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We describe the primeval inflationary phase of the early Universe within a quantum field theo-
retical (QFT) framework that can be viewed as the effective action of vacuum decay in the early
times. Interestingly enough, the model accounts for the “graceful exit” of the inflationary phase
into the standard radiation regime. The underlying QFT framework considered here is Super-
gravity (SUGRA), more specifically an existing formulation in which the Starobinsky-type inflation
(de-Sitter background) emerges from the quantum corrections to the effective action after integrating
out the gravitino fields in their (dynamically induced) massive phase. We also demonstrate that the
structure of the effective action in this model is consistent with the generic idea of renormalization
group (RG) running of the cosmological parameters, specifically it follows from the corresponding
RG equation for the vacuum energy density as a function of the Hubble rate, ρΛ(H). Overall our
combined approach amounts to a concrete-model realization of inflation triggered by vacuum decay
in a fundamental physics context which, as it turns out, can also be extended for the remaining
epochs of the cosmological evolution until the current dark energy era.
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I. INTRODUCTION

In the last two years we have witnessed extraordi-
nary developments on experimental tests of inflation-
ary models [1], based on studies of photons in the cos-
mic microwave background radiation. In particular, the
results of Planck collaboration [2] and the associated
non-observation of B-mode polarizations of primordial
light fluctuations, have imposed very stringent restric-
tions on single scalar-field models of slow-roll inflation,
allowing basically models with very low tensor-to-scalar
fluctuation ratio r = nT /ns ≪ 1, with a scalar spec-
tral index ns ≃ 0.96 and no appreciable running. In
fact the upper bound set by Planck Collaboration [2] on
this ratio, as a consequence of the non-observation of
B-modes, is r < 0.11, but their favored regions point
towards r ≤ 10−3. This is a feature that character-
izes the so-called Starobinsky-type (or R2-inflation, with
R denoting the scalar space-time curvature) inflationary
models [3]. The estimated energy scale EI of inflation,
which in inflaton-type models is related to the – ap-
proximately constant– scalar potential during inflation

through EI = V
1/4
I , reads [1]:

EI =
(
3H2

IM
2
Pl

)1/4
≃ 2.1× 1016 ×

( r

0.20

)1/4
GeV ,

(1)

where MPl = 1/
√
8πG ≃ 2.43× 1018 GeV is the reduced

Planck mass (G being the Newtonian constant). The
upper bound r < 0.11 placed by the Planck Collaboration

implies

HI = 1.05
( r

0.20

)1/2
× 1014 GeV ≤ 0.78× 1014 GeV .

(2)
The above can be rephrased as HI/mP 6 6.39 × 10−6,

where mP = 1/G1/2 =
√
8πMPl ≃ 1.22×1019 GeV is the

Planck mass in natural units. This result is consistent
with the well known CMB bound HI/mP . 10−5 on the
temperature fluctuations induced by the tensor modes.
As we will see, the actual value of H during inflation for
the class of models under study satisfies H . HI , and
hence the CMB bound is preserved by them.
The recent joint BICEP2-Planck analysis [5] confirmed

the early Planck result, namely the likelihood curve for
r yields an upper limit r < 0.12 at 95%. Moreover, the
present BICEP2-Planck data are consistent with a scalar
spectral index ns ≃ 0.96 and no appreciable running, in
agreement with the previous Planck data [2]. Using the
aforementioned new upper limit rmax = 0.12, the Hubble
parameter during slow-roll inflation HI is estimated to
be below

HBicep2+Planck
I ≤ 0.81× 1014 GeV , (3)

and hence HI/mP 6 6.64 × 10−6. Because of the low
significance of the new limit on r, the possibility that
r is actually much smaller than the current upper limit
rmax remains as natural as it was before. In fact, nothing
actually prevents at present that the typical value of the
tensor to scalar ratio can be, for example, r = O(10−3),
and in this sense the Starobinsky-type scenarios can still
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be considered as a serious possibility to describe the in-
flationary universe. Following this point of view, we con-
tinue in this paper with the investigation of Starobinsky-
like models as potential candidates for realistic imple-
mentation of inflation compatible with the data.

In previous publications one of us (N.E.M.) with col-
laborators [6] discussed the dynamical breaking of su-
pergravity (SUGRA) theories via gravitino condensation,
and demonstrated [7] the compatibility of this scenario
with Starobinsky-like [3] inflationary scenarios. As we
discussed, this phase is characterized by the dynami-
cal emergence of a de-Sitter background. As argued in
[6], the Starobinsky-type inflation appears much more
natural (from the point of view of the order of the pa-
rameters involved) than a hill-top inflation scenario [8]
in which the gravitino condensate itself is the inflaton
field. In the latter, very large values of the wave function
renormalization of the condensate field are required to
ensure slow-roll inflation if one insists on (phenomeno-
logically realistic) sub-Planckian supersymmetry break-
ing scales. It is important to notice at this point that
in the original Starobinsky model [3] the R2 terms cru-
cial for inflation arise from the conformal anomaly in the
path integral of massless (conformal) matter in a de Sit-
ter background, and thus their coefficient is arbitrary,
and can only be fixed phenomenologically. A similar, al-
though not identical, situation occurs in the context of
anomaly-induced inflation [9, 10], where the term R2 is
absent at the classical level but is generated from the con-
formal anomaly. In this case, however, the coefficient of
�R (entering the β-functions and controlling the stability
of inflation) presents also some arbitrariness which can
only be fixed by a special renormalization condition. Par
contrast, in the considered SUGRA scenario, such terms
arise in the one-loop effective action of the gravitino con-
densate field, evaluated in a de Sitter background, after
integrating out massive gravitino fields, whose mass was
generated dynamically. The order of the de Sitter cosmo-
logical constant, Λ > 0 that breaks supersymmetry, and
the gravitino mass are all evaluated dynamically (self-
consistently) in our approach from the minimization of
the effective potential. Thus, the resulting R2 coefficient,
which determines the phenomenology of the inflationary
phase, is calculable [7].

Also very important for our considerations is the
framework of the running vacuum model (RVM) [10–13]
– see [14, 15] and references therein for a recent detailed
exposition. The implications of these dynamical vacuum
models have recently been analyzed both for the early
universe [15–20] as well as for the phenomenology of the
current universe [21–23] – see also [24–29] for previous
analyses.

In regard to the early universe we emphasize that the
RVM defines a class of non-singular inflationary scenar-
ios with graceful exit into the standard radiation regime.
These models are related to Starobinsky inflation mod-
els, although they are not equivalent. We will discuss

in this paper the correspondence between them, and
most particularly with the dynamically broken SUGRA
model with gravitino condensation that we have men-
tioned above. It is especially remarkable that such spe-
cific implementation of the SUGRA model leads, as we
will show in this paper, to the effective behavior of the
RVM with calculable coefficients. In this way the former
automatically benefits from the successful consequences
of the latter. Let us mention that the RVM also pro-
vides some important clues for alleviating the cosmolog-
ical constant problem [14].

Finally, we should like to mention that the RVM’s
have been tested against the wealth of accurate
SNIa+BAO+H(z)+LSS+BBN+CMB data – see [30] for
a recent summary review – and they turn out to provide
a quality fit that is significantly better than the ΛCDM.
This fact has become especially prominent in the light of
the most recent works [31, 32]. Therefore, there is every
motivation for further investigating these dynamical vac-
uum models from different perspectives, with the hope
of finding possible connections with fundamental aspects
of the cosmic evolution. In point of fact, this is the main
aim of this work.
The structure of the article is as follows. The gen-

eral framework of the RVM is introduced in II. The basic
theoretical elements of the Starobinsky inflation are pre-
sented in section III. The main properties of the dynam-
ical breaking of local SUGRA theory and its connection
to Starobinsky-type inflation are reviewed in section IV.
In section V we demonstrate how the RVM describes the
effective framework of the Starobinsky [3] and the dy-
namically broken SUGRA [8] models at the inflationary
epoch. Finally, our conclusions are summarized in sec-
tion VI.

