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Abstract We classify singularities in FRW cosmologies,

which dynamics can be reduced to the dynamical system of

the Newtonian type. This classification is performed in terms

of the geometry of a potential function if it has poles. At the

sewn singularity, which is of a finite scale factor type, the

singularity in the past meets the singularity in the future. We

show that such singularities appear in the Starobinsky model

in f (R̂) = R̂ +γ R̂2 in the Palatini formalism, when dynam-

ics is determined by the corresponding piecewise-smooth

dynamical system. As an effect we obtain a degenerate sin-

gularity. Analytical calculations are given for the cosmolog-

ical model with matter and the cosmological constant. The

dynamics of model is also studied using dynamical system

methods. From the phase portraits we find generic evolution-

ary scenarios of the evolution of the universe. For this model,

the best fit value of �γ = 3γ H2
0 is equal 9.70 × 10−11. We

consider a model in both Jordan and Einstein frames. We

show that after transition to the Einstein frame we obtain both

the form of the potential of the scalar field and the decaying

Lambda term.

1 Introduction

The main aim of the paper is the construction of the Starobin-

sky model with a squared term R̂2 in the Palatini formal-

ism and the investigation of cosmological implications of

this model. In this model the inflation phase of evolution

of the universe can be obtained by the modification of gen-

eral relativity in the framework of f (R̂) modified gravity

theories [1]. In this context, historically the first theory of

inflation was proposed by Starobinsky [2]. In the original

Starobinsky model the term R2/6M2 was motivated by the

conformal anomaly in the quantum gravity. The problem of
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inflation in an f (R) cosmological model is strictly related

with the choice of frames. The authors of [1] show that

CMB spectra in both Einstein and Jordan frames are dif-

ferent functions of the number of e-foldings until the end of

inflation.

Inflation is a hypothesis about the existence of a short

but very fast (of exponential type) accelerated growth of the

scale factor a(t) during the early evolution of the universe,

after the Big-Bang but before the radiation-dominated epoch

[3,4]. It implies ä(t) > 0. Irregularities in the early epoch

may lead to the formation of structures in the universe due

to the appearance of inflation.

Starobinsky [2] was the first who proposed a very simple

theoretical model with one parameter M (energy scale M)

of such inflation and which is in good agreement with astro-

nomical data and CMB observation. The Starobinsky model

is representing the simplest version of f (R) gravity theories

which have been developed considerably in the last decade

[1,5,6], whose extra term in the Lagrangian is quadratic in

the scalar curvature. This model predicts the value of spectral

index ns = 0.9603 ± 0.0073, at the 68% CL, with devia-

tion from scale-invariance of the primordial power spectrum

[7,8].

The Starobinsky model is also compatible with Planck

2015 data [9] and nicely predicts the number N = 50–60

e-folds between the start and the end of inflation [10].

It has been recently investigated some generalization of

the Starobinsky inflationary model with a polynomial form

of f (R) = R + R2

6M2 + λn

2n
Rn

(3M2)n−1 . It was demonstrated

that the slow-roll inflation can be achieved as long as the

dimensionless coupling λn is sufficiently small [11].

The Starobinsky model becomes generic because the

smallness of the dimensionless coupling constant λn does

not imply that fine-tuning is necessary [11]. The Starobinsky

model was developed in many papers [8,12–17].

In this paper we develop the idea of endogenous infla-

tion as an effect of modification of the FRW equation after
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the formulation of f (R) cosmological model in the Palatini

formalism.

We are looking for an inflation mechanism as a pure

dynamical mechanism driven by the presence of the addi-

tional term (square of the Ricci scalar) in the Lagrangian,

without necessity of the choice of a frame (Einstein vs. Jor-

dan frame) [16–18].

In modern cosmology, a most popular trend is to explain

the dark energy and the dark matter in terms of some sub-

stances, of which the nature is unknown up to now. Ein-

stein was representing the opposite relational point of view

on the description of gravity, in which all substantial forms

should be eliminated. Such a point of view is called anti-

substantialism. Extended f (R) gravity models [6,19] offer

intrinsic or geometric models of both dark matter and dark

energy—the key elements of Standard Cosmological Model.

Therefore, the Einstein idea of relational gravity, in which

dark matter and dark energy can be interpreted as geometric

objects, is naturally realized in f (R̂) extended gravity. The

methods of dynamical system in the context of investigation

dynamics of f (R) models are used since Carroll [19,20].

Unfortunately, the metric formulation of extended grav-

ity gives rise to fourth order field equations. To avoid this

difficulty, the Palatini formalism can be apply where both

the metric g and the symmetric connection Ŵ are assumed

to be independent dynamical variables. In consequence, one

gets a system of second order partial differential equations.

The Palatini approach reveals that the early universe inherits

properties of the global �CDM evolution.

The Palatini approach has become of some interest lately.

An excellent review of the Palatini f (R) theories can be

found in Olmo’s paper [21]. He has published many other

papers on this topic, namely, about the scalar–tensor repre-

sentation of the Palatini theories [22,23]. The other important

papers were on the existence of non-singular solutions in the

Palatini gravity [24,25]. Some more recent papers concen-

trate on studying black holes and their singularities in the

Palatini approach [26–30]. Other work which is important

to mention is Flanagan’s papers on the choice of a confor-

mal frame [31,32]. Pannia et al. considered the impact of the

Starobinsky model in compact stars [33].

In the Palatini gravity action for f (R̂)gravity is introduced

to be

S = Sg + Sm = 1

2

∫ √
−g f (R̂)d4x + Sm, (1)

where R̂ = gμν R̂μν(Ŵ) is the generalized Ricci scalar and

R̂μν(Ŵ) is the Ricci tensor of a torsionless connection Ŵ. In

this paper, we assume that 8πG = c = 1. The equation

of motion obtained from the first order Palatini formalism

reduces to

f ′(R̂)R̂μν − 1

2
f (R̂)gμν = Tμν, (2)

∇̂α(
√

−g f ′(R̂)gμν) = 0, (3)

where Tμν = − 2√−g

δLm
δgμν

is matter energy-momentum tensor,

i.e. one assumes that the matter minimally couples to the

metric. As a consequence the energy-momentum tensor is

conserved, i.e.: ∇μTμν = 0 [34]. In Eq. (3) ∇̂α means the

covariant derivative calculated with respect to Ŵ. In order to

solve Eq. (3) it is convenient to introduce a new metric,

√
hhμν =

√
−g f ′(R̂)gμν (4)

for which the connection Ŵ = ŴLC(h) is a Levi-Civita con-

nection. As a consequence in dim M = 4 one gets

hμν = f ′(R̂)gμν, (5)

i.e. both metrics are related by the conformal factor. For this

reason one should assume that the conformal factor f ′(R̂) �=
0, so it has strictly positive or negative values.

