΓm

qn

)
ηpq (20)

in Riemann normal coordinates as follows [15]:

Tijkl = ∂k∂l

(
tLL
ij +

1
2

tE
ij

)
. (21)
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4. Conclusions

Having motivated the presence of the scalar curvature squared term from inflation
and the Bel–Robinson–tensor-squared term from superstrings/M-theory in the D = 4
gravitational effective action, we propose the SBR gravity as a sum of them, with the
following action:

SSBR[gij] =
M2

Pl
2

∫
d4x

√
−g

[
R +

1
6m2 R2 +

β

M6
Pl

J4

]
,

=
M2

Pl
2

∫
d4x

√
−g

[
R +

1
6m2 R2 +

β

8M6
Pl

T2

]
, (22)

=
M2

Pl
2

∫
d4x

√
−g

[
R +

1
6m2 R2 +

β

32M6
Pl
(P2

4 − E2
4)

]
,

where we have used Equation (13).
Equation (22) is our proposal for the D = 4 gravitational effective action in the high-

curvature regime and our main result in this manuscript. The high-curvature regime is
defined by a situation where the values of the second and third terms in Equation (22) are
comparable to or larger than the value of the first one. Of course, the action (22) is still an
approximation that is not valid at the scales close to the Planck scale.

More comments are in order.
The proposed action (22) is gravitational (no matter added) and geometric; it does not

have arbitrary functions and extra scalars (beyond the spacetime metric and Starobinsky’s
scalaron that is the physical excitation of the higher-derivative (R + αR2) gravity).

The SBR action has only two parameters (m, β), which implies its predictive power
for a wide range of physical applications, such as black hole entropy [18], inflation [19]
and Hawking radiation [20]. These parameters should be subject to renormalization, i.e.,
they should depend upon a physical scale. Being subject to the renormalization of the
parameters, the action (22) may be applied at any scale.

The SBR action is string-inspired in the sense that the BR term quartic in the curvature
comes from superstrings/M-theory as the theory of quantum gravity that is not only
renormalizable but is also unitary and ghost-free by construction [21]. In other words,
the popular Lovelock-like or Horndeski-like criteria demanding the absence of the higher
derivatives (beyond the second order) in the equations of motion do not apply.

The Ricci-tensor-dependent terms in the gravitational effective action of strings/M-
theory cannot be determined from the known S-matrix in superstring theory, but they are
not forbidden either [22]. From the viewpoint of string theory, the coupling constants (m, β)
are supposed to be given by the vacuum expectation values of moduli fields (including
dilaton) as a result of compactification. However, all those moduli and dilaton have to be
stabilized, which is a difficult problem [11,23].

The SBR action includes two topological densities (or four-forms) E4 and P4 that
can be locally represented as the wedge derivatives of the corresponding Chern–Simons
three-forms. However, they do contribute to the equations of motion in the SBR gravity
because they enter the action (22) as the squared terms. Since the Euler density E4 is the
same as the Gauss–Bonnet density G = R2 − 4R2

ij + Rijkl Rijkl , when ignoring the P2
4 term

in Equation (22), the SBR action reduces to the particular modified gravity action of the
type F(R, G) with the quadratic terms in R and G only (cf. Ref. [24]).

Some specific applications of the proposed SBR theory will be studied elsewhere.
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Notes
1 Another possibility is to start from F-theory in D = 12 dimensions and compactify it on a product of two Kummer surfaces

K3× K3.
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