II. RUNNING VACUUM: A NATURAL ARENA

FOR VACUUM DECAY IN COSMOLOGY

It is the purpose of this work to go one step fur-
ther from demonstrating compatibility of the dynami-
cally broken SUGRA scenario [6, 7] with inflation and
discuss the possibility of a dynamical evolutionof the
inflationary phase ground state to the standard radia-
tion regime within the context of the running vacuum
model (RVM) of the cosmic evolution utilizing an effec-
tive “renormalization group (RG) approach”, see [10, 11]
– and [14, 15] for comprehensive expositions. Specifi-
cally, we wish to show that the behavior of the afore-
mentioned SUGRA scenario effectively mimics the RVM.
Once this link is elucidated, the general “decaying”
vacuum description inherent to the RVM formulation
allows to smoothly connect inflation to the standard
Fridman-Lemâıtre-Robertson-Walker (FLRW) radiation
era, which subsequently proceeds into a matter and dark
energy domination in the present era, in which it still
carries a mild dynamical behavior compatible with the



3

current cosmological data [21, 22]. Such an expansion
history of the Universe has been put forward in previ-
ous works by the authors in various collaborations and
contexts, e.g. non-equilibrium string-inspired cosmolo-
gies [33] or conventional field-theoretic cosmologies in
which the above mentioned RVM is extensively applied
for the study of the early cosmic history [16–18, 20].
In the effective RG approach underlying the RVM one

can write down an evolution equation for the effective
vacuum energy density ρΛ(t) = ρΛ(µc(t)), treated as a
dynamical quantity whose cosmic time evolution is in-
herited from its dependence on a characteristic cosmic
scale variable µc = µc(t). This variable plays the role
of running (mass) scale of the renormalization group ap-
proach, and a natural candidate for such scale in FLRW
cosmology is the Hubble parameter H(t). Therefore the
proposed RG equation is [14]:

d ρΛ(t)

d lnH2
=

1

(4π)2

∑

i

[
aiM

2
i H

2+biH
4+ci

H6

M2
i

+. . .
]
(4)

In general µ2
c can be associated to a linear combination

of H2 and Ḣ and the variety of terms appearing on the
r.h.s. of (4) can be richer [15], but the canonical possi-
bility is the previous one and hereafter we restrict to it.
The coefficients ai, bi, ci . . . appearing in (4) are dimen-
sionless and receive contributions from loop corrections
of boson and fermion matter fields with different masses
Mi. It must be stressed that the general covariance of
the action [10, 12, 13] necessitates the appearance of only
even powers of the (cosmic-time t dependent) Hubble pa-
rameter H(t) on the right-hand-side of (4). For a specific
framework where the above RG is concretely realized and
the β-function coefficients can be computed, see [10].
We note at this stage that, if the evolution of the Uni-

verse is restricted to eras below the Grand Unified The-
ory (GUT) scale, then for all practical purposes it is at
most the H4 terms (those with dimensionless coefficients
bi) that can contribute significantly. The H2 term is of
course negligible at this point, and the higher powers of
Hn for n = 6, 8, .. are suppressed by the corresponding
inverse powers of the heavy masses Mi, which go to the
denominator, as required by the decoupling theorem. In
the scenarios of dynamical breaking of local supergrav-
ity discussed in ref. [6–8], the breaking and the associ-
ated inflationary scenarios could occur around the GUT
scale, in agreement with the inflationary phenomenol-
ogy suggested by the Planck satellite data [2], provided
Jordan-frame supergravity models (with broken confor-
mal symmetry) are used, in which the conformal frame
function acquired, via appropriate dynamics, some non
trivial vacuum expectation value. For these situations,
therefore, corrections in (4) involving higher powers than
H4 will be ignored.
In the next sections, after revising the general frame-

work of Starobinsky inflation, we shall compute ρΛ in
such supergravity models and study their evolution from
the exit from the Starobinsky inflationary phase, that

occurs in the massive gravitino phase, until today. The
computation of ρΛ will be made via the corresponding
calculation of the one-loop effective action after massive
gravitinos are integrated out in a path integral. Then,
an identification of the effective equation of state can be
derived by integrating (4), following the approach of [16–
18, 20]. Before doing so, it is instructive to review first
the emergence of Starobinsky-type inflation.

III. GENERIC STAROBINSKY INFLATION

Starobinsky inflation is the oldest model of inflation [3],
prior to the traditional, scalar-field-based, inflaton mod-
els. It is characterized for being able to realize the de
Sitter (inflationary) phase from the gravitational field
equations derived from a four-dimensional action that
includes higher curvature terms, specifically of the type
involving the quadratic curvature correction ∼ R2 [3] 1:

S =
1

2 κ2

∫
d4x

√−g
(
R+ β R2

)
, β ≡ 8 π

3M2
. (5)

Here κ2 = 8πG = 1/M2
Pl (in units of ~ = c = 1 we

are working on), G = 1/m2
P is Newton’s (gravitational)

constant in four space-time dimensions, with mP the
Planck mass, and M is a constant of mass dimension
one, characteristic of the model. Notice that the curva-
ture terms in the action are just the dimension-4 combi-
nation m2

PR/16π+R2m2
P /(6M2). With this normaliza-

tion, M gives the value of the so-called scalaron mass.
The smaller is M in Planck mass units (i.e. the larger
is the dimensionless parameter m2

P /M2 in front of R2)
the longer is the inflationary time (cf. Fig. 2 of [15]).
Of course M cannot be much below the natural scale
of inflation, and in fact it should be of the same order,
i.e. M ∼ MX , where MX is some GUT scale below the
Planck mass. Typically MX ∼ 1016GeV ∼ 10−3mP .
The most relevant feature of this model is that infla-

tionary dynamics is driven by the purely gravitational
sector, through the R2 terms. From a microscopic point
of view, these terms can be viewed as the result of quan-
tum fluctuations (at one-loop level) of conformal (mass-
less or high energy) matter fields of various spins, which
have been integrated out in the relevant path integral in a
curved background space-time [35]. The model in fact is
to be understood in the context of QFT in curved space-
time. The quantum mechanics of this model, by means
of tunneling of the Universe from a state of “nothing”
to the inflationary phase of ref. [3] has been discussed
in detail in [36]. The above considerations necessitate
truncation to one-loop quantum order and to curvature-
square (four-derivative) terms, which implies that there

1 Our metric signature is (−,+,+,+) and the definitions of the
Ricci and Riemann curvature tensors are Rµν = Rλ

µλν and

Rλ
µνρ = ∂ν Γλ

µρ− . . . , respectively, i.e. we follow the exact three-
sign conventions (+,+,+) of Misner-Thorn-Wheeler [34].
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must be a region of validity for curvature invariants such
that O

(
R2/m4

P

)
≪ 1. Recalling that R ∼ 12H2

I in the
inflationary phase (where HI is the nearly constant Hub-
ble rate in that phase), we observe that this is indeed
a condition satisfied in phenomenologically realistic sce-
narios of inflation [1, 2], for which the inflationary Hub-
ble scale HI is typically constrained to obey (2) (Planck
data [2]) or (3) (BICEP2 data [4]), which are at present
essentially the same.
Although the inflation in this model is not driven

by fundamental rolling scalar fields, nevertheless the
model (5) (and for that matter, any other model where
the Einstein-Hilbert space-time Lagrangian density is re-
placed by an arbitrary function f(R) of the scalar cur-
vature) is conformally equivalent to that of an ordinary
Einstein-gravity coupled to a scalar field with a potential
that drives inflation [37]. To see this, one firstly linearises
the R2 terms in (5) by means of an auxiliary (Lagrange-
multiplier) field α̃(x), before rescaling the metric by a
conformal transformation and redefining the scalar field
(so that the final theory acquires canonically-normalised
Einstein and scalar-field terms):

gµν → gEµν = (1 + 2 β α̃(x)) gµν ,

α̃ (x) → κϕ(x) ≡
√

3

2
ln (1 + 2 β α̃ (x)) , (6)

where again κ =
√
8πG. These steps may be understood

schematically via

∫
d4x

√−g
(
R+ β R2

)
(7)

→֒
∫
d4x

√−g
(
(1 + 2 β α̃ (x)) R − β α̃(x)

2
)

→֒
∫
d4x
√

−gE
(
RE − gE µ ν ∂µ ϕ∂ν ϕ− V (ϕ)

)
,

where the arrows have the meaning that the correspond-
ing actions appear in the appropriate path integrals. The
ensuing effective potential Veff(ϕ) is given by:

Veff(ϕ) =
3M2

(
1− e−

√
2

3
κϕ
)2

4 κ2
. (8)

One can check that the mass of the scalaron, which can
be seenn as the new gravitational degree of freedom that
the conformal transformation was able to elucidate from
the Starobinsky action, is indeed given by the parameter
M =

√
8π/3β:

d2Veff(ϕ)

dϕ2

∣∣∣∣
ϕ=0

= M2 . (9)

Note that for ϕ = 0 one has α̃ = 0 and the two con-
formally equivalent metrics coincide at this point. The
effective potential for the scalar d.o.f. that conformally
replaces the effect of the R2 term is plotted in Fig. 1. We
observe that V (ϕ) is sufficiently flat for κϕ = ϕ/MPl ≫ 1

κϕ

β κ2

2π
V (ϕ)

FIG. 1. The effective potential (8) of the collective scalar field
ϕ that describes the one-loop quantum fluctuations of matter
fields, leading to the higher-order scalar curvature corrections
in the Starobinsky model for inflation (5). Notice that accord-
ing to (8) we have β = 8π/3M2. The potential is sufficiently
flat for κϕ≫ 1 to ensure slow-roll conditions for inflation are
satisfied, in agreement with the Planck data, for appropriate
values of the scale 1/

√
β ∝ M (which sets the overall scale of

inflation in the model).