Taking the trace of (2), we obtain additional so called

structural equation

f ′(R̂)R̂ − 2 f (R̂) = T . (6)

where T = gμνTμν . Because of cosmological applications

we assume that the metric g is FRW metric

ds2 = −dt2+a2(t)

[

1

1 − kr2
dr2 + r2(dθ2 + sin2 θdφ2)

]

,

(7)

where a(t) is the scale factor, k is a constant of spatial curva-

ture (k = 0,±1), t is the cosmological time. For simplicity

of presentation we consider the flat model (k = 0).

As a source of gravity we assume a perfect fluid, with the

energy-momentum tensor

T μ
ν = diag(−ρ, p, p, p), (8)

where p = wρ, w = const is a form of the equation of

state (w = 0 for dust and w = 1/3 for radiation). Formally,

effects of the spatial curvature can also be included into the

model by introducing a curvature fluid ρk = − k
2

a−2, with

the barotropic factor w = − 1
3

(pk = − 1
3
ρk). From the con-

servation condition T
μ

ν;μ = 0 we obtain ρ = ρ0a−3(1+w).

Therefore the trace T reads

T =
∑

i

ρi,0(3wi − 1)a(t)−3(1+wi ). (9)
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In what follows we consider visible and dark matter ρm in

the form of dust w = 0, dark energy ρ� with w = −1 and

radiation ρr with w = 1/3.

Because a form of the function f (R̂) is unknown, one

needs to probe it via ensuing cosmological models. Here

we choose the simplest modification of the general relativity

Lagrangian,

f (R̂) = R̂ + γ R̂2, (10)

induced by the first three terms in the power series decompo-

sition of an arbitrary function f (R). In fact, since the terms

R̂n have different physical dimensions, i.e. [R̂n] �= [R̂m] for

n �= m, one should take instead the function R̂0 f (R̂/R̂0)

for constructing our Lagrangian, where R̂0 is a constant and

[R̂0] = [R̂]. In this case the power series expansion reads

R̂0 f (R̂/R̂0) = R̂0

∑

n=0 αn(R̂/R̂0)
n =

∑

n=0 α̃n R̂n , where

the coefficients αn are dimensionless, while [α̃n] = [R̂]1−n

are dimension full.

From the other hand the Lagrangian (10) can be viewed as

a simplest deviation, by the quadratic Starobinsky term, from

the Lagrangian R̂ which provides the standard cosmological

model a.k.a. �CDM model. A corresponding solution of the

structural equation (6)

R̂ = −T ≡ 4ρ�,0 + ρm,0a−3. (11)

is, in fact, exactly the same as for the �CDM model, i.e.

with γ = 0. However, the Friedmann equation of the �CDM

model (with dust matter, dark energy and radiation)

H2 = 1

3

(

ρr,0a−4 + ρm,0a−3 + ρ�,0

)

(12)

is now hardly affected by the presence of quadratic term.

More exactly a counterpart of the above formula in the model

under consideration looks as follows:

H2

H2
0

= b2

(

b + d
2

)2

[

�γ (�m,0a−3 + ��,0)
2

× (K − 3)(K + 1)

2b
+ (�m,0a−3 + ��,0)

+ �r,0a−4

b
+ �k

]

, (13)

where

�k = − k

H2
0 a2

, (14)

�r,0 = ρr,0

3H2
0

, (15)

�m,0 = ρm,0

3H2
0

, (16)

��,0 = ρ�,0

3H2
0

, (17)

K = 3��,0

(�m,0a−3 + ��,0)
, (18)

�γ = 3γ H2
0 , (19)

b = f ′(R̂) = 1 + 2�γ (�m,0a−3 + 4��,0), (20)

d = 1

H

db

dt
= −2�γ (�m,0a−3 + ��,0)(3 − K ) (21)

From the above one can check that the standard model (12)

can be reconstructed in the limit γ �→ 0. The study of this

generalized Friedmann equation is a main subject of our

research.

The paper is organized as follows. In Sect. 2, we consider

the Palatini approach in the Jordan and Einstein frame. In

Sect. 3, we present some generalities concerning dynami-

cal systems of Newtonian type, and their relations with the

Palatini–Starobinsky model. Section 4, is devoted to the clas-

sification of cosmological singularities with special attention

on Newtonian type systems represented by potential function

V (a). We adopt the Fernandes-Jambrina and Lazkoz classi-

fication of singularities [35] to these systems using the notion

of elasticity of the potential function with respect the scale

factor. In Sect. 5, we will analyze the singularities in the

Starobinsky model in the Palatini formalism. This system

requires the form of piecewise-smooth dynamical system.

Statistical analysis of the model is presented in Sect. 6. In

Sect. 7, we shall summarize obtained results and draw some

conclusions.

2 The Palatini approach in different frames (Jordan vs.

Einstein frame)

Because the effect of acceleration can depend on a choice of a

frame [36] this section is devoted to showing the existence of

the inflation effect if the model is considered in the Einstein

frame.

The action (1) is dynamically equivalent to the first order

Palatini gravitational action, provided that f
′′
(R̂) �= 0 [1,6,

17]

S(gμν, Ŵ
λ
ρσ , χ) = 1

2

∫

d4x
√

−g
(

f ′(χ)(R̂ − χ) + f (χ)

)

+ Sm(gμν, ψ), (22)

Introducing a scalar field � = f ′(χ) and taking into account

the constraint χ = R̂, one gets the action (22) in the following

form:

S(gμν, Ŵ
λ
ρσ ,�) = 1

2

∫

d4x
√

−g
(

�R̂ − U (�)

)

+ Sm(gμν, ψ), (23)
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where the potential U (�) is defined by

U f (�) ≡ U (�) = χ(�)� − f (χ(�)) (24)

with � = d f (χ)
dχ

and R̂ ≡ χ = dU (�)
d�

.

