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We review the realization of Starobinsky-type in
ation within induced-gravity supersymmetric (SUSY) and non-SUSY models.
In both cases, in
ation is in agreement with the current data and can be attained for sub-Planckian values of the in
ation.
	e corresponding e�ective theories retain perturbative unitarity up to the Planck scale and the in
ation mass is predicted to
be 3 ⋅ 1013 GeV. 	e supergravity embedding of these models is achieved by employing two gauge singlet chiral super�elds, a
superpotential that is uniquely determined by a continuous � and a discrete Z� symmetry and several (semi)logarithmic Kähler
potentials that respect these symmetries. Checking various functional forms for the nonin
ation accompanying �eld in the Kähler
potentials, we identify four cases which stabilize it without invoking higher order terms.

1. Introduction

	e idea that the universe underwent a period of exponential
expansion, called in
ation [1–3], has proven useful not only
for solving the horizon and 
atness problems of standard
cosmology but also for providing an explanation for the scale
invariant perturbations, which are responsible for generating
the observed anisotropies in the Cosmic Microwave Back-
ground (CMB). One of the �rst incarnations of in
ation is
due to Starobinsky. To date, this attractive scenario remains
predictive, since it passes successfully all the observational

tests [4, 5]. Starobinsky considered adding anR2 term, where
R is the Ricci scalar, to the standard Einstein action in
order to source in
ation. Recall that gravity theories based
on higher powers of R are equivalent to standard gravity
theories with one additional scalar degree of freedom (see,
e.g., [6, 7]). As a result, Starobinsky in
ation is equivalent to
in
ation driven by a scalar �eld with a suitable potential, so
it admits several interesting realizations [8–29].

Following this route, we show in this work that induced-
gravity in
ation (IGI) [30–38] is e�ectively Starobinsky-like,
reproducing the structure and the predictions of the original
model. Within IGI, the in
ation exhibits a strong coupling
to R and the reduced Planck scale is dynamically generated
through the vacuum expectation value (v.e.v.) of the in
ation

at the end of in
ation. 	erefore, the in
ation acquires a
Higgs-like behavior as in theories of induced gravity [36–42].
Apart from being compatible with data, the resulting theory
respects perturbative unitarity up to the Planck scale [29–
31]. 	erefore, no concerns about the validity of the corre-
sponding e�ective theory arise. 	is is to be contrasted with
models of nonminimal in
ation (nMI) [43–54] based on a ��

potential with negligible v.e.v. for the in
ation �. Although
these models yield similar observational predictions with the
Starobinsky model, they admit an ultraviolet (UV) scale well
below�� for � > 2, leading to complicationswith naturalness
[55–57].

Nonetheless, IGI allows us to embed Starobinsky in
ation
within N = 1 supergravity (SUGRA) in an elegant way.
	e embedding is achieved by incorporating two chiral
super�elds, a modulus-like �eld � and a matter-like �eld� appearing in the superpotential, 	, as well as various
Kähler potentials, 
, consistent with an � and discrete Z�
symmetries [29, 31, 58]; see also [20–22, 28, 32]. In some
cases [20, 29, 31, 58], the employed 
’s parameterize speci�c
Kähler manifolds, which appear in no-scale models [59–
61]. Moreover, this scheme ensures naturally a low enough
reheating temperature, potentially consistent with the grav-
itino constraint [29, 62, 63] if connected with a version of the
Minimal SUSY Standard Model (MSSM).
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An important issue in embedding IGI in SUGRA is
the stabilization of the matter-like �eld �. Indeed, when 

parameterizes the ��(2, 1)/(��(2) × �(1)) Kähler manifold
[20, 21], the in
ationary trajectory turns out to be unstable
with respect to the 
uctuations of �. 	is di�culty can be

overcome by adding a su�ciently large term ��|�|4, with �� >0 and |��| ∼ 1, in the logarithmic function appearing in
, as suggested in [64] for models of nonminimal (chaotic)
in
ation [47–49] and applied in [50–54, 65–70]. 	is solu-
tion, however, deforms slightly the Kähler manifold [71].
More importantly, it violates the predictability of Starobinsky

in
ation, since mixed terms ���|�|2|�|2 with ��� ≥ 0.01,
which cannot be ignored (without tuning), have an estimable
impact [31, 72–74] on the dynamics and the observables.
Moreover, this solution becomes complicated when more
than two �elds are considered, since all quartic terms allowed
by symmetries have to be considered, and the analysis of the
stabilization mechanism becomes tedious (see, e.g., [31, 72–
74]). Alternatively, it was suggested to use a nilpotent super-
�eld � [75] or a charged �eld under a gauged� symmetry [71].

In this review, we revisit the issue of stabilizing �,
disallowing terms of the form |�|2�, � > 1, without caring
much about the structure of the Kähler manifold. Namely,

we investigate systematically several functions ℎ�(|�|2) (with� = 1, . . . , 11) that appear in the choices for 
, and we �nd
four acceptable forms that lead to the stabilization of � during
and a�er IGI. 	e output of this analysis is new, providing
results that did not appear in the literature before. More
speci�cally, we consider two principal classes of
’s,
3�, and
2�, distinguished by whether ℎ� and � appear in the same
logarithmic function. 	e resulting in
ationary scenarios
are almost indistinguishable. 	e case considered in [58] is
included as one of the viable choices in 
2� class. Contrary
to [58], we impose here the same Z� symmetry on	 and
.
Consequently, the relevant expressions for themass spectrum
and the in
ationary observables get simpli�ed considerably
compared to those displayed in [58]. As in the non-SUSY
case, IGI may be realized using sub-Planckian values for
the initial (noncanonically normalized) in
ation �eld. 	e
radiative corrections remain under control and perturbative
unitarity is not violated up to�� [31, 58, 76], consistently with
the consideration of SUGRA as an e�ective theory.

	roughout this review we focus on the standard ΛCDM
cosmological model [4]. An alternative framework is pro-
vided by the running vacuummodels [77–84] which turn out
to yield a quality �t to observations, signi�cantly better than
that of ΛCDM. In this case, the acceleration of the universe,
either during in
ation or at late times, is not attributed to
a scalar �eld but rather arises from the modi�cation of the
vacuum itself, which is dynamical. A SUGRA realization of
Starobinsky in
ation within this setting is obtained in [18].

	e plan of this paper is as follows. In Section 2, we
establish the realization of Starobinsky in
ation as IGI in a
non-SUSY framework. In Section 3 we introduce the formu-
lation of IGI in SUGRA and revisit the issue of stabilizing
the matter-like �eld �. 	e emerging in
ationary models
are analyzed in Section 4. Our conclusions are summarized
in Section 5. 	roughout, charge conjugation is denoted by

a star ( ∗), the symbol , � as subscript denotes derivation with
respect to �, and we use units where the reduced Planck scale,�� = 2.43 ⋅ 1018 GeV, is set equal to unity.

2. Starobinsky Inflation from Induced Gravity

We begin our presentation demonstrating the connection

between R
2 in
ation and IGI. We �rst review the formu-

lation of nMI in Section 2.1 and then proceed to describe
the in
ationary analysis in Section 2.2. Armed with these

prerequisites, we present R2 in
ation as a type of nMI in
Section 2.3 and exhibit its connection with IGI in Section 2.4.