(i.e. for sufficiently large values of ϕ as compared to the
reduced Planck scale) to produce phenomenologically ac-
ceptable inflation. Obviously the scalaron field ϕ is ef-
fectively playing the role of the inflaton in this context.
The difference with the usual inflaton is that ϕ is not
a new scalar d.o.f. imported from outside the gravita-
tional action, but just an integral part of it, namely, it
is just a gravitational d.o.f. that describes in an effec-
tive (and very convenient) way the ∼ R2 term of (5).
The Starobinsky model based on the action (5) indeed
fits excellently the Planck data on inflation [2], and also
the corresponding data from the joint BICEP2-Planck
analysis [5].

Quantum-gravity corrections in the original Starobin-
sky model (5) have been considered recently in [38] from
the point of view of an exact renormalisation-group anal-
ysis [39]. It was shown that the non-perturbative beta-
functions for the ‘running’ of Newton’s ‘constant’ G and
the dimensionless inverse R2 coupling κ2β−1 ∼ M2/M2

Pl
in (5) imply an asymptotically safe Ultraviolet (UV)
fixed point for the former (that is, G(k → ∞) → con-
stant, for some 4-momentum cutoff scale k), in the spirit
of Weinberg [40], and an attractive asymptotically-free
(κ2β−1(k → ∞) → 0) point for the latter. In this sense,
the smallness of the (inverse) R2 coupling, required for
agreement with inflationary observables [2], is naturally
ensured by the presence of the asymptotically free UV
fixed point.

The agreement of the model of [3] with the Planck data
triggered an enormous interest in the current literature,
and indeed Starobinsky inflation has been revisited from
various points of view, such as its connection with no-
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scale supergravity [41] and (super)conformal versions of
supergravity and related areas [42]. In the latter works
however the Starobinsky scalaron field is fundamental,
arising from the appropriate scalar component of some
chiral superfield that appears in the superpotentials of
the model.
Although of great value, illuminating a strong con-

nection between supergravity models and inflationary
physics, and especially for explaining the low-scale of in-
flation compared to the Planck scale, these works con-
tradict the original spirit of the Starobinsky model (5)
where, as mentioned previously, the higher curvature
corrections are viewed as arising from quantum fluctua-
tions of matter fields in a curved space-time background
such that inflation is driven by the pure gravity sector in
the absence of fundamental scalars. On the other hand,
the scenario of [7], in which a Starobinsky-type inflation
arises in the massive gravitino phase of SUGRA models,
after integrating out the massive degrees of freedom is
in the same spirit of Starobinsky, and even better, in the
sense that the model does not have to assume dominance
of conformal matter during inflation.
We next proceed to summarize the construction of

the one-loop effective action of the massless degrees
of freedom after massive gravitino integration in this
dynamically-broken SUGRA model with spontaneous
breaking of global supersymmetry (SUSY) [6].

IV. STAROBINSKY-TYPE INFLATION IN

DYNAMICALLY BROKEN SUGRA

Dynamical breaking of SUGRA, in the sense of the
generation of a mass for the gravitino field ψµ, whilst the
gravitons remain massless, occurs in the model as a re-
sult of the four-gravitino interactions characterizing the
SUGRA action, arising from the torsionful contributions
of the spin connection, characteristic of local supersym-
metric theories.
Our starting point is theN = 1D = 4 (on-shell) action

for ‘minimal’ Poincaré supergravity in the second order
formalism [43]:

SSG =

∫
d4x e

(
1

2κ2
R (e)− ψµγ

µνρDνψρ + Ltorsion

)
,

(10)

κ2 = 8πG , γµνρ =
1

2
{γµ, γνρ} , γνρ =

1

2
[γν , γρ] ,

where R(e) and Dνψρ ≡ ∂νψρ +
1
4ωνab (e) γ

abψρ are de-
fined via the torsion-free connection; and, given the gauge
condition γ · ψ = 0,

Ltorsion = −κ
2

8

(
ψ
ρ
γµψν

) (
ψργµψν + 2ψργνψµ

)
,

(11)

arising from the fermionic torsion parts of the spin con-
nection. Extending the action off-shell requires the addi-

tion of auxiliary fields to balance the graviton and grav-
itino degrees of freedom. These fields however are non-
propagating and may only contribute through the devel-
opment of scalar vacuum expectation values, which would
ultimately be resummed into the cosmological constant.
Making further use of the above gauge condition to-

gether with the Fierz identities (as detailed in [6]), we
may write

Ltorsion

κ2
= λS

(

ψ
ρ
ψρ

)2

+ λPS

(

ψ
ρ
γ5ψρ

)2

+ λPV

(

ψ
ρ
γ5γµψρ

)2

(12)

where the couplings λS, λPS and λPV express the free-
dom we have to rewrite each quadrilinear in terms of the
others via Fierz transformation. This freedom in turn
leads to a known ambiguity in the context of (perturba-
tive) mean field theory [44] and can only be resolved by
a non-perturbative treatment.
Specifically, we wish to linearise these four-fermion in-

teractions via suitable auxiliary fields, e.g.

1

4
κ2λS

(
ψ
ρ
ψρ

)2
∼ σ κ

√
λS

(
ψ
ρ
ψρ

)
− σ2 , (13)

where the equivalence (at the level of the action) fol-
lows as a consequence of the subsequent Euler-Lagrange
equation for the auxiliary scalar σ. Our task is then to
look for a non-zero vacuum expectation value 〈σ〉 which
would induce as an effective massm3/2 ∼ σ κ

√
λS for the

gravitino. This is however complicated by the fact that
our coupling λS into this particular channel is, by virtue
of Fierz transformations, ambiguous at a perturbative
level and, as mentioned, in order to fix them a fully non-
perturbative treatment of SUGRA-like models would be
required, which are not currently at hand. Nevertheless,
there is another way out [6, 8] whereby the Fierz am-
biguities may be absorbed by dilaton-expectation-value
shifts in an extension of N = 1 SUGRA which incorpo-
rates local supersymmetry in the Jordan frame, enabled
by an associated dilaton superfield [45]. The (logarithm
of the) scalar component ϕ of the latter can be either a
fundamental space-time scalar mode of the gravitational
multiplet, i.e. the trace of the graviton (as happens, for
instance, in supergravity models that appear in the low-
energy limit of string theories), or a composite scalar field
constructed out of matter multiplets. In the latter case
these could include the standard model fields and their
superpartners that characterise the Next-to-Minimal Su-
persymmetric Standard Model [46], which can be consis-
tently incorporated in such Jordan frame extensions of
SUGRA.
Upon appropriate breaking of conformal symmetry, in-

duced by specific dilaton potentials (which we do not
discuss here), one may then assume that the dilaton field
acquires a non-trivial vacuum expectation value 〈φ〉 6= 0,
thus absorbing any ambiguities in the value of the ap-
propriate coefficient λS induced by Fierz (12). One con-
sequence of this is then that in the broken conformal
symmetry phase, the resulting supergravity sector, upon
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passing (via appropriate field redefinitions) to the Ein-
stein frame is described by an action of the form (10),
but with the coupling of the gravitino four-fermion inter-
action terms being replaced by

κ̃2 ≡ λS κ
2 = e−4〈φ〉κ2 , (14)

while the Einstein term in the action carries the stan-
dard gravitational coupling 1/2κ2. For phenomenologi-
cal reasons, associated with gravitino masses in the ball-
park of Grand Unified Theory (GUT) scales, one must
have κ̃ ≫ κ. This is assumed to be guaranteed by ap-
propriate microscopic dilaton potentials that break the
(super)conformal symmetry of the Jordan-frame SUGRA
appropriately.
To induce the super-Higgs effect [47] we couple to the

action (10) the Goldstino associated to global supersym-
metry breaking via the addition of