The Palatini variation of the action (23) gives rise to the

following equations of motion:

�

(

R̂μν − 1

2
gμν R̂

)

+ 1

2
gμνU (�) − Tμν = 0, (25a)

∇̂λ(
√

−g�gμν) = 0, (25b)

R̂ − U ′(�) = 0. (25c)

Equation (25b) implies that the connection Ŵ̂ is a metric con-

nection for a new metric ḡμν = �gμν ; thus R̂μν = R̄μν, R̄ =
ḡμν R̄μν = �−1 R̂ and ḡμν R̄ = gμν R̂. The g-trace of (25a)

produces a new structural equation

2U (�) − U ′(�)� = T . (26)

Now Eqs. (25a) and (25c) take the following form:

R̄μν − 1

2
ḡμν R̄ = T̄μν − 1

2
ḡμνŪ (�), (27)

�R̄ − (�2 Ū (�))′ = 0, (28)

where we introduce Ū (φ) = U (φ)/�2, T̄μν = �−1Tμν and

the structural equation can be replaced by

� Ū ′(�) + T̄ = 0 . (29)

In this case, the action for the metric ḡμν and scalar field �

is given by

S(ḡμν,�)= 1

2

∫

d4x
√

−ḡ
(

R̄ − Ū (�)
)

+Sm(�−1ḡμν, ψ),

(30)

where we have to take into account a non-minimal coupling

between � and ḡμν

T̄ μν =− 2√
−ḡ

δ

δḡμν

Sm = (ρ̄+ p̄)ūμūν+ p̄ḡμν = �−3T μν ,

(31)

ūμ = �− 1
2 uμ, ρ̄ = �−2ρ, p̄ = �−2 p, T̄μν =

�−1Tμν, T̄ = �−2T (see e.g. [17,37]).

In FRW case, one gets the metric ḡμν in the following

form:

ds̄2 = −dt̄2 + ā2(t)
[

dr2 + r2(dθ2 + sin2 θdφ2)

]

, (32)

where dt̄ = �(t)
1
2 d t and new scale factor ā(t̄) =

�(t̄)
1
2 a(t̄). Ensuing cosmological equations (in the case of

the barotropic matter) are given by

3H̄2 = ρ̄� + ρ̄m, 6
¨̄a
ā

= 2ρ̄� − ρ̄m(1 + 3w) (33)

where

ρ̄� = 1

2
Ū (�), ρ̄m = ρ0ā−3(1+w)�

1
2 (3w−1) (34)

and w = p̄m/ρ̄m = pm/ρm. In this case, the conservation

equations has the following form:

˙̄ρm + 3H̄ ρ̄m(1 + w) = − ˙̄ρ�. (35)

Let us consider the Starobinsky–Palatini model in the above

framework. The potential Ū is described by the following

formula:

Ū (�) = 2ρ̄�(�) =
(

1

4γ
+ 2λ

)

1

�2
− 1

2γ

1

�
+ 1

4γ
. (36)

Figure 1 presents the relation ρ̄�(�). Note that the func-

tion ρ̄� has the same shape like the Starobinsky potential.

The function ρ̄�(�) has the minimum for

�min = 1 + 8γ λ. (37)

In general, the scalar field �(ā) is given by (cf. (11))

� = 1 + 2γ R̂ = 1 + 8γ λ + 2γρm − 6γ pm . (38)

Because ρ̄m = �−2ρm, p̄m = �−2 pm , and taking into

account (34) one gets

2γ (1 − 3w)ρ0ā−3(1+w)�
3
2 (w+1) − � + 1 + 8γ λ = 0. (39)

the algebraic equation determining the function �(ā) for a

given barotropic factor w. This provides an implicit depen-

dence �(ā). In order to get it more explicit one needs to solve

(39) for some interesting values w. For example in the case

of dust we obtain the third order polynomial equation
(

1

2γ
+ 4�

)

y3 − 1

2γ
y + ρ0wā−3 = 0

where y = �− 1
2 .

The evolution of �(ā), at the beginning of the inflation

epoch, is presented in Fig. 2.

For γ ≈ 0, the potential Ū can be approximated as Ū =
−ρ̄m + 1

4γ
. In this case the Friedmann equation can be written

as

3H̄2 = ρ̄m

2
+ 1

8γ
. (40)
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ρ

Fig. 1 Illustration of the dependence ρ̄� of �. We assume that γ =
1.16 × 10−69 s2. ρ̄� is expressed in units of km2

s2Mpc2 . Note that this

potential has the same shape like the Starobinsky potential

1.0 0.5 0.5 1.0 1.5 2.0
ln a

5.0 107

1.0 108

1.5 108

2.0 108

ln a

Fig. 2 Illustration of the typical evolution of � with respect to ln(ā)

at the beginning of the inflation epoch. We assume that γ = 1.16 ×
10−69 s2 and ā0 = 1 at the beginning of the inflation epoch

In the case of ρ̄m = 0, ρ̄� is constant and the Friedmann

equation has the following form:

3H̄2 = 1

8γ
. (41)

In this model the inflation phenomenon appears when the

value of the parameter γ is close to zero and the matter ρ̄m is

negligible with comparison to ρ̄�. In this case the approxi-

mate number of e-foldings is given by the following formula:

N = Hinit(t̄fin − t̄init) = t̄fin − t̄init√
24γ

. (42)

The number of e-folds N should be equal 50 ∼ 60 in the

inflation epoch [10]. In this model we obtain N = 60, when

γ = 1.16×10−69 s2 and the timescale of the inflation is equal

10−32 s [38]. The relation between γ and the approximate

number of e-foldings N is presented in Fig. 3.

2. 10 67 4. 10 67 6. 10 67 8. 10 67 1. 10 66
γ

20

40

60

80

N

Fig. 3 The diagram of the relation between γ and the approximate

number of e-foldings N = H̄init(t̄fin − t̄init) from t̄init to t̄fin. We assume

that t̄fin − t̄init ≈ 10−32 s. The parameter γ is expressed in units of

s2. Note that the number of e-foldings grows when the parameter γ

decreases and N = 60 when γ = 1.16 × 10−69 s2

1.0 0.5 0.5 1.0 1.5 2.0
ln a

1 10105

2 10105

3 10105

4 10105

ρ
m

ln a

Fig. 4 Illustration of the typical evolution of ρ̄m with respect to ln(ā)

at the beginning of the inflation epoch. We assume that γ = 1.16 ×
10−69 s2 and ā0 = 1 at the beginning of the inflation epoch. ρ̄m is

expressed in units of km2

s2Mpc2

The condition for appearing of the inflation is for the value

of the parameter γ to be close to zero, hence the influence of

the parameter λ on the evolution of the universe is negligible.

In Fig. 4 the typical evolution is demonstrated of ρ̄m(ā)

at the beginning of the inflation epoch. The typical evolution

of ρ̄�, at the beginning of the inflation epoch, is presented

in Fig. 5. Note that, for the late time universe, ρ̄� can be

approximated as a constant. Figure 6 presents the evolution

of the scale factor ā(t̄) during the inflation. Figure 7 shows

the Hubble function H̄ during the inflation epoch.