2.1. Coupling Nonminimally the In
ation to Gravity. We
consider an in
ation � that is nonminimally coupled to the
Ricci scalarR, via a coupling function �R(�). We denote the
in
ation potential by �	(�) and allow for a general kinetic
function �
(�)—in the cases of pure nMI [33–35, 45, 46]�
 = 1. 	e Jordan Frame (JF) action takes the form

S = ∫�4�√−g(−12�RR + 12�
��]����]� − �	 (�)) , (1)

where g is the determinant of the Friedmann-Robertson-
Walker metric, ��], with signature (+, −, −, −). We require⟨�R⟩ ≃ 1 to ensure ordinary Einstein gravity at low energies.

By performing a conformal transformation [45] to the
Einstein frame (EF), we write the action

S = ∫�4�√−ĝ(−12R̂ + 12 �̂�]���̂�]�̂ − �̂	 (�̂)) , (2)

where a hat denotes an EF quantity.	e EFmetric is given by�̂�] = �R��], and the canonically normalized �eld, �̂, and its

potential, �̂	, are de�ned as follows:

(a) ��̂�� = * = √ �
�R + 32 (�R,��R )2,
(b) �̂	 = �	�2

R

.
(3)

For �R ≫ �
, the coupling function �R acquires a twofold
role. On the one hand, it determines the relation between�̂ and �. On the other hand, it controls the shape of �̂	,
thus a�ecting the observational predictions; see below. 	e
analysis of nMI can be performed in the EF, using the
standard slow-roll approximation. It is [33–35] completely
equivalent with the analysis in the JF. We just have to keep

track the relation between �̂ and �.
2.2. Observational and �eoretical Constraints. A viable
model of nMI must be compatible with a number of obser-
vational and theoretical requirements summarized in the
following (cf. [85–88]).

(1) 	e number of e-foldings 8̂⋆ that the scale �⋆ =0.05/Mpc experiences during in
ation must be large enough
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for the resolution of the horizon and 
atness problems of the
standard hot Big Bang model; that is, [4, 45]

8̂⋆ = ∫�̂⋆

�̂�
��̂ �̂	�̂	,�̂

= ∫�⋆

��
��*2 �̂	�̂	,�

≃ 61.7 + ln
�̂	 (�⋆)1/2�̂	 (��)1/3 + 13 ln�rh

+ 12 ln
�R (�⋆)�R (��)1/3 ,

(4)

where �⋆ [�̂⋆] is the value of � [�̂] when �⋆ crosses the
in
ationary horizon. In deriving the formula above (cf.
[65–67]), we take into account an equation-of-state with

parameter<rh = 0 [89], since �̂	 can be well approximated by
a quadratic potential for low values of �; see(20b), (32b), and
(71b) below. Also �rh is the reheating temperature a�er nMI.

We take a representative value �rh = 4.1 ⋅ 10−10 throughout,
which results in 8̂⋆ ≃ 53. 	e e�ective number of relativistic
degrees of freedom at temperature �rh is taken �rh = 107.75
in accordance with the standard model spectrum. Lastly,�� [�̂�] is the value of � [�̂] at the end of nMI, which in the
slow-roll approximation can be obtained via the condition

max {@̂ (��) , AAAAAB̂ (��)AAAAA} = 1, where @̂ = 12 (�̂	,�̂�̂	
)2 = 12*2 (�̂	,��̂	

)2 , B̂ = �̂	,�̂�̂�̂	
= 1*2 (�̂	,���̂	

− �̂	,��̂	

*,�* ) ⋅ (5)

Evidently nontrivial modi�cations of �R, and thus of *, may
have a signi�cant e�ect on the parameters above, modifying
the in
ationary observables.

(2) 	e amplitude F � of the power spectrum of the
curvature perturbation generated by � at �⋆ has to be
consistent with the data [90]; that is,

√F � = 12√3H �̂	 (�̂⋆)3/2AAAAA�̂	,�̂ (�̂⋆)AAAAA = AAAA* (�⋆)AAAA2√3H �̂	 (�⋆)3/2AAAAA�̂	,� (�⋆)AAAAA
≃ 4.627 ⋅ 10−5.

(6)

As shown in Section 3.4, the remaining scalars in the SUGRA
versions of nMI may be rendered heavy enough, so they do
not contribute to F �.

(3) 	e remaining in
ationary observables (the spectral
index ��, its running I�, and the tensor-to-scalar ratio J) must
be in agreementwith the �tting of thePlanck,BaryonAcoustic
Oscillations (BAO) andBicep2/KeckArray data [4, 5] with theΛCDM+Jmodel; that is,

(a) �� = 0.968 ± 0.009,
(b) J ≤ 0.07, (7)

at the 95% con�dence level (c.l.) with |I�| ≪ 0.01. Although
compatible with (7)(b), all data taken by the Bicep2/Keck
Array CMB polarization experiments, up to the 2014 obser-
vational season (BK14) [5], seem to favor J’s of the order of
0.01, as the reported value is 0.028+0.026

−0.025 at the 68% c.l.. 	ese
in
ationary observables are estimated through the relations:

(a) �� = 1 − 6@̂⋆ + 2B̂⋆,
(b) I� = 23 (4B̂2

⋆ − (�� − 1)2) − 2Ô⋆,
(c) J = 16@̂⋆,

(8)

where Ô = �̂	,�̂�̂	,�̂�̂�̂/�̂2
	 and the variables with subscript ⋆

are evaluated at �⋆.
(4) 	e e�ective theory describing nMI remains valid up

to a UV cuto� scale ΛUV, which has to be large enough to
ensure the stability of our in
ationary solutions; that is,

(a) �̂	 (�⋆)1/4 ≤ ΛUV,
(b) �⋆ ≤ ΛUV. (9)

As we show below, ΛUV ≃ 1 for the models analyzed in this
work, contrary to the cases of pure nMI with large �R, whereΛUV ≪ 1. 	e determination of ΛUV is achieved expanding
S in (2) about ⟨�⟩. Although these expansions are not strictly
valid [57] during in
ation, we take ΛUV extracted this way
to be the overall UV cuto� scale, since the reheating phase,
realized via oscillations about ⟨�⟩, is a necessary stage of the
in
ationary dynamics.

2.3. From Nonminimal to R
2 In
ation. R2 in
ation can be

viewed as a type of nMI, if we employ an auxiliary �eld �with
the following input ingredients:

�
 = 0,
�R = 1 + 4QR�,
�̂	 = �2.

(10)

Using the equation ofmotion for the auxiliary �eld,� = QRR,
we obtain the action of the original Starobinsky model (see,
e.g., [71]):

S = ∫�4�√−g(−12R + Q2
R
R

2) . (11)

As we can see from (10), the model has only one free
parameter (QR), enough to render it consistent with the
observational data, ensuring at the same time perturbative
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Figure 1: 	e in
ationary potential �̂	 as a function of � forR2 in
ation (a) and IGI with �⋆ = 1 (b). Values corresponding to �⋆ and �� are
also indicated.

unitarity up to the Planck scale. Using (10) and (3), we obtain
the EF quantities:

(a) * = 2√6 QR�R ,
(b) �̂	 = �2

�2
R

≃ 116Q2
R

. (12)

For QR ≫ 1, the plot of �̂	 versus � is depicted in Figure 1(a).