Lλ = f2 det

(
δµν +

i

2f2
λγµ∂νλ

) ∣∣∣∣
γ·ψ=0

= f2 + . . . ,

(15)

where λ is the Goldstino,
√
f expresses the scale of global

supersymmetry breaking, and . . . represents higher or-
der terms which may be neglected in our weak-field ex-
pansion of the determinant. It is worth emphasising at
this point the universality of (15); any model containing
a Goldstino may be related to Lλ via a non-linear trans-
formation [48], and thus the generality of our approach
is preserved.
Upon the aforementioned gauge choice for the grav-

itino field γµψµ = 0 , and an appropriate redefinition,
one may eliminate any presence of the Goldstino field
from the final effective action describing the dynamical
breaking of local supersymmetry, except the cosmologi-
cal constant term f2 in (15), which serves as a reminder
of the pertinent scale of supersymmetry breaking. The
non-trivial energy scale this introduces, along with the
disappearance (through field redefinitions) of the Gold-
stino field from the physical spectrum and the concomi-
tant development of a gravitino mass, characterises the
super-Higgs effect.
The linearisation of the four-gravitino terms (13),

when combined with the f2 term of the super-Higgs effect
implies a tree-level cosmological constant

Λ0

κ2
≡ σ2 − f2 , (16)

which must be negative due to the incompatibility of su-
pergravity with de Sitter vacua (notice that in our con-
ventions both σ and f have dimension +2 in natural
units).
The one-loop effective potential for the scalar gravitino

condensate field σ(x) (with vacuum expectation value
σc ∝ 〈ψµ ψµ〉) has a double-well shape as a function of
σ(x) which is symmetric about the origin (cf. fig. 2), as
dictated by the fact that the sign of a fermion mass does

not have physical significance. Dynamical generation of
the gravitino mass occurs at the non-trivial minima cor-
responding to σc 6= 0. The potential of the σc field is
also flat near the origin, and this has been identified in
[8] with a first inflationary phase.

In [6] the one-loop effective potential was derived by
first formulating the theory on a curved de Sitter back-
ground [50, 51], with cosmological constant (one-loop in-
duced) Λ > 0, not to be confused with the (negative)
tree-level one Λ0 (16), and then integrating out spin-2
(graviton) and spin 3/2 (gravitino) quantum fluctuations
in a given class of gauges (physical), before considering
the flat limit Λ → 0 in a self-consistent way. The de-
tailed analysis in [6], performed in the physical gauge,
has demonstrated that the dynamically broken phase is
then stable (in the sense of the effective action not being
characterized by imaginary parts) provided the scale of
the gravitino condensate is equal or below the scale of
spontaneous breaking of global SUSY:

σ2 ≤ f2 . (17)

which guarantees the aforementioned result on the neces-
sity of the negative nature of the tree-level cosmological
constant (16).

The former result demonstrates the importance of the
existence of global SUSY breaking scale for the stabil-
ity of the phase where dynamical generation of gravitino
masses occurs, which was not considered in the previous
literature [49]. In super-conformal versions of SUGRA,
e.g. those in ref. [45, 46], phenomenologically realistic
scales for f2 and gravitino mass of order of the GUT
scale, appear for appropriate values of the expectation
value of the conformal factor. These imply inflationary
scenarios in perfect agreement with the Planck data [2, 8],
on equal footing to the original Starobinsky model.

In [7] we considered an extension of the analysis of [6]
to the case where the de Sitter parameter Λ is pertur-
batively small compared to m2

P , but non zero, so that
truncation of the series to order Λ2 suffices. This is in
the spirit of the original Starobinsky model [3], with the
rôle of matter fulfilled by the now-massive gravitino field.
Specifically, we were interested in the behavior of the
effective potential near the non-trivial minimum, where
σ ≃ σc is a non-zero constant (cf Fig. 2). The one-loop
effective potential, obtained by integrating out [50, 51]
gravitons and (massive) gravitino fields in the scalar
channel (after appropriate euclideanisation), may be ex-
pressed as a power series in Λ:

Γ ≃ Scl −
24π2

Λ2

(
αF0 + αB0 +

(
αF1 + αB1

)
Λ

+
(
αF2 + αB2

)
Λ2 + . . .

)
, (18)

where Scl denotes the classical action with tree-level cos-
mological constant Λ0 (to be contrasted with the one-



7

!"

!"
#
!"
#"!""

κ̃
4
κ
−2

Λ

κ̃
2
σ

κ̃
4
Veff

Re(κ̃4
Veff)

κ̃
4
Veff

FIG. 2. Generic shape of the one-loop effective potential
(in dimensionless units κ̃4 Veff , where κ̃ is the conformally
rescaled gravitational coupling, see the text) for the gravitino
condensate field σ in dynamically broken (conformal) Super-
gravity models in the presence of a non-trivial de Sitter back-
ground with cosmological constant Λ > 0 [7]. The Starobin-
sky inflationary phase is associated with fluctuations of the
condensate and gravitational field modes near the non-trivial
minimum of the potential, where the condensate σc 6= 0, and
the potential assumes the value Λ > 0, consistent with super-
symmetry breaking. The dashed green lines denote “forbid-
den” areas of the condensate field values, violating the con-
dition (17), for which imaginary parts appear in the effective
potential, thereby destabilizing the broken symmetry phase.

loop cosmological constant Λ 2):

− 1

2κ2

∫
d4x

√
g
(
R̂− 2Λ0

)
, Λ0 = κ2

(
σ2
c − f2

)
,

(19)

with R̂ denoting the fixed S4 background we expand

around (R̂ = 4Λ, and the 4-dimensional Euclidean Vol-
ume is 24π2/Λ2), and the α’s indicate the bosonic (gravi-
ton) and fermionic (gravitino) quantum corrections at
each order in Λ.
The leading order term in Λ is then the effective action

found in [6] in the limit Λ → 0,

ΓΛ→0 ≃ −24π2

Λ2

(
−Λ0

κ2
+ αF0 + αB0

)
≡ 24π2

Λ2

Λ1

κ2
, (20)

with

Λ1 = − κ2
(
−Λ0

κ2
+ αF0 + αB0

)
, (21)

2 The reader should notice that, upon the restriction (17) guaran-
teeing the absence of imaginary parts in the one-loop effective ac-
tion, the tree-level cosmological constant (16) Λ0 < 0, while the
one-loop one Λ > 0, as appropriate for a de Sitter background.
Thus, Λ0 should not be confused with the current-epoch positive
cosmological constant Λ̃0, which we introduce later on, in section
V.2, when we discuss RVM (cf. (57)).

where

αF0 = κ̃4 σ4
c

(
0.100 ln

(
κ̃2 σ2

c

3µ2

)
+ 0.126

)
, (22)

and

αB0 = κ4
(
f2 − σ2

c

)2
(
0.027− 0.018 ln

(
3κ2

(
f2 − σ2

c

)

2µ2

))
,

(23)

indicate the leading (as Λ → 0) contributions to the ef-
fective potential from bosonic (graviton) and fermionic
(gravitino) quantum fluctuations respectively, to one-
loop order. Above, µ is a RG scale, associated with a
short-distance proper time cutoff [6], not to be confused
with the RG scale of the RVM µc(t) (cf. Sect. II), which
is such that the flow from Ultraviolet (UV) to Infrared
(IR) corresponds to the direction of increasing µ, σc de-
notes the gravitino scalar condensate σc ∝ κ̃ 〈ψµ ψµ〉 at
the non-trivial minimum of the one-loop effective poten-
tial (cf. Fig. 2), κ̃ is the conformally-rescaled gravita-
tional constant in the Jordan-frame SUGRA model of
[45], defined in (14), corresponding to a non-trivial v.e.v.
of the conformal (‘dilaton’) factor, 〈φ〉 6= 0, assumed to
be stabilized by means of an appropriate potential, lead-
ing to the breaking of the conformal symmetry. In the
case of standard N = 1 SUGRA, 〈φ〉 = 0.
The remaining (higher order in Λ) one-loop quan-

tum corrections then, proportional to Λ and Λ2 may be
identified respectively with Einstein-Hilbert R-type and
Starobinsky R2-type terms in an effective action of the
form 3

Γ ≃− 1

2κ2

∫
d4x

√
g
[(
R̂− 2Λ1

)
+ α1 R̂+ α2 R̂

2
]
,

(24)

where we have combined terms of order Λ2 into curvature
scalar square terms. For general backgrounds such terms

would correspond to invariants of the form R̂µνρσ R̂
µνρσ,

R̂µν R̂
µν and R̂2, which for a de Sitter background all

combine to yield R̂2 terms 4. The coefficients α1 and

3 The reader should recall at this stage that the sign of g in
√
g and

the overall minus sign in front of the right-hand-side of (24) is due
to the Euclidean-signature formulation of the path integral and
disappears upon analytic continuation back to the Minkowski
space-time at the end of the computations, which is necessary in
order to make contact with phenomenology/cosmology (see, e.g.
(5)). This should be understood in what follows, and especially
in the context of linking the SUGRA model with the RVM in
section V.