The conservation equation for ρ̄� can be written

˙̄ρ� = −3H̄(ρ̄� + p̄�), (43)

where p̄� is an effective pressure. In this case the equation

of state for the dark energy is expressed by the following

formula:
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1.0 0.5 0.5 1.0 1.5 2.0
ln a

3.080 10107

3.085 10107

3.090 10107

ρ ln a

Fig. 5 Illustration of the typical evolution of ρ̄φ with respect to ln(ā)

at the beginning of the inflation epoch. We assume that γ = 1.16 ×
10−69 s2 and ā0 = 1 at the beginning of the inflation epoch. ρ̄� is

expressed in units of km2

s2Mpc2 . Note that during the inflation ρ̄φ ≈ const

4. 10 34 4.5 10 34 5. 10 34 5.5 10 34 6. 10 34 6.5 10 34
t

1

2

3

4

5

6

7

a t

Fig. 6 Illustration of the typical evolution of ā with respect to t̄ at

the beginning of the inflation epoch. We assume that γ = 1.16 ×
10−69 s2 and ā0 = 1 at the beginning of the inflation epoch. The time

t̄ is expressed in seconds

p̄� = w(a)ρ̄�, (44)

where the function w(a) is given by the expression

w(a) = −1 −
˙̄ρ�√

3
√

ρ̄m + ρ̄�ρ�

= −1 − 1

3H̄

d ln ρ�

dt̄
. (45)

The diagram of the coefficient of equation of state w(a),

at the beginning the inflation epoch, is presented in Fig. 8.

Note that the function w(a), for the late time, is a constant

and equal −1.

The action (23) can be rewritten in the Jordan frame

(gμν,�) as

S = 1

2k

∫

d4x
√

−g

(

�R + 3

2�
∂μ�∂μ� − U (�)

)

,

(46)

1.0 0.5 0.5 1.0 1.5 2.0
ln a

1.850 1053

1.855 1053

1.860 1053

H ln a

Fig. 7 Illustration of the typical evolution of H̄ with respect to ln(ā)

at the beginning of the inflation epoch. We assume that γ = 1.16 ×
10−69 s2 and ā0 = 1 at the beginning of the inflation epoch. H̄ is

expressed in units of km
s Mpc

. Note that, for the late time, H̄ can be treated

as a constant

1.0 0.5 0.5 1.0 1.5 2.0
ln a

1.015

1.010

1.005

1.000

0.995

wφ ln a

Fig. 8 Illustration of the typical evolution of wφ with respect to ln(ā).

We assume that γ = 1.16 × 10−69 s2 and ā0 = 1 at the beginning of

the inflation epoch. Note that during the inflation wφ ≈ −1

where R is the metric Ricci scalar, � = f ′(R̂), R̂ = χ(�).

We obtain the Brans–Dicke action with the coupling

parameter ω = − 3
2

in the Jordan frame. The equations of

motion take the form

�

(

Rμν − 1

2
gμν R

)

− 3

4�
gμν∇σ �∇σ � + 3

2�
∇μ�∇ν�

+gμν�� − ∇μ∇ν� + 1

2
gμνU (φ) − κTμν = 0 , (47a)

R − 3

�
�� + 3

2�2
∇μ�∇μ� − 1

2
U ′(�) = 0. (47b)

In this case the dynamics of the metric g is exactly the same as

described by the original Palatini equations (2)–(6). On cos-

mological grounds it means that the scale factor a(t) evolves

according to the Friedmann equation (13). It has recently

been shown that cosmological data favor the value ω ≈ −1

on the 3σ level [39].
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3 Singularities in cosmological dynamical systems of

Newtonian type

There is a class of cosmological models, of which the dynam-

ics can be reduced to a dynamical system of the Newtonian

type. Let consider a homogeneous and isotropic universe with

a spatially flat space-time metric of the form

ds2 = dt2 − a2(t)
[

dr2 + r2(dθ2 + sin2 θdφ2)

]

, (48)

where a(t) is the scale factor and t is the cosmological time.

Let us consider the energy-momentum tensor T
μ
ν for the

perfect fluid with energy density ρ(t) and pressure p(t) as a

source of gravity. In this case the Einstein equations assume

the form of the Friedmann equations,

ρ = 3H2 = 3ȧ2

a2
, (49)

p = −2ä

a
− ȧ2

a2
, (50)

where dot denotes differentiation with respect to the cosmic

time t , H ≡ ȧ
a

is the Hubble function. In our notation we use

the natural system of units in which 8πG = c = 1.

We assume ρ(t) = ρ(a(t)) as well as p(t) = p(a(t)),

i.e. both energy density and pressure depend on the cosmic

time through the scale factor a(t). The conservation condition

T
μν

;μ = 0 reduces to

ρ̇ = −3H(ρ + p). (51)

It would be convenient to rewrite (49) in the equivalent form

ȧ2 = −2V (a), (52)

where

V (a) = −ρ(a)a2

6
. (53)

In (53) ρ(a) plays the model role of an effective energy den-

sity. For example for the standard cosmological model (12)

V = −ρeffa
2

6
= −a2

6

(

ρm,0a−3 + ρ�,0

)

, (54)

where ρeff = ρm + � and ρm = ρm,0a−3. Equation (50) is

equivalent to

ä

a
= −1

6
(ρ + 3p), (55)

which is called the acceleration equation. It is easily to check

that

ä = −∂V

∂a
, (56)

where V (a) is given by (53) provided that the conservation

equation (51) is fulfilled.

Due to Eq. (56) the evolution of the universe can be inter-

preted as the motion of a fictitious particle of unit mass in the

potential V (a). Here a(t) plays the role of a position vari-

able. The equation of motion (56) assumes a form analogous

to the Newtonian equation of motion.

If we know the form of the effective energy density then

we can construct the form of the potential V (a), which deter-

mines the whole dynamics in the phase space (a, ȧ). In this

space the Friedmann equation (52) plays the role of a first

integral and determines the phase space curves representing

the evolutionary paths of the cosmological models. The dia-

gram of the potential V (a) contains all information needed

to construction a phase space portrait. In this case the phase

space is two-dimensional,

{

(a, ȧ) : ȧ2

2
+ V (a) = −k

2

}

. (57)

In the general case of an arbitrary potential, the dynamical

system which describes the evolution of a universe takes the

form

ȧ = x, (58)

ẋ = −∂V (a)

∂a
. (59)

We shall study the system above using the theory of

piecewise-smooth dynamical systems. Therefore it is assu-

med that the potential function, except some isolated (singu-

lar) points, belongs to the class C2(R+).

The lines x2

2
+ V (a) = − k

2
represent possible evolutions

of the universe for different initial conditions. Equations (58)

and (59) can be rewritten in terms of dimensionless variables

if we replace the effective energy density ρeff by the density

parameter:

�eff = ρeff

3H2
0

. (60)

Then

1

H2
0

ȧ2

2
= −�effa

2

2
, (61)

d2a

dτ 2
= −∂ Ṽ

∂a
, (62)
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where t → τ = |H0|t and

Ṽ (a) = −�effa
2

2
. (63)

Any cosmological model can be identified by its form of

the potential function V (a) depending on the scale factor a.