An in
ationary era can be supported since �̂	 becomes 
at
enough. To examine further this possibility, we calculate the
slow-roll parameters. Plugging (12) into (5) yields

@̂ = 112Q2
R
�2 ,

B̂ = 1 − 4QR�12Q2
R
�2 ⋅ (13)

Notice that B < 0 since �̂	 is slightly concave downwards,
as shown in Figure 1(a). 	e value of � at the end of nMI is
determined via (5), giving

�� = max( 12√3QR , 16QR) S⇒
�� = 12√3QR ⋅ (14)

Under the assumption that �� ≪ �⋆, we can obtain a

relation between 8̂⋆ and �⋆ via (4)8̂⋆ ≃ 3QR�⋆. (15)

	e precise value of QR can be determined enforcing (6).

Recalling that 8̂⋆ ≃ 53, we get
F1/2

� ≃ 8̂⋆12√2HQR = 4.627 ⋅ 10−5 S⇒
QR ≃ 2.3 ⋅ 104.

(16)

	e resulting value of QR is large enough so that

�⋆ ≃ 8̂⋆3QR ≃ 8.3 ⋅ 10−4 ≪ 1 (17)

consistently with (9)(b); see Figure 1(a). Impressively, the
remaining observables turn out to be compatible with the
observational data of (7). Indeed, inserting the above value

of �⋆ into (8) (8̂⋆ = 53), we get
�� ≃ (8̂⋆ − 3) (8̂⋆ − 1)8̂2

⋆
≃ 1 − 2̂8⋆

− 3̂82
⋆

≃ 0.961; (18a)

I� ≃ −(8̂⋆ − 3) (48̂⋆ + 3)28̂4
⋆

≃ − 2̂82
⋆
− 1528̂3

⋆

≃ −7.6 ⋅ 10−4;
(18b)

J ≃ 12̂82
⋆

≃ 4.2 ⋅ 10−3. (18c)

Without the simpli�cation of (15), we obtain numerically �� =0.964, I� = −6.7 ⋅ 10−4, and J = 3.7 ⋅ 10−3. We see that �� turns
out to be appreciably lower than unity thanks to the negative
values of B; see (13). 	e mass of the in
ation at the vacuum
is

�̂�� = ⟨�̂	,�̂�̂⟩1/2 = ⟨�̂	,��*2 ⟩1/2 = 12√3QR
≃ 1.25 ⋅ 10−5 (i.e. 3 ⋅ 1013 GeV) .

(19)

As we show below this value is salient future in all models of
Starobinsky in
ation.

Furthermore, the model provides an elegant solution to
the unitarity problem [55–57], which plagues models of nMI
with �R ∼ �� ≫ �
, � > 2, and �
 = 1. 	is stems from

the fact that �̂ and � do not coincide at the vacuum, as (12)(a)
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implies �̂ = ⟨*⟩� = 2√3QR�. In fact, if we expand the second
term in the right-hand side (r.h.s.) of (2) about ⟨�⟩ = 0, we
�nd

*2 ̇�2 = (1 − 2√23�̂ + 2�̂2 − ⋅ ⋅ ⋅) ̇̂�2. (20a)

Similarly, expanding �̂	 in (12)(b), we obtain

�̂	 = �̂2

24Q2
R

(1 − 2√23�̂ + 2�̂2 − ⋅ ⋅ ⋅) . (20b)

Since the coe�cients of the above series are of order unity,
independent of QR, we infer that the model does not face any
problem with perturbative unitarity up to the Planck scale.

2.4. Induced-Gravity In
ation. It would be certainly bene�-

cial to realize the structure and the predictions ofR2 in
ation
in a framework that deviatesminimally fromEinstein gravity,
at least in the present cosmological era. To this extent, we
incorporate the idea of induced gravity, according to which�� is generated dynamically [41, 42] via the v.e.v. of a scalar
�eld �, driving a phase transition in the early universe. 	e
simplest way to implement this scheme is to employ a double-
well potential for�; for scale invariant realizations of this idea,
see [39, 40]. On the other hand, an in
ationary stage requires
a su�ciently 
at potential, as in (10). 	is can be achieved at
large �eld values if we introduce a quadratic�R [33–38].More
explicitly, IGImay be de�ned as nMIwith the following input
ingredients:

�
 = 1,
�R = QR�2,
�	 = ^ (�2 − _2)24 .

(21)

Given that ⟨�⟩ = _, we recover Einstein gravity at the
vacuum if

�R (⟨�⟩) = 1 S⇒
_ = 1√QR . (22)

We see that in this model there is one additional free
parameter, namely, ^ appearing in the potential, as compared

toR2 model.
Equations (3) and (21) imply

(a) * ≃ √6� ,
(b) �̂	 = �̂2

�4Q4
R
�4 ≃ ^4Q2

R

with �� = 1 − QR�2.
(23)

For QR ≫ 1, the plot of �̂	 versus � is shown in Figure 1(b). As

in R
2 model, �̂	 develops a plateau, so an in
ationary stage

can be realized. To check its robustness, we compute the slow-
roll parameters. Equations (5) and (23) give

@̂ = 43�2
�
,

B̂ = 4 (1 + ��)3�2
�

⋅
(24)

IGI is terminated when � = ��, determined by the condition

�� = max(√1 + 2/√3QR , √ 53QR) S⇒
�� = √1 + 2/√3QR ⋅

(25)

Under the assumption that �� ≪ �⋆, (4) implies the

following relation between 8̂⋆ and �⋆:

8̂⋆ ≃ 3QR�2
⋆4 S⇒

�⋆ ≃ 2√ 8̂⋆3QR ≫ ��.
(26)

Imposing (9)(b) and setting 8̂⋆ ≃ 53, we derive a lower
bound on QR:

�⋆ ≤ 1 S⇒
QR ≥ 48̂⋆3 ≃ 71. (27)

Contrary toR2 in
ation, QR does not control exclusively the
normalization of (6), thanks to the presence of an extra factor

of√^. 	is is constrained to scale with QR. Indeed, we have
F1/2

� ≃ √^8̂⋆6√2HQR = 4.627 ⋅ 10−5 S⇒ QR ≃ 42969√^
for 8̂⋆ ≃ 53.

(28)

If, in addition, we impose the perturbative bound ^ ≤ 3.5, we
end-up with following ranges:

77 ≲ QR ≲ 8.5 ⋅ 104,
2.8 ⋅ 10−6 ≲ ^ ≲ 3.5, (29)

where the lower bounds on Q� and ^ correspond to�⋆ = 1; see
Figure 1(b).Within the allowed ranges, �̂�� remains constant,
by virtue of (28). 	e mass turns out to be

�̂�� = √^√3QR ≃ 1.25 ⋅ 10−5, (30)
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essentially equal to that estimated in (19). Moreover, using
(26) and (8), we extract the remaining observables

�� = (48̂⋆ − 15) (48̂⋆ + 1)
(3 − 48̂⋆)2 ≃ 1 − 2̂8⋆

− 928̂2
⋆

≃ 0.961;
(31a)

I� = −1288̂⋆ (48̂⋆ + 9)
(3 − 48̂⋆)4 ≃ − 2̂82

⋆
− 2128̂3

⋆

≃ −7.7 ⋅ 10−4;
(31b)

J = 192
(3 − 48̂⋆)2 ≃ 12̂82

⋆
≃ 4.4 ⋅ 10−3. (31c)

Withoutmaking the approximation of (26), we obtain numer-

ically (��, I�, J) = (0.964, −6.6 ⋅ 10−4, 3.7 ⋅ 10−3). 	ese

results practically coincide with those of R2 in
ation, given
in (18a)–(18c), and they are in excellent agreement with the
observational data presented in (7).