4 In the pure SUGRA case, with no dilaton frame functions,
the fact that the Gauss Bonnet combination Rµνρσ Rµνρσ −
4Rµν Rµν + R2 is a total derivative in four space-time dimen-
sion, implies that one can consider only the Ricci-scalar and
Ricci-tensor squared terms as independent. This is not the case
though in the conformal SUGRA case [45].
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α2 in (24) absorb the non-polynomial (logarithmic) in
Λ contributions, so that we may then identify (24) with
(18) via

α1 =
κ2

2

(
αF1 + αB1

)
, α2 =

κ2

8

(
αF2 + αB2

)
, (25)

where we note that α1 is dimensionless whereas α2 has
dimension of inverse mass squared. The coefficients αF,Bi ,
i = 1, 2 in Eq. (25) can be computed using the results of
[6], derived via an asymptotic expansion:

αF1 = 0.067 κ̃2σ2
c − 0.021 κ̃2σ2

c ln

(
Λ

µ2

)
+

0.073 κ̃2σ2
c ln

(
κ̃2σ2

c

µ2

)
,

αF2 = 0.029 + 0.014 ln

(
κ̃2σ2

c

µ2

)
−

−0.029 ln

(
Λ

µ2

)
, (26)

and

αB1 = −0.083Λ0 + 0.018Λ0 ln

(
Λ

3µ2

)
+

0.049Λ0 ln

(
−3Λ0

µ2

)
,

αB2 = 0.020 + 0.021 ln

(
Λ

3µ2

)
−

0.014 ln

(
−6Λ0

µ2

)
. (27)

To identify the conditions for phenomenologically accept-
able Starobinsky inflation around the non-trivial minima
of the broken SUGRA phase of our model, we impose
first the cancellation of the “classical” Einstein-Hilbert
space term R̂ by the “cosmological constant” term Λ1,
i.e. that

R̂ = 4Λ = 2Λ1 ≡ −2 κ2
(
−Λ0

κ2
+ αF0 + αB0

)
> 0 . (28)

This condition should be understood as a necessary
one characterizing our background in order to produce
phenomenologically-acceptable Starobinsky inflation in
the broken SUGRA phase following the first inflationary
stage, as discussed in [8]. This may naturally be under-

stood as a generalization of the relation R̂ = 2Λ1 = 0,
imposed in [6] as a self-consistency condition for the dy-
namical generation of a gravitino mass in the flat (zero
Λ) limit.
From Eq. (28) it follows that the (positive) cosmolog-

ical constant Λ > 0 satisfies the four-dimensional Ein-
stein equations in the non-trivial minimum, and in fact
coincides with the value of the one-loop effective poten-
tial of the gravitino condensate at this minimum. As we
discussed in [6], this non-vanishing positive value of the
effective potential is consistent with the generic features

of dynamical breaking of supersymmetry [52]. In terms
of the Starobinsky inflationary potential (8), the value
Λ > 0 corresponds to the approximately constant value
of this potential in the high ϕ-field regime (κϕ ≫ 1) of
Fig. 1, in the flat region where Starobinsky-type inflation
takes place. Thus we may set

Λ ∼ 3H2
I (29)

whereHI the (approximately) constant Hubble scale dur-
ing inflation, which is constrained by the current data to
satisfy (2) or (3). In the SUGRA context under discus-
sion HI is linked to the scale of global SUSY breaking
through HI ≃ f/MPl.
The effective Newton’s constant in (24), after the im-

position of (28), is then defined as

κ2eff =
κ2

α1
, (30)

and from this, we can express the effective Starobinsky
parameter (5) in terms of κeff as

βeff ≡ α2

α1
. (31)

This condition thus makes a direct link between the ac-
tion (18) with a Starobinsky type action (5). Comparing
with (5) we can determine the effective scalaron mass in
this case:

M =

√
8π

3

α1

α2
, (32)

As we know, this mass parameter also sets the order of
magnitude of the inflationary scale in the Starobinsky
model.
We may then determine the coefficients α1 and α2 in

order to evaluate the scale 1/
√
β ∼ M of the effective

Starobinsky potential given in Fig. 1 in this case, and
thus the scale of the second inflationary phase.
In [7] we searched numerically for points in the param-

eter space such that:

• The effective equations

∂Γ

∂Λ
= 0 ,

∂Γ

∂σ

∣∣∣
σ=σc

= 0 , (33)

are satisfied, together with the condition (28),

• the cosmological constant Λ is small and positive,
satisfying (29), and for phenomenological reasons
it should be of order

0 < Λ ∼ 10−10M2
Pl , (34)

to ensure the validity of our expansion in Λ, con-
sistent with the phenomenology of Planck- satellite
data [2].
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• The scalaron mass should also be of order M ∼
10−5MPl, hence allowing us to achieve phe-
nomenologically acceptable Starobinsky inflation in
the massive gravitino phase, consistent with the
Planck-satellite data [2].

For κ̃ = κ (i.e. for non-conformal supergravity), we
were unable to find any solutions satisfying these con-
straints. This of course may not be surprising, given
the previously demonstrated non-phenomenological suit-
ability of this simple model [6]. If we consider κ̃ ≫ κ
however, we find that we are able to satisfy the above
constraints for a range of values 5.
In general, typical values obtained in phenomenological

realistic conformal SUGRA models satisfy κ̃ ≫ κ (e.g.
of order κ̃/κ = O(103− 104)), under the constraints (29)
and (34), in such a way that:

Λ ∼ 3H2
I ∼ m2

3/2 ∼ κ̃2σ2
c ∼ κ2f2 ≪ µ2 = 8π/κ2 , σ2

c ≪ f2.
(35)

Since the scale of SUSY breaking must be in the ball-
park of the typical GUT scale associated to the inflation,
namely

√
f ∼ 1016 GeV∼ 10−2MPl, from the above

we have Λ ∼ κ2f2 = f2/M2
Pl ∼ 1027 GeV2. As a re-

sult the scale of the gravitino is some two to three or-
ders of magnitude below the GUT scale, that is to say,
m3/2 ∼

√
Λ & 1013 GeV∼ 10−5MPl. These values are

compatible with both the combined Planck and Bicep2
bound (3) and the typical mass of the gravitino in this
framework [7].
Exit from the inflationary phase is, of course, a com-

plicated issue which we shall not discuss here at the level
of the SUGRA model itself, aside from the observation

5 A comment concerning SUGRA models in the Jordan frame with
such large values for their frame functions is in order here. In
our approach, the dilaton 2φ could be a genuine (dimension-
less) dilation scalar field arising in the gravitational multiplet
of string theory, whose low-energy limit may be identified with
some form of SUGRA action. In our normalization the string

coupling would be gs ≡ eφ =
(

κ̃/κ
)−1/2

. In such a case, a value

of κ̃ = e−2〈φ〉 κ = O(103−4)κ would imply a large negative v.e.v.
of the (four-dimensional) dilaton field of order 〈φ〉 = −O(5) < 0,
and thus a weak string coupling squared gs = O(10−2), which
may not be far from values attained in realistic phenomenolog-
ical string models. On the other hand, in the Jordan-frame
SUGRA models of [45], the frame function reads Φ ≡ e−2φ =

1 − 1
3

(

SS +
∑

u,d HiH
†
i

)

− 1
2
χ
(

− H0
u H0

d + H+
u H−

d + h.c.
)

,

in the notation of [46] for the various matter super fields of
the next-to-minimal supersymmetric standard model that can
be embedded in such supergravities. The quantity χ is a con-
stant parameter. At energy scales much lower than GUT, it is
expected that the various fields take on subplanckian values, in
which case the frame function is almost one, and hence κ̃ ≃ κ
for such models today. To ensure κ̃ ≫ κ, and thus large val-
ues of the frame function, Φ ≫ 1, as required in our analysis,
one needs to invoke trasnplanckian values for some of the fields,
H0

u,d, and large values of χ, which may indeed characterize the

inflationary phase of such theories. A similar situation occurs for
the values of the Higgs field (playing the role of the inflaton) in
the non-supersymmetric Higgs inflation models [53].

that it can be achieved by coherent oscillations of the
gravitino condensate field around its minima and sub-
sequent decays to radiation and matter fields (thus re-
quiring detailed knowledge of the matter content of the
SUGRA models in order to arrive at quantitative pre-
dictions for the exit phase), or tunnelling processes à la
Vilenkin [36]. However, in the next section we will show
that the SUGRA model can be represented by an effec-
tive running vacuum model along the lines indicated in
Sect.II, and from this point of view the exiting from the
inflationary phase into the standard radiation phase can
be guaranteed on very general grounds.