From the Newtonian form of the dynamical system (58)–(59)

one can see that all critical points correspond to vanishing of

r.h.s. of the dynamical system
(

x0 = 0,
∂V (a)

∂a
|a=a0

)

. There-

fore all critical points are localized on the x-axis, i.e. they

represent a static universe.

Because of the Newtonian form of the dynamical system

the character of critical points is determined from the char-

acteristic equation of the form

a2 + det A|
x0=0,

∂V (a)
∂a

|a0
=0

= 0, (64)

where det A is the determinant of the linearization matrix

calculated at the critical points, i.e.

det A = ∂2V (a)

∂a2
|
a0,

∂V (a)
∂a

|a0
=0

. (65)

From Eqs. (64) and (65) one can conclude that only admis-

sible critical points are of saddle type if ∂2V (a)

∂a2 |a=a0 < 0 or

of center type if ∂2V (a)

∂a2 |a=a0 > 0.

If the shape of the potential function is known (from

knowledge of the effective energy density), then it is pos-

sible to calculate the cosmological functions in exact form,

t =
∫ a da√

−2V (a)
, (66)

H(a) = ±
√

−2V (a)

a2
, (67)

the deceleration parameter, the effective barotropic factor

q = −aä

ȧ2
= 1

2

d ln(−V )

d ln a
, (68)

weff(a(t)) = peff

ρeff
= −1

3

(

d ln(−V )

d ln a
+ 1

)

, (69)

the parameter of deviation from de Sitter universe [35]

h(t) ≡ −(q(t) + 1) = 1

2

d ln(−V )

d ln a
− 1 (70)

(note that if V (a) = −�a2

6
, h(t) = 0), the effective matter

density and pressure

ρeff = −6V (a)

a2
, (71)

peff = 2V (a)

a2

(

d ln(−V )

d ln a
+ 1

)

, (72)

and, finally, the Ricci scalar curvature for the FRW metric

(48),

R = 6V (a)

a2

(

d ln(−V )

d ln a
+ 2

)

. (73)

From the formulas above one can observe that the most of

them depend on the quantity

Iν(a) = d ln(−V )

d ln a
. (74)

This quantity measures the elasticity of the potential func-

tion, i.e. indicates how the potential V (a) changes if the scale

factor a changes. For example, for the de Sitter universe

−V (a) ∝ a2, the rate of growth of the potential is 2% as

the rate of growth of the scale factor is 1%.

In the classification of the cosmological singularities by

Fernandez-Jambrina and Lazkoz [35] a crucial role is played

by the parameter h(t). Note that in a cosmological sense this

parameter is

h(t) = 1

2
Iν(a) − 1. (75)

In this approach the classification of singularities is based

on generalized power and asymptotic expansion of the

barotropic index w in the equation of state (or equiva-

lently of the deceleration parameter q) in terms of the time

coordinate.

4 Degenerated singularities—new type (VI)

of singularity—sewn singularities

Recently, due to the discovery of an accelerated phase in the

expansion of our universe, many theoretical possibilities for

future singularities are seriously considered. If we assume

that the universe expands following the Friedmann equation,

then this phase of expansion is driven by dark energy—a

hypothetical fluid, which violates the strong energy condi-

tion. Many of the new types of singularities were classified

by Nojiri et al. [40]. Following their classification the type of

singularity depends on the singular behavior of the cosmo-

logical quantities like the scale factor a, the Hubble parameter

H , the pressure p and the energy density ρ:

– Type 0: ‘Big crunch’. In this type, the scale factor a is

vanishing and there is blow-up of the Hubble parameter

H , energy density ρ and pressure p.
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– Type I: ‘Big rip’. In this type, the scale factor a, energy

density ρ and pressure p are blown up.

– Type II: ‘Sudden’. The scale factor a, energy density ρ

and Hubble parameter H are finite and Ḣ and the pressure

p are divergent.

– Type III: ‘Big freeze’. The scale factor a is finite and the

Hubble parameter H , energy density ρ and pressure p

are blown up [41] or divergent [42].

– Type IV. The scale factor a, Hubble parameter H , energy

density ρ, pressure p and Ḣ are finite but higher deriva-

tives of the scale factor a diverge.

– Type V. The scale factor a is finite but the energy density

ρ and pressure p vanish.

Following Królak [43], big rip and big crunch singularities

are strong whereas sudden, big freeze and type IV are weak

singularities.

In the model under consideration the potential function

and/or its derivative can diverge at isolated points (value

of the scale factor). Therefore the classification mentioned

before has application only for a single component of

piecewise-smooth potential. In our model the dynamical sys-

tem describing the evolution of a universe belongs to the

class of a piecewise-smooth dynamical systems. As a con-

sequence new types of singularities at finite scale factor as

can appear for which ∂V
∂a

(as) does not exist (is not deter-

mined). This implies that the classification of singularities

should be extended to the case of non-isolated singulari-

ties.

Let us illustrate this idea on the example of a freeze singu-

larity in the Starobinsky model with the Palatini formalism

(previous section). Such a singularity has a complex charac-

ter and in analogy to the critical point we called it degenerate.

Formally it is composed of two types III singularities: one

in the future and another one in the past. If we consider the

evolution of the universe before this singularity we detect an

isolated singularity of type III in the future. Conversely if we

consider the evolution after the singularity, then going back

in time we meet a type III singularity in the past. Finally,

at the finite scale factor the two singularities will meet. For

a description of behavior near the singularity one considers

the t = t (a) relation. This relation has a horizontal inflection

point and it is natural to expand this relation in a Taylor series

near this point at which dt
da

= 1
Ha

is zero. For the freeze sin-

gularity, the scale factor remains constant as, ρ and H blow

up and ä is undefined. It this case, the degenerate singular-

ity of type III is called sewn (non-isolated) singularity. We,

therefore, obtain [44]

t − ts ≃ ±1

2

d2t

da2
|a=asing(a − asing)

2. (76)

V a t 0.00001 0.00002 0.00003 0.00004
t

0.0015

0.0010

0.0005

0.0005

0.0010

a t

Fig. 9 Illustration of sewn freeze singularity, when the potential V (a)

has a pole

V a t

0.0004 0.0002 0.0002 0.0004
t

0.002

0.002

0.004

a t

Fig. 10 Illustration of a sewn sudden singularity. The model with neg-

ative �γ has a mirror symmetry with respect to the cosmological time.