As in the previous section, the model retains perturbative
unitarity up to ��. To verify this, we �rst expand the second

term in the r.h.s. of (1) about ĝ� = �−_ ≃ 0, with * given by
(23)(a). We �nd

*2 ̇�2 = (1 − √23 ĝ� + 12 ĝ�2 − ⋅ ⋅ ⋅) ̇̂g�2

with ĝ� ≃ √6QRg�.
(32a)

Expanding �̂	 given by (23)(b), we get

�̂	 = ^2

6Q2
R

ĝ�2 (1 − √32 ĝ� + 2524 ĝ�2 − ⋅ ⋅ ⋅) . (32b)

	erefore, ΛUV = 1 as for R2 in
ation. Practically identical
results can be obtained if we replace the quadratic exponents
in (21) with � ≥ 3 as �rst pointed out in [30]. 	is
generalization can be elegantly performed [31, 32] within
SUGRA, as we review below.

3. Induced-Gravity Inflation in SUGRA

In Section 3.1, we present the general SUGRA setting, where
IGI is embedded. 	en, in Section 3.2, we examine a variety
of Kähler potentials, which lead to the desired in
ationary
potential; see Section 3.3. We check the stability of the
in
ationary trajectory in Section 3.4.

3.1.�eGeneral Set-Up. To realize IGI within SUGRA [29, 31,
32, 58], we must use two gauge singlet chiral super�elds ��,
with �1 = � and �2 = � being the in
ation and a “stabilizer”
super�eld, respectively. 	roughout this work, the complex
scalar �elds �� are denoted by the same super�eld symbol.
	e EF e�ective action is written as follows [47–49]:

S = ∫�4�√−ĝ(−12R̂ + 
���̂�]�����
]
�∗� − �̂) , (33a)

where 
�� = 
,���∗� is the Kähler metric and 
�� its inverse

(
��
�� = g�
� ). �̂ is the EF F-term SUGRA potential, given

in terms of the Kähler potential 
 and the superpotential 	
by the following expression:

�̂ = h
 (
��j�	j∗
�	∗ − 3 |	|2)

with j�	 = 	,�� + 
,��	. (33b)

Conformally transforming to the JF with �R = −Ω/8,
where 8 is a dimensionless positive parameter, S takes the
form

S = ∫�4�√−g( Ω28R + 348Ω��Ω��Ω
− 18Ω
���������∗� − �) with � = Ω2

82 �̂. (34)

Note that8 = 3 reproduces the standard set-up [47–49]. Let
us also relateΩ and
 by

−Ω8 = h−
/� S⇒

 = −8 ln(−Ω8) . (35)

	en taking into account the de�nition [47–49] of the purely
bosonic part of the auxiliary �eld when on shell,

A� = � (
����� − 
����∗�)6 , (36)

we arrive at the following action:

S = ∫�4�√−g( Ω28R

+ (Ω�� + 3 − 88 Ω�Ω�Ω )�������∗�

− 2783ΩA�A
� − �) .

(37a)

By virtue of (35),A� takes the form

A� = −�8 (Ω����� − Ω����∗�)6Ω (37b)

with Ω� = Ω,�� and Ω� = Ω,�∗� . As can be seen from
(37a), −Ω/8 introduces a nonminimal coupling of the scalar
�elds to gravity. Ordinary Einstein gravity is recovered at the
vacuum when

−⟨Ω⟩8 ≃ 1. (38)
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Table 1: De�nition of the various ℎ�(m)’s, ℎ��
� (0) = �2ℎ�(0)/�m2 and masses squared of the 
uctuations of n and n along the in
ationary

trajectory in (46) for
 = 
3� and 
2�.

� ℎ�(m) ℎ��
� (0) �̂2

� /ô2
	
 = 
3� 
 = 
2�1 m 0 −2 + 2�/�2

� 3 ⋅ 2�−1/�2
�2 h� − 1 1 2(4−�)/2Q��� − 2 + 2�/�2

� −6 + 3 ⋅ 2�−1/�2
�3 ln(m + 1) −1 −2(1 + 21−�/2Q���) 6(1 + 2�−1/�2

� )4 − cos(arcsin 1 + m) 0 −2(1 − 2�−1/�2
� ) 3 ⋅ 2�−1/�2

�5 sin(arccos 1 + m) 0 −2(1 − 2�−1/�2
� ) 3 ⋅ 2�−1/�2

�6 tan (m) 0 −2(1 − 2�−1/�2
� ) 3 ⋅ 2�−1/�2

�7 − cot(arcsin 1 + m) 0 −2(1 − 2�−1/�2
� ) 3 ⋅ 2�−1/�2

�8 cosh(arcsin 1 + m) − √2 √2 2(5−�)/2Q��� − 2 + 2�/�2
� 3 ⋅ 2�−1/�2

� − 6√29 sinh(m) 0 −2(1 − 2�−1/�2
� ) 3 ⋅ 2�−1/�2

�10 tanh(m) 0 −2(1 − 2�−1/�2
� ) 3 ⋅ 2�−1/�2

�11 − coth(arcsinh 1 + m) + √2 −2√2 2�/�2
� − 2(7−�)/2Q��� − 2 3 ⋅ 2�−1/�2

� + 12√2
Starting with the JF action in (37a), we seek to realize IGI,

postulating the invariance of Ω under the action of a global
Z� discrete symmetry.With � stabilized at the origin, wewrite

− Ω8 = Ω� (�) + Ω∗
� (�∗)
with Ω� (�) = Q��� + ∞∑

�=2
^����, (39)

where � is a positive integer. If� ≤ 1 during IGI and assuming
that ^�’s are relatively small, the contributions of the higher
powers of � in the expression above are small, and these can
be dropped. As we verify later, this can be achieved when the
coe�cient Q� is large enough. Equivalently, wemay rescale the

in
ation, setting � → �̃ = Q�1/��. 	en the coe�cients ^� of
the higher powers in the expression of Ω get suppressed by

factors of Q−�� .	us,Z� and the requirement � ≤ 1 determine
the form ofΩ, avoiding a severe tuning of the coe�cients ^�.
Under these assumptions,
 in (35) takes the form
0 = −8 ln (� (�) + �∗ (�∗)) with � (�) ≃ Q���, (40)

where � is assumed to be stabilized at the origin.
Equations (35) and (38) require that � and � acquire the

following v.e.v.s:

⟨�⟩ ≃ 1(2Q�)1/� ,⟨�⟩ = 0. (41)

	ese v.e.v.s can be achieved, if we choose the following
superpotential [31, 32]:

	 = ^�(�� − 12Q�) . (42)

Indeed the corresponding F-term SUSY potential, �SUSY, is
found to be

�SUSY = ^2
AAAAAAAA�� − 12Q�

AAAAAAAA
2 + ^2�2 AAAAA���−1AAAAA2 (43)

and is minimized by the �eld con�guration in (21).