Before doing so, though, we should make some impor-
tant remarks concerning the presence of logarithms of the
de Sitter scale Λ in the coefficients αi of the curvature
terms of the effective action (24). When one computes
the effective action in a fixed de Sitter background, it
is tempting to identify a Λ term with the Ricci scalar,
which eventually will be allowed to depend on time.
Thus, naively, the presence of logarithms would imply
non-polynomial terms of the form R lnR which would
be problematic for any RVM interpretation of the exit
from the inflationary phase, as it would contradict the
spirit of the approach where only integer powers of the
curvature terms would be allowed in the respective flow
equations [10, 11, 13–15]. Fortunately this is not the
case. To understand this, we first remark that any effec-
tive action obtained by integrating out massive degrees
of freedom such as gravitino fields, that we restrict our-
selves here, must consists for reasons of covariance and
consistency of the weak gravitational fluctuations about
the de Sitter background only of polynomial structures
of the curvature tensors, for instance to fourth order in
derivatives terms involving the squares of the Ricci scalar
and Ricci tensors and covariant derivatives thereof. Any
R lnR term would be incompatible with the weak grav-
ity perturbative expansion about a background, say of
constant non-zero curvature.

Thus, the coefficients α1 and α2 in the action (24) are
kept fixed, not undergoing temporal evolution, which is
guaranteed by the fixing of the two free scales in the prob-
lem µ (35) and Λ (29). Notice that the scale µ should
not be confused with the subsequent RG scale µc(t) that
describes the cosmological evolution of the RVM vacuum
(cf. Sect. II). Indeed, the scale µ first of all is a high
energy cut-off. As already mentioned, it plays the role
of a proper-time cutoff scale [6], appearing in the inte-
gral representations of some ζ-functions that are part
of the determinants arising in the path integral of the
SUGRA action arising from integrating out massive spin
3/2 (gravitino) and spin 2 (graviton) fluctuations about
the de Sitter background. The scale µ is therefore, in con-
trast to µc(t), an inverse renormalization group scale. Its
value has to be fixed so as to guarantee SUGRA break-
ing and to generate a fixed gravitino mass which should
not depend on time. This implies that the spontaneous
breaking of SUGRA and the inflationary phase are char-
acterised by such fixed scales, which implies the time
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independence of Λ (or, equivalently, the Hubble param-
eter) during inflation, the gravitino mass, related to the
gravitino condensate vacuum expectation value σc, and
thus the coefficients α1 and α2. On the other hand, inte-
ger positive powers of Λ, appearing in the effective action
may be replaced by higher order tensorial structures in-
volving the square of the curvature tensors, which are
allowed to vary with the cosmic time during the RVM
phase after exit from inflation. Notice that microscopi-
cally the exit phase is characterised by an unknown sort
of phase transition, either through decays of the grav-
itino condensates to matter parts and reheating of the
inflated universe, or tunnelling, as mentioned previously,
and thus using different RG running to relate various eras
of the Universe after inflation is to be expected.

V. “DECAY” OF EFFECTIVE VACUUM

ENERGY: RUNNING VACUUM MODEL

The main aim of this section is to demonstrate that
there exists a family of time-dependent effective vacuum
energy decaying models of running type, i.e. the class
of the running vacuum models (RVM’s) introduced in
Sect. II, which characterize the evolution of the Universe
from the exit of the Starobinsky inflationary phase till the
present era. In fact, the RVM’s are able to interpolate on
very general grounds the primeval de Sitter epoch with
the late time de Sitter era, i.e. the dark energy one, where
a much smaller cosmological constant essentially domi-
nates. We shall follow the approach of the RVM outlined
in Sect. II, in which the vacuum energy density ρΛ(H)
varies with time through its dependence on H = H(t).
The Hubble parameter, having dimension of energy in
natural units, acts as the natural running scale via the
RG equation Eq.(4). As mentioned in Sect. II, only the
even powers of H can be involved in that equation, ow-
ing to the general covariance of the effective action. This
is an important point to make possible a general QFT
description of this RG approach and is essential for the
connection with the SUGRA model under discussion.
It is evident that the expansion (4) quickly converges

at low energies, where H is rather small – certainly much
smaller than any particle mass. No other H2n-term be-
yond H2 (not even H4) can contribute significantly on
the r.h.s. of equation (4) at any stage of the cosmologi-
cal history below the GUT scale MX ∼ 1016 GeV, where
presumably inflation occurs.
On the other hand, if we want to deal with the physics

of inflation and in general to the very early states of
the cosmic evolution, we have to keep at least the term
H4, which in fact is the dominant term in the series (4)
during the high energy regime. In contrast, the terms
H6/M2

i and above are less and less important because
these higher and higher powers of H are suppressed by
the inverse powers of the heavy fermion and boson masses
in the GUT, as required by the Appelquist-Carazzone de-
coupling theorem. Therefore, the dominant part of the

series (4) is expected to be naturally truncated at the H4

term. Higher order terms should contain the bulk of the
high energy contributions within Quantum Field Theory
in curved spacetime, namely within a semi-classical de-
scription of gravity near but (possibly a few orders) below
the Planck scale. Models of inflation based on higher or-
der terms inspired by the RG framework exist since long
in the literature (see [11]) as well as the unified inflation-
dark energy framework of [10]. For a more phenomeno-
logical treatment unrelated to the RG, see [54–57].

V.1. A distinct class of running vacuum models

Based on the above arguments, it is natural to consider
the case in which the highest power of the Hubble rate in
the RG Eq. (4) is H4. Integrating the RG equation pro-
vides the simplest realization of RVM that can describe
inflation and the various stages of the FLRW regime:

ρΛ(H) =
Λ(H)

κ2
=

3

κ2

(
c0 + νH2 + α

H4

H2
I

)
. (36)

Here c0 is an integration constant (with dimension +2
in natural units, i.e. energy squared) which can be fixed
from the low energy data of the current universe [21, 24].
On the other hand the dimensionless coefficients are given
as follows:

ν =
1

48π2

∑

i=F,B

ai
M2
i

M2
Pl

, (37)

and

α =
1

96π2

H2
I

M2
Pl

∑

i=F,B

bi . (38)

At this point, we would like to make some comments
which will hopefully make the reader appreciate the
physical interpretation of the running vacuum scenario.
The coefficient ν behaves as the reduced (dimensionless)
beta-function for the RG running of ρΛ at low energies,
whereas α plays a similar role at high energies. No-
tice that the index i depends on whether bosons (B)
or fermions (F ) dominate in the loop contributions. Of
course, since the coefficients (ν, α) play the role of one-
loop beta-functions (at the respective low and high en-
ergy scales) they are expected to be naturally small be-
cause M2

i ≪M2
Pl for all the particles, even for the heavy

fields of a typical GUT. Indeed, an estimate of ν within a
generic GUT is found in the range |ν| = 10−6−10−3 [10].
The dimensionless coefficient α is also small, |α| ≪ 1,
because the inflationary scale HI is certainly below the
Planck scale, see Eq. (3). From the observational view-
point, utilizing a joint likelihood analysis of the recent
supernovae type Ia data, the CMB shift parameter, and
the Baryonic Acoustic Oscillations, it has been found
|ν| = O(10−3) [21, 22, 24, 25], which is nicely in ac-
cordance with the aforementioned theoretical expecta-
tions as well as it insures a mild dynamical behavior of



11

the vacuum energy at low energies. As we have already
stated in section II, the Quantum-gravity corrections in
the Starobinsky model have been found in the context of
the RG analysis [38, 39] through the appropriate beta-
functions. The fact that the nature of the main coeffi-
cients of both theories (running vacuum and Starobinsky)
is based on the RG approach is a hint that perhaps there
is a possible connection between the two models.