Note that the spike on the diagram shows a discontinuity of the function
∂V
∂a

. Note the existence of a bounce at t = 0

The above formula combines two types of behavior near the

freeze singularities in the future,

a − asing ∝ −(tsing − t)1/2 for t → tsing− (77)

and in the past

a − asing ∝ +(t − tsing)
1/2 for t → tsing+ . (78)

Figure 9 illustrates the behavior of the scale factor in cos-

mological time in neighborhood of a pole of the potential

function. Diagram of a(t) is constructed from the dynamics

in two disjoint region {a : a < as} and {a : a > as}. Figure 10

presents the behavior of the scale factor in the cosmological

time in a neighborhood of the sudden singularity.

In the model under consideration another type of sewn

singularity also appears. It is a composite singularity with

two sudden singularities glued at the bounce when a = amin.

In this singularity the potential itself is a continuous func-
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tion while its first derivative has a discontinuity. Therefore,

the corresponding dynamical system represents a piecewise-

smooth dynamical system.

The problem of C0 metric extension beyond the future

Cauchy horizon, when the second derivative of the metric is

inextendible, was discussed in work of Sbierski [45]. In the

context of FLRW cosmological models, Sbierski’s method-

ology was considered in [46].

5 Singularities in the Starobinsky model in the Palatini

formalism

In our model, one finds two types of singularities, which

are a consequence of the Palatini formalism: the freeze and

sudden singularity. The freeze singularity appears when the

multiplicative expression b
b+d/2

, in the Friedmann equation

(13), is equal to infinity. So we get a condition for the freeze

singularity: 2b+d = 0, which produces a pole in the potential

function. It appears that the sudden singularity appears in our

model when the multiplicative expression b
b+d/2

vanishes.

This condition is equivalent to the case b = 0.

The freeze singularity in our model is a solution of the

algebraic equation

2b + d = 0 ⇒ f (K ,��,0,�γ ) = 0 (79)

or

−3K − K

3�γ (�m + ��,0)��,0
+ 1 = 0, (80)

where K ∈ [0, 3).

The solution of the above equation is

Kfreeze = 1

3 + 1
3�γ (�m+��,0)��,0

. (81)

From Eq. (81), we can find an expression for a value of the

scale factor for the freeze singularity

afreeze =
(

1 − ��,0

8��,0 + 1
�γ (�m+��,0)

)
1
3

. (82)

The relation between afreeze and positive �γ is presented in

Fig. 11.

The sudden singularity appears when b = 0. This leaves

us with the following algebraic equation:

1 + 2�γ (�m,0a−3 + ��,0)(K + 1) = 0. (83)

2. 10 10 4. 10 10 6. 10 10 8. 10 10 1. 10 9 γ

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

afsing

Fig. 11 Diagram of the relation between asing and positive �γ . Note

that in the limit �γ �→ 0 the singularity overlaps with a big-bang

singularity

1. 10 9 8. 10 10 6. 10 10 4. 10 10 2. 10 10 γ

0.0002

0.0004

0.0006

0.0008

asuddsing

Fig. 12 Diagram of the relation between asing and negative �γ . Note

that in the limit �γ �→ 0 the singularity overlaps with a big-bang

singularity

The above equation can be rewritten as

1 + 2�γ (�m,0a−3 + 4��,0) = 0. (84)

From Eq. (84), we have the formula for the scale factor for a

sudden singularity,

asudden =
(

− 2�m,0

1
�γ

+ 8��,0

)1/3

, (85)

which, in fact, becomes a (degenerate) critical point and a

bounce at the same time. The relation between asing and neg-

ative �γ is presented in Fig. 12.

Let V = − a2

2

(

�γ �2
ch

(K−3)(K+1)
2b

+ �ch + �k

)

. We can

rewrite dynamical system (58)–(59) as

a′ = x, (86)

x ′ = −∂V (a)

∂a
, (87)
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8 6 4 2 0 2 4

a

15
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5

0

5

10

15

20
x

1
k k1 1

k 1

k 1

2

Fig. 13 The figure represents the phase portrait of the system (86–87)

for positive �γ . The scale factor a is in the logarithmic scale. The red

trajectories represent the spatially flat universe. Trajectories under the

top red trajectory and below the bottom red trajectory represent models

with the negative spatial curvature. Trajectories between the top and

bottom red trajectory represent models with the positive spatial curva-

ture. The dashed line 2b + d = 0 corresponds to the freeze singularity.

The critical points (1) and (2) present two static Einstein universes. The

phase portrait belongs to the class of sewn dynamical systems [49]

where ′ ≡ d
dσ

= b+ d
2

b
d

dτ
is a new parametrization of time.

We can treat the dynamical system (86)–(87) as a sewn

dynamical system [47,48]. In this case, we divide the phase

portrait into two parts: the first part is for a < asing and the

second part is for a > asing. Both parts are glued along the

singularity.

For a < asing, dynamical system (86)–(87) can be rewrit-

ten in the corresponding form,

a′ = x, (88)

x ′ = −∂V1(a)

∂a
, (89)

where V1 = V (−η(a−as)+1) and η(a) notes the Heaviside

function.

For a > asing, in an analogous way, we get the following

equations:

a′ = x, (90)

x ′ = −∂V2(a)

∂a
, (91)

where V2 = V η(a − as). The phase portraits, for dynamical

system (86)–(87), are presented in Figs. 13 and 14. Figure

8 6 4 2 0 2 4

a

15

10

5

0

5

10

15

20

x

1
k k1 1

k 1

k 1

k 1

Fig. 14 The phase portrait of the system (86)–(87) for negative �γ .

The scale factor a is in logarithmic scale. The red trajectories repre-

sent a spatially flat universe. Trajectories under the top red trajectory

and below the bottom red trajectory represent models with a negative

spatial curvature. Trajectories between the top and bottom red trajec-

tory represent models with the positive spatial curvature. The dashed

line b = 0 corresponds to the sudden singularity. The shaded region

represents trajectories with b < 0. If we assume that f ′(R) > 0 then

this region can be removed. The phase portrait possesses the symmetry

ȧ → −ȧ and in consequence this singularity presents a bounce. This

symmetry can be used to identify the corresponding points on the b-line.

The critical point (1) represents the static Einstein universe. The phase

portrait belongs to the class of sewn dynamical systems [49]

13 shows the phase portrait for positive �γ , while Fig. 14

shows the phase portrait for negative �γ .