As emphasized in [29, 31, 58], the forms of	 andΩ� can
be uniquely determined if we limit ourselves to integer values
for � (with � > 1) and � ≤ 1 and impose two symmetries:

(i) An � symmetry under which � and � have charges 1
and 0, respectively.

(ii) A discrete symmetry Z� under which only � is
charged.

For simplicity we assume here that both 	 and Ω� respect
the same Z�, contrary to the situation in [58]. 	is assump-
tion simpli�es signi�cantly the formulae in Sections 3.3
and 3.4. Note, �nally, that the selected Ω in (39) does not
contribute in the kinetic term involving Ω��∗ in (37a). We
expect that our �ndings are essentially unaltered even if we

include in the r.h.s. of (39) a term −(� − �∗)2/28 [32] or−|�|2/8 [31] which yieldsΩ��∗ = 1 ≪ Q�; the former choice,
though, violates Z� symmetry above.

3.2. Proposed Kähler Potentials. It is obvious from the con-
siderations above that the stabilization of � at zero during
and a�er IGI is of crucial importance for the viability of our
scenario. 	is key issue can be addressed if we specify the
dependence of the Kähler potential on �. We distinguish the
following basic cases:


3� = −�3 ln (� (�) + �∗ (�∗) + ℎ� (m)) ,

2� = −�2 ln (� (�) + �∗ (�∗)) + ℎ� (m) , (44)

where the various choices ℎ�, � = 1, . . . , 11, are speci�ed in
Table 1 andm is de�ned as follows:

m = {{{{{
−|�|2�3

for 
 = 
3�

|�|2 for 
 = 
2�.
(45)

As shown in Table 1 we consider exponential, logarithmic,
trigonometric, and hyperbolic functions. Note that 
31 and
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21 parameterize ��(2, 1)/��(2)×�(1) and ��(1, 1)/�(1)×�(1) Kähler manifolds, respectively, whereas
23 parameter-
izes the ��(1, 1)/�(1) × ��(2)/�(1) Kähler manifold; see
[58].

To show that the proposed
’s are suitable for IGI, we have

to verify that they reproduce �̂	 in (23)(b) when � = 2, and
they ensure the stability of � at zero. 	ese requirements are
checked in the following two sections.

3.3. Derivation of the In
ationary Potential. Substituting 	
of (42) and a choice for 
 in (44) (with the ℎ�’s given in
Table 1) into (33b), we obtain a potential suitable for IGI. 	e
in
ationary trajectory is de�ned by the constraints

� = � − �∗ = 0,
or n = n = y = 0, (46)

where we have expanded � and � in real and imaginary parts
as follows:

� = �√2h��,
� = n + �n√2 ⋅ (47)

Along the path of (46), �̂ reads

�̂	 = �̂ (y = n = n = 0) = h

��∗ AAAA	,�
AAAA2 . (48)

From (42) we get	,� = � − 1/2. Also, (44) yields

h
 = {{{{{{{
(2� + ℎ� (0))−�3 for 
 = 
3�

hℎ�(0)(2�)�2 for 
 = 
2�, (49)

where we take into account that �(�) = �∗(�∗) along the

path of (46). Moreover, 
��∗ = 1/
��∗ can be obtained from
the Kähler metric, which is given by

(
��) = diag (
��∗ , 
��∗)

=
{{{{{{{{{{{

diag(�3�2

2�2 , ℎ�
� (0)(2� + ℎ� (0))) for 
 = 
3�

diag(�2�2

2�2 , ℎ�
� (0)) for 
 = 
2�,

(50)

where a prime denotes a derivative with respect to m. Note
that
��∗ for
 = 
2� (and � ̸= 0) does not involve the �eld �
in its denominator, and so no geometric destabilization [91]

can be activated, contrary to the 
 = 
3� case. Inserting 	,�
and the results of (49) and (50) into (33b), we obtain

�̂	 = ^2 (1 − 2�)2Q2�

⋅
{{{{{{{{{{{{{

(2� + ℎ� (0))1−�3ℎ�
� (0) for 
 = 
3�

hℎ�(0)(2�)�2 ℎ�
� (0) for 
 = 
2�.

(51)

Recall that � ∼ ��; see (40). 	en �̂	 develops a plateau,
with almost constant potential energy density, for Q� ≫ 1 and� < 1 (or Q� = 1 and � ≫ 1), if we impose the following
conditions:

2� = {{{
� (�3 − 1) for 
 = 
3���2 for 
 = 
2�

S⇒
{{{
�3 = 3 for 
 = 
3��2 = 2 for 
 = 
2�.

(52)

	is empirical criterion is very precise since the data on ��
allows only tiny (of order 0.001) deviations [28]. Actually, the
requirement Q� ≫ 1 and the synergy between the exponents
in 	 and 
’s assist us to tame the well-known B problem
within SUGRA with a mild tuning. If we insert (52) into (51)
and compare the result for � = 2 with (23)(b) (replacing also^2 with ^), we see that the two expressions coincide, if we set

ℎ� (0) = 0,
ℎ�
� (0) = 1. (53)

As we can easily verify the selected ℎ� in Table 1 satisfy these

conditions. Consequently, �̂	 in (51) and the corresponding

Hubble parameter ô	 take their �nal form:

(a) �̂	 = ^2�2
�4Q4��2� ,

(b) ô	 = �̂1/2
	√3 = �̂�2√3Q2��� ,

(54)

with�� = 2�/2−1−Q��� < 0 reducing to that de�ned in (23)(b).
Based on these expressions, we investigate in Section 4 the
dynamics and predictions of IGI.

3.4. Stability of the In
ationary Trajectory. We proceed to
check the stability of the direction in (46) with respect to
the 
uctuations of the various �elds. To this end, we have
to examine the validity of the extremum and minimum
conditions; that is,

(a) ��̂	��̂�

AAAAAAAAA�=�=�=0 = 0,
(b) �̂2

�� > 0 with �� = y, n, n.
(55)
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Table 2: Mass-squared spectrum for 
 = 
3� and 
2� along the in
ationary trajectory in (46).

Fields Eigenstates
Masses squared
 = 
3� 
 = 
2�

1 real scalar ŷ �̂2
�/ô2

	 4(2�−2 − Q�����)/�2
� 6(2�−2 − Q�����)/�2

�
1 complex n̂, n̂ �̂2

� /ô2
	 2�/�2

� − 2 3 ⋅ 2�−1/�2
�

scalar +22−�/2Q���ℎ��
� (0) −6ℎ��

� (0)2Weyl spinors {̂± �̂2
�±/ô2

	 2�/�2
� 6 ⋅ 2�−3/�2

�

Here �̂2
�� are the eigenvalues of themassmatrixwith elements

_̂2
�� = �2�̂	��̂���̂�

AAAAAAAAAA�=�=�=0 with �� = y, n, n (56)

and a hat denotes the EF canonically normalized �eld. 	e
canonically normalized �elds can be determined if we bring
the kinetic terms of the various scalars in (33a) into the
following form:


���̇��̇∗� = 12 ( ̇̂�2 + ̇̂y2) + 12 ( ̇̂n2 + ̇̂n2) , (57a)

where a dot denotes a derivative with respect to the JF cosmic
time. 	en the hatted �elds are de�ned as follows:

��̂�� = * = √
��∗ ,
ŷ = *y� ,

(n̂, n̂) = √
��∗ (n, n) ,
(57b)

where by virtue of (52) and (53), the Kähler metric of (50)
reads

(
��) = diag (
��∗ , 
��∗)

= {{{{{{{{{
(3�2

2�2 , 2�/2−1

Q��� ) for 
 = 
3�

(�2

�2 , 1) for 
 = 
2�.
(57c)

Note that the spinor components {� and {� of the
super�elds � and � are normalized in a similar way; that
is, {̂� = √
��∗{Φ and {̂� = √
��∗{�. In practice, we

have to make sure that all the �̂2
�� ’s are not only positive,

but also greater than ô2
	 during the last 50–60 e-foldings of

IGI.	is guarantees that the observed curvature perturbation
is generated solely by �, as assumed in (6). Nonetheless,
two-�eld in
ationary models which interpolate between the
Starobinsky and the quadratic model have been analyzed in
[92–95]. Due to the large e�ective masses that the scalars
acquire during IGI, they enter a phase of damped oscillations

about zero. As a consequence, � dependence in their normal-
ization (see (57b)) does not a�ect their dynamics.

We can readily verify that (55)(a) is satis�ed for all the

three ��’s. Regarding (55)(b), we diagonalize _̂2
�� (56) and

we obtain the scalar mass spectrum along the trajectory of
(46). Our results are listed in Table 1 together with the masses

squared �̂2
�± of the chiral fermion eigenstates {̂± = ({̂� ±{̂�)/√2. From these results, we deduce the following:

(i) For both classes of 
’s in (44), (55)(b) is satis�ed for
the 
uctuations of ŷ; that is, �̂2

� > 0, since �� < 0.
Moreover, �̂2

� ≫ ô2
	 because Q� ≫ 1.

(ii) When
 = 
3� and ℎ��
� (0) = 0, we obtain �̂2

� < 0. 	is
occurs for � = 1, 4, . . . , 7, 9 and 10, as shown in Table 1.
For � = 1, our result reproduces those of similar
models [31, 47–52, 68–70]. 	e stability problem can
be cured if we include in 
3� a higher order term of

the form ��|�|4 with �� ∼ 1, or assuming that �2 = 0
[75]. However, a probably simpler solution arises if we
take into account the results accumulated in Table 2.
It is clear that the condition �̂2

� > ô2
	 can be satis�ed

when ℎ��
� (0) > 0 with |ℎ��

� (0)| ≥ 1. From Table 1, we
see that this is the case for � = 2 and 8.

(iii) When 
 = 
2� and ℎ��
� (0) = 0, we obtain �̂2

� > 0, but�̂2
� < ô2

	 . 	erefore, � may seed in
ationary pertur-
bations, leading possibly to large non-Gaussianities in
the CMB, contrary to observations. From the results

listed in Table 2, we see that the condition �̂2
� ≫ ô2

	
requires ℎ��

� (0) < 0 with |ℎ��
� (0)| ≥ 1. 	is occurs for� = 3 and 11. 	e former case was examined in [58].

To highlight further the stabilization of � during and a�er
IGI we present in Figure 2 �̂2

� /ô2
	 as a function of � for the

various acceptable 
’s identi�ed above. In particular, we �x� = 2 and �⋆ = 1, setting 
 = 
32 or 
 = 
38 in Figure 2(a)
and 
 = 
23 or 
 = 
2,11 in Figure 2(b). 	e parameters
of the models (^ and Q�) corresponding to these choices are

listed in third and ��h rows of Table 3. Evidently �̂2
� /ô2

	
remain larger than unity for �� ≤ � ≤ �⋆, where �⋆ and ��
are also depicted. However, in Figure 2(b) �̂2

� /ô2
	 exhibits a

constant behavior and increases sharply as � decreases below0.2. On the contrary, �̂2
� /ô2

	 in Figure 2(a) is an increasing
function of � for � ≳ 0.2, with a clear minimum at � ≃ 0.2.
For � ≲ 0.2, �̂2

� /ô2
	 increases drastically as in Figure 2(b) too.

Employing the well-known Coleman-Weinberg formula
[96], we �nd from the derived mass spectrum (see Table 1)
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Figure 2: 	e ratio �̂2
� /ô2

	 as a function of � for � = 2 and �⋆ = 1. We set (a) 
 = 
32 or 
 = 
38 and (b) 
 = 
23 or 
 = 
2,11. 	e values
corresponding to �⋆ and �� are also depicted.

the one-loop radiative corrections, Δ�̂	, to �̂	, depending on
renormalization groupmass scaleΛ. It can be veri�ed that our
results are insensitive to Δ�̂	, provided that Λ is determined

by requiring Δ�̂	(�⋆) = 0 or Δ�̂	(��) = 0. A possible
dependence of the results on the choice ofΛ is totally avoided

[31] thanks to the smallness of Δ�̂	, for Λ ≃ (1 − 1.8) ⋅ 10−5;
see Section 4.2 too. 	ese conclusions hold even for � > 1.
	erefore, our results can be accurately reproduced by using

exclusively �̂	 in (54)(a).

4. Analysis of SUGRA Inflation

Keeping in mind that for 
 = 
3� [
 = 
2�] the values � = 2
and 8 [� = 3 and 11] lead to the stabilization of � during and
a�er IGI, we proceedwith the computation of the in
ationary
observables for the SUGRA models considered above. Since
the precise choice of the index � does not in
uence our
outputs, here we do not specify henceforth the allowed �
values. We �rst present, in Section 4.1, analytic results which
are in good agreement with our numerical results displayed
in Section 4.2. Finally we investigate the UV behavior of the
models in Section 4.3.

4.1. Analytical Results. 	e duration of the IGI is controlled
by the slow-roll parameters, which are calculated to be

(@̂, B̂)

=
{{{{{{{{{{{{{

( 2�

3�2
�
, 21+�/2 (2�/2 − Q���)3�2

�
) for 
 = 
3�

(2�−2

�2
�

, 2�/2 (2�/2 − Q���)�2
�

) for 
 = 
2�.
(58)

	e end of in
ation is triggered by the violation of @̂ condition
when � = �� given by

@̂ (��) = 1 S⇒

�� ≃ √2 ⋅
{{{{{{{{{{{{{

((1 + 2/√3)2Q� )1/�

for 
 = 
3�

((1 + √2)2Q� )1/�

for 
 = 
2�.
(59a)

	e violation of B̂ condition occurs when � = �̃� < ��:

B̂ (�̃�) = 1 S⇒

�̃� ≃ √2 ⋅
{{{{{{{{{{{
( 56Q�)1/�

for 
 = 
3�

(√32Q�)1/�
for 
 = 
2�.

(59b)

Given ��, we can compute 8̂⋆ via (4):

8̂⋆ = �2 (21−�/2Q� (��
⋆ − ��

�) − � ln �⋆��
)

with � = {{{{{
32 for 
 = 
3�

1 for 
 = 
2�.
(60)

Ignoring the logarithmic term and taking into account that�� ≪ �⋆, we obtain a relation between �⋆ and 8̂⋆:

�⋆ ≃ �√2�/28̂⋆�Q� . (61a)
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Table 3: Input and output parameters of the models which are compatible with (4) for 8̂⋆ = 53.2, (6), and (7).