Indeed as we will confirm below, this is the case. In
particular, let us start with the effective action (24), with
coefficients (25), (26), (27) and the constraints (28), (35).
As we have seen, this action was obtained after integra-
ting out both quantum-gravity (metric) fluctuations and
massive gravitino fields. The action admits dynamical
solutions of de-Sitter vacua with small cosmological con-
stant Λ of order less than the GUT scale at early epochs
of the Universe. At the non-trivial minimum, the effec-
tive potential takes on a value of order Λ (cf. Fig. 2).
Around the minimum, we should replace Λ by an effec-
tive Hubble parameter during inflation, HI , Eq. (29).
At the end of the day the effective (dynamical) vacuum

energy density, ρΛ(H), during the inflationary phase of
our SUGRA model can be extracted from the SUGRA
effective action Γ (24), upon applying the constraint (28)
and analytically continuing the results back to Minkowski
space-time signature. In particular, the effective poten-
tial is defined as Veff ≡ −Γ →

∫
d4x

√−g ρΛ(H). Doing
so, we observe that the so obtained ρΛ(H), remarkably,
adopts precisely the generic RVM structure (36) around
that phase, in which the Ricci scalar – see Eq. (50) below
— boils down to R ≃ 12H2 since H remains (approxi-
mately) constant in this phase.
Some important remarks are in order here. The impo-

sition of the constraint (28) during the Starobinsky in-
flationary phase implies, as already mentioned, that the
correct phenomenology is attained as a result of the ef-
fective gravitational coupling (30) that characterises that
phase. So, if the constraint was an exact result, the effec-
tive vacuum energy density of the SUGRA model would

then correspond to the R̂2 → 144H4 terms in (24) with
(30) playing the rôle of the effective gravitational con-
stant,

ρSUGRA
Λ (H)exactconstraint =

72

κ2eff

α2

α1
H4 =

18

κ2eff

αF2 + αB2
αF1 + αB1

H4 ,

(39)
where we used (25), (26), (27). The form (39) constitutes
an admissible class of RVM (cf. Eq. (36)). Notice that
in Eq. (39) there is no ν term. This is important, in the
sense that in such a model, as a result of the effective
gravitational constant (30) entering the game, which in
this scenario [7] is viewed as the ‘physical’ reduced Planck
mass of order 1018 GeV, the gravitino mass and global
SUSY breaking scales, (35), when expressed in terms of
κeff are of order one, that is one encounters a Planck-
scale gravitino. Despite this, the vanishing of ν makes
the renormalization-group equation (39) a consistent one
within the perturbative class of (36).

However the above construction leads to the absence of
a present-era (small, positive) cosmological constant c0.
This arises from the fact that we imposed the constraint
(28) exactly. It may well be that such a condition leaves
(non-perturbatively, when all the higher than one-loop
contributions are taken into account) a very small (con-
stant in cosmic time) contribution c0 > 0 which is pre-
served until the present day. Unfortunately, our one-loop
construction does not allow us to explain the magnitude
and the sign of this constant term, but this is equivalent
to offering a solution to the cosmological constant prob-
lem, which of course our approximate one-loop analysis
cannot provide. While we do not have a quantitative
calculation at this point, the above argument provides at
least an interesting qualitative explanation, to wit: the
origin of the current cosmological term ρ0Λ in the model
might well be attributed to quantum (non-perturbative)
effects in the SUGRA effective action, which prevent the
complete cancellation (28) from being realised. The con-
stant residue c0 is then transferred throughout the cosmic
history and pops up in our days in the form of the tiny
vacuum energy ρ0Λ = (3/κ2)(c0 + νH2

0 ) ≃ 3c0/κ
2.

Under this assumption, then, the initial gravitational

coupling κ, and thus the Einstein term 1
2κ2

∫
d4x

√−g R̂
would enter the game during the exit phase from infla-
tion 6. In such a case, in the exit phase, the effective
vacuum energy of the SUGRA model at the inflationary
phase should correspond to both α1 and α2 terms of (24),
with the constraint (28) failing by a tiny amount c̃0 > 0
corresponding to the present-era cosmological constant.

ρSUGRA
Λ (H) =

1

κ2

(
c̃0 + 6α1H

2 + 72α2H
4
)

(40)

where the explicit form of the coefficients αi, i = 1, 2,
given by Eqs. (25), (26) and (27), in which the scales µ
and Λ are fixed through (29) and (35) respectively. As
mentioned already, fixing of the scale µ and Λ, implies
fixed values for the gravitino mass.

It is worth stressing that the aforementioned ambigu-
ity concerning the failure of the exact constraint (28) can
be avoided altogether by observing that the correspond-
ing ρΛ(H) ultimately derives from the RG equation (4)
discussed in Sect. II. It is therefore more appropriate, and
elegant, if one performs the matching between the run-
ning vacuum energies ρΛ(H) in the SUGRA model and
RVM by equating the corresponding “RG beta” func-

6 The reader should bear in mind that, since during the infla-
tionary phase the scalar degree of freedom of the Starobinsky
action is slowly rolling, if there is inflation in the conformally
rescaled metric (6), there is also inflation in the initial metric.
The Starobinsky inflation arguments are also not affected if a
small contribution to the cosmological constant, of order of the
present-era one, enters the effective action (7), as this is negligi-
ble compared to the Hubble scale of inflation.
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tions, d ρΛ
d lnH2 :

d ρΛ
d lnH2

= 6 κ−2 α1H
2 + 144 κ−2 α2H

4 ≃

3 (αF1 + αB1 )H
2 + 18 (αF2 + αB2 )H

4 (41)

It is remarkable that the effective dynamical vacuum en-
ergy density ρΛ(H) associated to the SUGRA model un-
der consideration turns out to follow the general RG of
the RVM, see Eq. (4), in which the coefficients of the H2

and H4 terms can be computed precisely from the un-
derlying SUGRA framework.
From Eq. (41) it follows that ρΛ = ρΛ(H) evolves

(“runs”) with the (time-evolving) value of H . Such evo-
lution will be studied in more detail in the next section,
but is relatively small in the beginning, namely the vary-
ing H is only slightly below the initial value given in
Eq. (29). As a result the Universe can start with an ini-
tial inflationary phase, which is dominated by the ∼ H4

term of (41). However, well after the inflationary period
the ∼ H2-term takes over and remains in force until the
present time, thereby providing a mild evolution of the
current cosmological “constant”.
Eventually one has to add to the effective action loop

contributions from other matter fields, including parti-
cle multiplicities, but at the moment we take a mass of
order of the gravitino mass and shall comment on the
possible additional effects below. The value of m3/2 is
of order of the GUT scale, since it is proportional to
the gravitino condensate through σc ∼ κ̃−1m3/2, the
latter being bounded from above by the GUT scale:√
σc ≤

√
f ∼ 10−2MPl [see Eq. (17)]. We must also keep

in mind that for phenomenologically acceptable solutions
of the broken SUGRA model the ratio r ≡ κ̃/κ is forced
to stay in the range r = O(103 − 104).
From the generic values (35) we adopt here we find:

d ρΛ
d lnH2

∼ 1.59 κ̃2σ2
c H

2 + 25.76H4 . (42)

The integrated form of Eq.(42), yields of course the ef-
fective vacuum energy density at the scale H , ρΛ(H),
Eq. (40), within the current SUGRA scenario. We thus
have:

ρΛ(H) ≃ c̃0 + 1.59 κ̃2σ2
cH

2 + 12.88H4 , (43)

where c̃0 is the integration constant, which will play the
rôle of the current-era cosmological constant, as already
mentioned. The result naturally adopts the generic form
of the canonical RVM, Eq. (36) with c0 = κ2c̃0/3 and the
effective values for the coefficients ν and α given by

νeff ≃ 0.53 κ2κ̃2σ2
c ≃ O

(
m2

3/2

M2
Pl

)
, (44)

αeff ≃ 4.30H2
I κ

2 ≃ O
(
H2
I

M2
Pl

)
. (45)