In Fig. 13 there are two critical points labeled ‘1’ and ‘2’

at the finite domain. They are both saddle points. These crit-

ical points correspond to a maximum of the potential func-

tion. The saddle point ‘2’ possesses the homoclinic closed

orbit starting from it and returning to it. This orbit rep-

resents an emerging universe from the static Einstein uni-

verse and approaching it again. During the evolution this

universe (orbit) goes two times through the freeze singular-

ity. The region bounded by the homoclinic orbit contains

closed orbits representing the oscillating universes. A dia-

gram of the evolution of scale factor for closed orbit is pre-

sented by Fig. 15. It is also interesting that trajectories in

the neighborhood of straight vertical line of freeze singular-

ities undergo short time inflation x = const. The character-

istic number of e-foldings from tinit to tfin of this inflation

period N = Hinit(tfin − tinit) (see Eq. (3.13) in [1]) with

respect to �γ is shown in Fig. 16. This figure illustrates

the number of e-foldings is too small to obtain the inflation

effect.
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0.000 0.002 0.004 0.006 0.008
σ

0.00055

0.00060

0.00065

0.00070

0.00075

a σ

Fig. 15 Illustration of the evolution of a(σ ) for closed orbit which is

contained by the homoclinic orbit, where σ = b

b+ d
2

t is a reparametriza-

tion of time. We choose s×Mpc/(100×km) as a unit of σ

0 2. 10 10 4. 10 10 6. 10 10 8. 10 10 1. 10 9 γ

0.05

0.10

0.15

0.20

0.25

0.30

0.35

N

Fig. 16 Diagram of the relation between positive �γ and the approx-

imate number of e-foldings N = Hinit(tfin − tinit) from tinit to tfin

6 Observations

In this paper we perform statistical analysis using the follow-

ing astronomical observations: observations of 580 super-

novae of type Ia, BAO, measurements of H(z) for galaxies,

Alcock–Paczyński test, measurements of CMB and lensing

by Planck and low ℓ by WMAP.

The likelihood function for observations of supernovae of

type Ia [50] is given by the following expression:

ln LSNIa = −1

2
[A − B2/C + ln(C/(2π))], (92)

where A = (μobs − μth)C−1(μobs − μth), B = C
−1(μobs −

μth), C = TrC−1 and C is a covariance matrix for obser-

vations of supernovae of type Ia. The distance modulus is

defined by the formula μobs = m − M (where m is the appar-

ent magnitude and M is the absolute magnitude of observa-

tions of supernovae of type Ia) and μth = 5 log10 DL + 25

(where the luminosity distance is DL = c(1 + z)
∫ z

0
dz′

H(z)
).

BAO observations such as Sloan Digital Sky Survey

Release 7 (SDSS DR7) dataset at z = 0.275 [51], 6dF Galaxy

Redshift Survey measurements at redshift z = 0.1 [52], and

WiggleZ measurements at redshift z = 0.44, 0.60, 0.73 [53]

have the following likelihood function:

ln LBAO = −1

2

(

dobs − rs(zd)

DV (z)

)

C
−1

(

dobs − rs(zd)

DV (z)

)

,

(93)

where rs(zd) is the sound horizon at the drag epoch [54,55].

For the Alcock–Paczynski test [56,57] we used the fol-

lowing expression for the likelihood function:

ln L AP = −1

2

∑

i

(

AP th(zi ) − APobs(zi )
)2

σ 2
. (94)

where AP(z)th ≡ H(z)
z

∫ z

0
dz′

H(z′) and AP(zi )
obs are observa-

tional data [58–66].

The likelihood function for measurements of the Hubble

parameter H(z) of galaxies from [67–69] is given by the

expression

ln L H(z) = −1

2

N
∑

i=1

(

H(zi )
obs − H(zi )

th

σi

)2

. (95)

In this paper, we use the likelihood function for observations

of CMB [9] and lensing by Planck, and low-ℓ polarization

from the WMAP (WP) in the following form:

ln LCMB+lensing = −1

2
(xth − xobs)C−1(xth − xobs), (96)

where C is the covariance matrix with the errors, x is a vector

of the acoustic scale lA, the shift parameter R and�bh2 where

lA = π

rs(z∗)
c

∫ z∗

0

dz′

H(z′)
(97)

R =
√

�m,0 H2
0

∫ z∗

0

dz′

H(z′)
, (98)

where z∗ is the redshift of the epoch of the recombination

[54].

The total likelihood function is expressed in the following

form:

L tot = LSNIaLBAOLAPL H(z)LCMB+lensing. (99)

To estimate model parameters, we use our own code Cos-

moDarkBox. The Metropolis–Hastings algorithm [70,71] is

used in this code.
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Table 1 The best fit and errors for the estimated model for the posi-

tive �γ with �m,0 from the interval (0.27, 0.33), �γ from the interval

(0.0, 2.6 × 10−9) and H0 from the interval [66.0 (km/(s Mpc)), 70.0

(km/(s Mpc))]. �b,0 is assumed as 0.048468. The redshift of matter–

radiation equality is assumed as 3395. H0, in the table, is expressed in

km/(s Mpc). The value of reduced χ2 of the best fit of our model is

equal 0.187066 (for the �CDM model 0.186814)

Parameter Best fit 68% CL 95% CL

H0 68.10 +1.07 +1.55

−1.24 1.82

�m,0 0.3011 +0.0145 +0.0217

−0.0138 −0.0201

�γ 9.70 × 10−11 +1.3480 × 10−9 +2.2143 × 10−9

−9.70 × 10−11 −9.70 × 10−11

0.0 0.5 1.0 1.5 2.0

0.290

0.295

0.300

0.305

γ 109

m
,0

Fig. 17 The intersection of the likelihood functions of two model

parameters (�γ , �m,0) with the marked 68 and 95% confidence levels

Table 1 shows the values of parameters for the best fit with

errors. Figures 17 and 18 show the intersection of a likelihood

function with the 68 and 95% confidence level projections

on the (�γ , �m,0) and (�γ , H0) planes.

In this paper, we use the Bayesian information criterion

(BIC) [72,73], for comparison of our model with the �CDM

model. The expression for BIC is defined as

BIC = χ2 + j ln n, (100)

where χ2 is the value of χ2 in the best fit, j is the number of

model parameters (our model has three parameters, �CDM

model has two parameters) and n is the number of data points

(n = 625) which are used in the estimation.

For our model, the value of BIC is equal 135.668 and for

the �CDM model BIC�CDM = 129.261. So �BIC=BIC-

BIC�CDM is equal 6.407. The evidence for the model is

0.0 0.5 1.0 1.5 2.0 2.5

67.0

67.2

67.4

67.6

67.8

68.0

68.2

γ 109

H
0

k
m

s
M

p
c

Fig. 18 The intersection of the likelihood functions of two model

parameters (�γ , H0) with the marked 68 and 95% confidence levels

strong [73] if �BIC is higher than 6. So, in comparison to our

model, the evidence in favor of the �CDM model is strong,

but we cannot absolutely reject our model.

7 Conclusions

In this paper, we demonstrated that evolution of the Starobin-

sky model with a quadratic term R2 gives rise to the descrip-

tion of dynamics in terms of piecewise-smooth dynamical

systems, i.e., systems whose the phase space is partitioned

into different regions, each of them associated to a different

smooth functional form of the system of a Newtonian type.