Kähler potential
 Parameters

Input Output� Q� �⋆ ^ (10−3) �� �� I� (10−4) J (10−3)
3� 1 1 54.5 0.022 1.5 0.964 −6.3 3.6
2� 1 1 80 0.028 1.7 0.964 −6.6 2.5
3� 2 77 1 1.7 0.17 0.964 −6.7 3.7
3� 3 109 1 2.4 0.3 0.964 −6.5 3.7
2� 2 113 1 2 0.15 0.964 −6.7 2.5
2� 3 159 1 3 0.3 0.964 −6.7 2.6
Obviously, IGI, consistent with (9)(b), can be achieved if�⋆ ≤ 1 S⇒

Q� ≥ 2�/28̂⋆� . (61b)

	erefore, we need relatively large Q�’s, which increase with �.
On the other hand, �̂⋆ remains trans-Planckian, since solving
the �rst relation in (57b) with respect to � and inserting (61a),
we �nd

�̂⋆ ≃ �̂ + √� ln(28̂⋆� ) ≃ {5.2 for 
 = 
3�4.6 for 
 = 
2�, (62)

where the integration constant �̂ = 0 and, as in the previous

cases, we set 8̂⋆ ≃ 53. Despite this fact, our construction
remains stable under possible corrections from higher order
terms in�
, since when these are expressed in terms of initial
�eld �, they can be seen to be harmless for |�| ≤ 1.

Upon substitution of (54) and (61a) into (6), we �nd

F1/2
� ≃

{{{{{{{{{{{{{

^(3 − 48̂⋆)296√2HQ�8̂⋆
for 
 = 
3�

^ (1 − 28̂⋆)216√3HQ�8̂⋆
for 
 = 
2�.

(63)

Enforcing (6), we obtain a relation between ^ and Q�, which
turns out to be independent of �. Indeed we have

^ ≃ {{{{{{{{{

6H√2F �Q�8̂⋆
S⇒ Q� ≃ 42969^ for 
 = 
3�

4H√3F �Q�8̂⋆
S⇒ Q� ≃ 52627^ for 
 = 
2�.

(64)

Finally, substituting the value of �⋆ given in (61a) into (8), we
estimate the in
ationary observables. For
 = 
3� the results
are given in (31a)–(31c). For
 = 
2� we obtain the relations:

�� = 48̂⋆ (8̂⋆ − 3) − 3
(1 − 28̂⋆)2 ≃ 1 − 2̂8⋆

− 3̂82
⋆

≃ 0.961; (65a)

I� ≃ 168̂⋆ (3 + 28̂⋆)(28̂⋆ − 1)4 ≃ − 2̂82
⋆
− 7̂83

⋆
≃ −0.00075; (65b)

J ≃ 32
(1 − 28̂⋆)2 ≃ 8̂82

⋆
+ 8̂83

⋆
≃ 0.0028. (65c)

	ese outputs are consistent with our results in [58] for� = �
and �11 = �2 = 2 (in the notation of that reference).

4.2. Numerical Results. 	e analytical results presented
above can be veri�ed numerically. 	e in
ationary scenario
depends on the following parameters (see (42) and (44)):

�, Q� and ^. (66)

Note that the stabilization of � with one of
32,
34,
23, and
2,11 does not require any additional parameter. Recall that

we use �rh = 4.1 ⋅ 10−9 throughout and 8̂⋆ is computed

self-consistently for any � via (4). Our result is 8̂⋆ ≃ 53.2.
For given �, the parameters above together with �⋆ can be
determined by imposing the observational constraints in (4)
and (6). In our code we �nd �⋆ numerically, without the
simplifying assumptions used for deriving (61a). Inserting it
into (8), we extract the predictions of the models.

	e variation of �̂	 as a function of � for two di�erent
values of � can be easily inferred from Figure 3. In particular,

we plot �̂	 versus � for �⋆ = 1, � = 2, or � = 6, setting
 = 
3�
in Figure 3(a) and 
 = 
2� in Figure 3(b). Imposing �⋆ = 1
for � = 2 amounts to (^, Q�) = (0.0017, 77) for 
 = 
3� and(^, Q�) = (0.0017, 113) for 
 = 
2�. Also, �⋆ = 1 for � = 6 is
obtained for (^, Q�) = (0.0068, 310) for 
 = 
3� and (^, Q�) =(0.0082, 459) for 
 = 
2�. In accordance with our �ndings
in (61b), we conclude that increasing � (i) requires larger Q�’s
and, therefore, lower �̂	’s to obtain � ≤ 1; (ii) larger �� and⟨�⟩ are obtained; see Section 4.3. Combining (59a) and (64)

with (54)(a), we can conclude that �̂	(��) is independent ofQ� and to a considerable degree of �.
Our numerical �ndings for � = 1, 2, and 3 and 
 = 
3�

or 
 = 
2� are presented in Table 2. In the two �rst rows,
we present results associated with Ceccoti-like models [97],
which are de�ned by Q� = � = 1 and cannot be made
consistent with the imposed Z� symmetry or with (9). We
see that, selecting �⋆ ≫ 1, we attain solutions that satisfy all
the remaining constraints in Section 2.2. For the other cases,
we choose a Q� value so that �⋆ = 1. 	erefore, the presentedQ� is the minimal one, in agreement with (61b).

In all cases shown in Table 2, the model’s predictions for��, I�, and J are independent of the input parameters. 	is
is due to the attractor behavior [30–32] that these models
exhibit, provided that Q� is large enough. Moreover, these



12 Advances in High Energy Physics

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
V̂
I
(1
0
−
10
)

0.0 0.4 0.6 0.8 1.0 1.20.2

�

�⋆

�f

n = 2, cT = 77

n = 6, cT = 310

(a)

0.0

0.2

0.4

0.6

0.8

1.0

V̂
I
(1
0
−
10
)

0.0 0.4 0.6 0.8 1.0 1.20.2

�

�⋆

�f

n = 2, cT = 113

n = 6, cT = 453

(b)

Figure 3: 	e in
ationary potential �̂	 as a function of � for �⋆ = 1 and � = 2 or � = 6. We set (a) 
 = 
3� and (b) 
 = 
2�. 	e values
corresponding to �⋆ and �� are also depicted.

outputs are in good agreement with the analytical �ndings
of (31a)–(31c) for 
 = 
3� or (65a)–(65c) for 
 = 
2�.
On the other hand, the presented Q�, ^, �⋆, and �� values
depend on � for every selected 
. 	e resulting �� ≃ 0.964
is close to its observationally central value; J is of the order
of 0.001, and |I�| is negligible. Although the values of J
lie one order of magnitude below the central value of the
present combined Bicep2/Keck Array and Planck results [5],
these are perfectly consistent with the 95% c.l. margin in
(7). 	e values of J for 
 = 
3� or 
 = 
2� distinguish
the two cases. 	e di�erence is small, at the level of 10−3.
However, it is possibly reachable by the next-generation
experiment (e.g., the CMBPol experiment [98]) is expected

to achieve a precision for J of the order of 10−3 or even0.5⋅10−3. Finally, the renormalization scaleΛ of theColeman-

Weinberg formula, found by imposingΔ�̂	(�⋆) = 0, takes the
values 7.8 ⋅ 10−5, 9.3 ⋅ 10−5 1.3 ⋅ 10−5, and 2.1 ⋅ 10−5 for 
32,
38,
23, and
2,11, respectively. As a consequence,Λdepends
explicitly on the speci�c choice of � used for
3� or
2�.

	e overall allowed parameter space of the model for � =2, 3 and 6 is correspondingly
77, 105, 310 ≲ Q� ≲ 1.6 ⋅ 105,

(1.7, 2.4, 6.8) ⋅ 10−3 ≲ ^ ≲ 3.54
for 
 = 
3�;

(67a)

113, 159, 453 ≲ Q� ≲ 1.93 ⋅ 105,
(2, 2.9, 8.2) ⋅ 10−3 ≲ ^ ≲ 3.54

for 
 = 
2�,
(67b)

where the parameters are bounded from above as in (29).
Letting ^ or Q� vary within its allowed region above, we obtain

the values of ��, I�, and J listed in Table 3 for 
 = 
3�
and 
2� independently of �. 	erefore, the inclusion of the
variant exponent � > 2, compared to the non-SUSY model
in Section 2.4 does not a�ect the successful predictions of
model.

4.3. UV Behavior. Following the approach described in
Section 2.2, we can verify that the SUGRA realizations of
IGI retain perturbative unitarity up to ��. To this end, we
analyze the small-�eld behavior of the theory, expanding S in
(1) about

⟨�⟩ = 2(�−2)/2�Q−1/�� , (68)

which is con�ned in the ranges (0.0026–0.1), (0.021–0.24),
and (0.17–0.48) for the margins of the parameters in (67a)
and (67b).

	e expansion of S is performed in terms of ĝ� which is
found to be

ĝ� = ⟨*⟩ g� with ⟨*⟩ ≃ √��⟨�⟩ = 2(2−�)/2�√��Q1/�� , (69)

where � is de�ned in (60). Note, in passing, that the mass ofĝ� at the SUSY vacuum in (41) is given by

�̂�� = ⟨�̂	,�̂�̂⟩1/2 ≃ ^√2�Q� ≃ 2√6F �H8̂⋆

≃ 1.25 ⋅ 10−5,
(70)

precisely equal to that found in (19) and (30). We observe
that �̂�� is essentially independent of � and �, thanks to the
relation between ^ and Q� in (64).
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Expanding the second term in the r.h.s. of (33a) about ⟨�⟩
with * given by the �rst relation in (57b), we obtain

*2 ̇�2

= (1 − 2�√�ĝ� + 3�2� ĝ�2 − 4�3 �−3/2ĝ�3 + ⋅ ⋅ ⋅)
⋅ ̇̂g�2.

(71a)

On the other hand, �̂	 in (54)(a) can be expanded about ⟨�⟩
as follows:

�̂	 ≃ ^2�̂2

4�Q�2 (1 − � + 1√�� ĝ� + (1 + �) 11 + 7�12��2 ĝ�2

− ⋅ ⋅ ⋅) .
(71b)

Since the expansions above are Q� independent, we infer thatΛUV = 1 as in the other versions of Starobinsky-like in
ation.
	e expansions above for 
 = 
3� and � = 2 reduce to those
in (32a) and (32b). Moreover, these are compatible with the
ones presented in [31] for 
 = 
3� and those in [58] for 
 =
2� and �11 = 2. Our overall conclusion is that our models do
not face any problem with perturbative unitarity up to��.

5. Conclusions and Perspectives

In this review we revisited the realization of induced-gravity
in
ation (IGI) in both a nonsupersymmetric and super-
gravity (SUGRA) framework. In both cases the in
ationary
predictions exhibit an attractor behavior towards those of
Starobinsky model. Namely, we obtained a spectral index�� ≃ (0.960–0.965) with negligible running I� and a tensor-
to-scalar ratio 0.001 ≲ J ≲ 0.005. 	e mass of the in
ation
turns out be close to 3⋅1013 GeV. It is gratifying that IGI can be
achieved for sub-Planckian values of the initial (noncanon-
ically normalized) in
ation, and the corresponding e�ective
theories are trustable up to Planck scale, although a parameter
has to take relatively high values. Moreover, the one-loop
radiative corrections can be kept under control.

In the SUGRA context this type of in
ation can be incar-
nated using two chiral super�elds,� and �, the superpotential
in (42), which realizes easily the idea of induced gravity, and
several (semi)logarithmic Kähler potentials 
3� or 
2�; see
(44).	emodels are prettymuch constrained upon imposing
two global symmetries, a continuous � and a discrete Z�
symmetry, in conjunction with the requirement that the
original in
ation, �, takes sub-Planckian values. We paid
special attention to the issue of � stabilization during IGI
and worked out its dependence on the functional form of the
selected 
’s with respect to |�|2. More speci�cally, we tested

the functions ℎ�(|�|2), which appear in
3� or
2�; see Table 1.
We singled out ℎ2(|�|2) and ℎ8(|�|2) for 
 = 
3� or ℎ3(|�|2)
and ℎ11(|�|2) for 
 = 
2�, which ensure that � is heavy
enough, and so well stabilized during and a�er in
ation.
	is analysis provides us with new results that do not appear
elsewhere in the literature. 	erefore, Starobinsky in
ation

realized within this SUGRA set-up preserves its original

predictive power, since no mixing between |�|2 and |�|2 is
needed for consistency in the considered
’s (cf. [31, 72, 73]).

It is worth emphasizing that the �-stabilization mecha-
nisms proposed in this paper can be also employed in other
models of ordinary [47–49] or kinetically modi�ed [65–67]
nonminimal chaotic (and Higgs) in
ation driven by a gauge
singlet [47–49, 53, 54, 65–67] or nonsinglet [50–52, 68–70]
in
ation, without causing any essential alteration to their
predictions. 	e necessary modi�cations involve replacing

the |�|2 part of
 with ℎ2(|�|2), or ℎ8(|�|2) if we have a purely
logarithmic Kähler potential. Otherwise, the |�|2 part can be

replaced by ℎ3(|�|2) or ℎ11(|�|2). Obviously, the last case can
be employed for logarithmic or polynomial
’s with regard to
the in
ation terms.

Let us, �nally, remark that a complete in
ationary sce-
nario should specify a transition to the radiation dominated
era. 	is transition could be facilitated in our setting [29, 62,
63] via the process of perturbative reheating, according to
which the in
ation a�er in
ation experiences an oscillatory
phase about the vacuum, given by (22) for the non-SUSY
case or (41) for the SUGRA case. During this phase, the
in
ation can safely decay, provided that it couples to light
degrees of freedom in the Lagrangian of the full theory.
	is process is independent of the in
ationary observables
and the stabilization mechanism of the nonin
ation �eld. It
depends only on the in
ation mass and the strength of the
relevant couplings. 	is scheme may also explain the origin
of the observed baryon asymmetry through nonthermal
leptogenesis, consistently with the data from the neutrino
oscillations [29]. It would be nice to obtain a complete and
predictable transition to the radiation dominated era. An
alternative graceful exit can be achieved in the running
vacuum models, as described in the fourth paper of [77–84].
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