Different regions of the phase space correspond to different

forms of the potential separated by singularities of the type

of poles.

Our idea was to obtain inflation as an endogenous effect

of the dynamics in the Palatini formalism. While the effect of
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inflation appears in the model under consideration a sufficient

number of e-folds are not achieved and the additional effect

of amplification is required. Note that this type of inflation is

a realization of the idea of singular inflation [74–77]. In our

model inflation is driven by the freeze degenerate singularity

(the extension of a type III isolated singularity).

We show that the dynamics of the model can be analyzed

in terms of two-dimensional dynamical systems of the New-

tonian type. In this approach, in the diagram of the poten-

tial of a fictitious particle, the evolution of the universe con-

tains all information which is needed for an investigation of

singularities in the model. Note that they are not isolated

singularities which were classified into five types but rather

double singularities glued in one point of the evolution at

a = asing. Appearance of such types of singularities is typ-

ical for piecewise-smooth dynamics describing the model

evolution. We call this type sewn singularities in analogy to

sewn dynamical systems [78,79].

We investigated the model with f (R̂) = R̂ + γ R̂2, where

γ assumes the positive or negative values. While the dynam-

ics of this class of models depend crucially on the sign of the

parameter γ in the early universe for the late time we obtain

the behavior consistent with the �CDM model.

Note that in the model with positive γ , the phase space is a

sum of two disjoint domains which boundary represents the

double freeze singularity (cf. Fig. 13). In the first domain the

evolution starts from a big bang followed by the deceleration

phase; then it changes to acceleration (early acceleration ≡
inflation) after reaching a maximum of the potential function.

In the second domain, on the right from the vertical line of the

freeze singularity, the universe decelerates and after reaching

another maximum starts to accelerate again. This last eternal

acceleration corresponds to the present day epoch called the

dark energy domination epoch. Two phases of deceleration

and two phases of acceleration are key ingredients of our

model. While the first phase models a transition from the

matter domination epoch to inflation the second phase models

a transition from the second matter dominated epoch toward

the present day acceleration.

As De Felice and Tsujikawa have noted [1, p. 24] the appli-

cations of f (R) theories should be focused on construct of

viable cosmological models, for which a sequence of radi-

ation, matter and accelerating epochs is realized. All these

epochs are also presented in the model under consideration

but, for negative γ (negative squared M2 for the scalar field),

some difficulties appear in the interpretation of the phase

space domain {a : a < asing}. The size of this domain will

depend on the value of the parameter �γ and this domain

vanishes as we are going toward �γ equal zero.

On the other hand it is well known that violation of condi-

tion f ′′
R̂ R̂

> 0 gives rise to the negative values of M2. We do

not assume this condition but we require that f ′
R̂

> 0 to avoid

the appearance of ghosts (see Sect. 7.4 in [1]). In our case,

statistical analysis favors a model with f ′
R̂

> 0 (�γ > 0)

rather than a model with f ′
R̂

< 0 (�γ < 0). In other words,

statistical analysis favors the case without ghosts.

In order to obtain deeper insight into the model we have

also performed complementary investigations in the Einstein

frame. In this case we find that the model is reduced to the

FRW cosmological model with the selfinteracting scalar field

and the vanishing part of the kinetic energy. Therefore from

the Palatini formulation we obtain directly the form of the

potential and the (implicit) functional dependence between

the scalar field and the scale factor. Moreover, we obtain the

parametrization of the decaying cosmological constant.

Due to a time-dependent cosmological constant the model

evolution can be described in terms of an interaction between

the matter and the decaying lambda terms. We study how

the energy is transferred between the sectors and how the

standard scaling relation for matter is modified.

We pointed out that the consideration of the Starobinsky

model in the Einstein frame gives rise to new interesting

properties from the cosmological point of view; similar to

the original (metric) the Starobinsky model is very impor-

tant for the explanation of inflation. The model under the

consideration gives rise analogously to the running cosmo-

logical term. This fact seems to be interesting in the context

of an explanation of the cosmological constant problem.

Detailed conclusions coming from our analysis are the

following:

– We show that the interaction between two sectors: the

matter and the decaying vacuum, appears naturally in the

Einstein frame. For the model formulated in the Jordan

frame this interaction is absent.

– Inflation appears in our model formulated in the Einstein

frame, when the parameter γ is close to zero and the

density of matter is negligible in comparison to ρ̄�.

– In our model in the Einstein frame, the potential Ū (�)

has the same shape as the Starobinsky potential and has

the minimum for � = 1 + 8γ λ.

– While the freeze double singularities appear in our model

in the Jordan frame there are no such singularities in the

dynamics of the model in the Einstein frame.

– If �γ is small, then asing =
(

− 2�m,0
1

�γ
+8��,0

)1/3

for nega-

tive �γ and asing =
(

1−��,0

8��,0+ 1
�γ (�m+��,0)

)
1
3

for positive

�γ . These values define the natural scale at which singu-

larities appear in the model under consideration with the

negative or positive value of γ parameter. It seems to be

natural to identify this scale with a cut off at which the

model can be treated as some kind of effective theory.

– In both the cases of a negative and positive γ one deals

with a finite scale factor singularity. For negative γ it
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is a double sudden singularity which meets the future

singularity of a contracting model before the bounce with

the initial singularity in the expanding model. The sewn

evolutionary scenarios reveal the presence of a bounce

during the cosmic evolution.

– In the context of the Starobinsky model in the Palatini for-

malism we found a new type of double singularity beyond

the well-known classification of isolated singularities.

– The phase portrait for the model with a positive value

of γ is equivalent to the phase portrait of the �CDM

model (following dynamical system theory [80] equiva-

lence assumes the form of topological equivalence estab-

lished by a homeomorphism). There is only a quantitative

difference related with the presence of the non-isolated

freeze singularity. The scale of the appearance of this type

singularity can also be estimated and be cast in terms of

the redshift zfreeze = �
−1/3
γ .

– We estimated the model parameters using astronomical

data and conclude that positive �γ is favored by the best

fit value; still the model without R̂2 term is statistically

admitted.

In our model, the best fit value of �γ is equal 9.70 ×
10−11 and positive �γ parameter belongs to the interval

(0, 2.2143 × 10−9) at 2-σ level. This mean that the posi-

tive value of �γ is more favored by astronomical data than

the negative value of �γ . The difference between values of

BIC for our model and the �CDM model is equal 6.407.

So, in comparison to our model, the evidence in favor of the

�CDM model is strong. But one cannot absolutely reject the

model.

Note added in proof After completing the paper we found

a paper by Faraoni and Cardini where freeze singularities

have been analyzed in a different context, both from point

particle and cosmological perspectives [81].
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