Thus we observe that, within the context of the pure
SUGRA model, where only the gravitino plays the rôle

of “matter”, both coefficients are small, of typical or-
der 10−9, in accordance with their interpretation as β-
function coefficients of the running vacuum energy den-
sity. Let us also note that the above estimate for νeff
nicely fits with the formal expression obtained in the
different context of anomaly-induced inflation, where it
also takes the structure (37), namely a quantity propor-
tional to the (squared) ratio of a heavy particle scale
(in general a collection of them) to the Planck mass –
see [10] for details. In the full SUGRA case, after its
coupling to ordinary matter and radiation fields, other
SUSY heavy fermions with masses near the SUSY break-
ing scale should also contribute to νeff and α, and this
should enhance the value of this coefficient very signifi-
cantly, thus bringing the obtained result even closer to
the situation studied in Ref. [10]. Overall, such consider-
ations in phenomenologically realistic SUGRA situations
could bring these parameters to a range ∼ 10−4 accessi-
ble to current observations [21, 22].
We next remark that, in the general case where the

parameters of the SUGRA model are varied from the
generic values considered in (35), but within the allowed
range, the values of νeff and αeff can also undergo some
variation and the sign of νeff could change. However
we stress that the sign of αeff remains always positive,
which is essential for a correct description of inflation.
This can be seen explicitly by comparing the various log-
arithms involved in the structure of the coefficient α2 of
the H4-term in Eq. (41), together with the size and sign
of their respective numerical coefficients (cf. Eqs. (25),
(26), (27)). The positivity of α2 is maintained through-
out the physically allowed parameter space, and derives
essentially from the fact that H2

I ∼ κ̃2 σ2
c ∼ κ2m2

3/2, in

agreement with the generic result (35).
Finally, let us note that the circumstance that νeff

could have either sign can only affects the dynamics of
the vacuum energy in the late universe. The phenomeno-
logical implications for both signs have actually been ex-
plored recently in [21, 22], see also [15].
The upshot of the above considerations points to the

existence of a remarkable relation between the running
vacuum model Eq.(36) with that of SUGRA Eq.(43). In
the next section we discuss the predicted inflationary sce-
nario [16, 17] in the context of the general RVM [14, 15],
and provide some interesting phenomenology that can be
tested for the low energy regime, namely for the current
Universe.

V.2. Running Vacuum Evolution: from current to

inflationary era

In this section we investigate the conditions under
which the running vacuum model can provide an infla-
tionary era. The point of this session is first to demon-
strate that is, if one starts from an inflationary era, at
an early epoch, obtained in the context of a microscopic
model, such as the Starobinsky inflation induced in the
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SUGRA model, then the RVM can smoothly connect it
with the current era, characterised by a very small value
of the vacuum energy, with a cosmology of ΛCDM type.
We shall follow a “bottom-up” approach, in which, by
starting from a late epoch FLRW Universe and apply-
ing RVM evolution (“backwards” in cosmic time, or, in a
RG sense, an IR to UV flow), one arrives at an inflation-
ary era in the early Universe. As we shall see, however,
in this bottom-up approach, there is no unique way to
identify the underlying microscopic model during the de
Sitter era, which was to be expected in view of the rather
generic features encapsulated in the RVM evolution.
To this end, let us first reproduce the Friedmann equa-

tions in the framework of a running ρΛ. The resulting
equations are expected to be formally equivalent to the
ΛCDM case, inasmuch as the Cosmological Principle,
which is embedded in the FLRW metric, perfectly al-
lows the possibility of a time-evolving cosmological term.
In general, the Einstein-Hilbert action is given by (here
and in what follows we are back in Minkowski-signature
space-time, described by a metric gµν):

SR,Λ =

∫
d4x

√−g
[

1

2κ2
(R − 2Λ) + Lm

]
(46)

where in our case ρΛ(t) = Λ(t)/κ2 represents the effec-
tive vacuum energy, which is allowed to vary with the
cosmic time (more specifically as a function of a dynam-
ical cosmological variable that evolves with time), and
Lm is the Lagrangian of matter. Varying the action (46)
with respect to the metric we arrive at

Rµν −
1

2
gµνR = κ2 T̃µν , (47)

where the total T̃µν is given by T̃µν ≡ Tµν − gµν ρΛ, with
Tµν = −2∂Lm/∂gµν+gµν Lm the energy-momentum ten-
sor corresponding to the matter Lagrangian. The extra
piece is ρΛ = Λ/κ2, that is to say, the vacuum energy
density associated to the presence of Λ(t) (with pressure
pΛ = −ρΛ). Let us remark that this equation of state
(EoS) does not depend on whether the vacuum is dynam-
ical or not. In contrast to other forms of dark energy, the
vacuum is defined as that for which the EoS parameter
is precisely ω = −1 in any circumstance.
Modeling the expanding universe as a perfect fluid with

velocity 4-vector field Uµ, we obtain Tµν = pm gµν+(ρm+
pm)UµUν , where ρm is the density of matter-radiation
and pm = ωmρm is the corresponding pressure, in which
ωm is the EoS of matter. Obviously, T̃µν takes the same
form as Tµν with ρtot = ρm + ρΛ and ptot = pm + pΛ =

pm− ρΛ, that is, T̃µν = (pm− ρΛ) gµν +(ρm + pm)UµUν .
In the context of a spatially flat FLRW metric, we

derive the Friedmann equations in the presence of a dy-
namical Λ-term:

κ2ρtot = κ2ρm + Λ = 3H2 , (48)

κ2ptot = κ2pm − Λ = −2Ḣ − 3H2 (49)

and the Ricci scalar

R = gµνRµν = 6(2H2 + Ḣ) , (50)

where the overdot denotes derivative with respect to cos-
mic time t. Note, that the Bianchi identities ▽µ T̃µν = 0,
insure the covariance of the theory and, if the Newtonian
coupling is strictly G =const., entail an energy exchange
between vacuum and matter.

ρ̇m + 3(1 + ωm)Hρm = −ρ̇Λ . (51)

Combining equations (48), (49) and (51), we infer the
basic differential equation that governs the dynamics of
the Universe, namely the equation for the Hubble rate:

Ḣ+
3

2
(1+ωm)H

2 =
1

2
κ2(1+ωm)ρΛ =

(1 + ωm)Λ

2
. (52)

Inserting in it the expression (36) for the dynamical vac-
uum energy we arrive at the following equation:

Ḣ +
3

2
(1 + ωm)H

2

[
1− ν − c0

H2
− α

H2

H2
I

]
= 0 (53)

The dynamics of this model has been thoroughly dis-
cussed in [16, 17], see also [15]. We can summarize it as
follows. First of all we identify the presence of an infla-
tionary epoch (de Sitter phase) associated to the constant
value solution H2 = (1 − ν)H2

I /α of Eq. (53), which is
valid for the very early epoch of the universe (in which we
can neglect c0/H

2 ≪ 1). In this regime, solving Eq.(53)
we find

H(a) =

(
1− ν

α

)1/2
HI√

Da3(1−ν)(1+ωm) + 1
, (54)

where D is a positive constant of integration. For the
early universe we assume that matter is essentially rela-
tivistic, thus we take ωm = 1/3 at this point. Overall,
one can see from (54) that for Da4(1−ν) ≪ 1 the universe
starts from an unstable inflationary phase [early de Sit-
ter era, H2 = (1 − ν)H2

I /α] powered by the huge value
HI presumably connected to the scale of a Grand Uni-
fied Theory (GUT). Well after the primeval inflationary
era, specifically for Da4(1−ν) ≫ 1, the Universe enters
the standard radiation phase. Subsequently the radia-
tion component becomes subdominant and the matter
dominated era appears. This is confirmed from the evo-
lution of the vacuum energy and radiation energy densi-
ties. If we neglect ν and c0/H

2 in this early epoch, which
is justified, we can insert (54) into (36) and we find:

ρΛ(a) =
ρI
α

1

[1 +Da4]
2 . (55)

Then solving (51) we obtain:

ρr(a) =
ρI
α

D a4

[1 +Da4]2
. (56)
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Here ρI = 3H2
I /κ

2 is the critical density in the infla-
tionary epoch. As it is obvious from the above expres-
sions, there is no singularity in the initial state: the
Universe starts at a = 0 with a huge vacuum energy
density ρI/α (and zero radiation) which is progressively
converted into relativistic matter. In the asymptotic ra-
diation regime we indeed retrieve the standard behavior
ρr ∼ a−4 with essentially negligible vacuum energy den-
sity: ρΛ ∼ a−8 ≪ ρr. Graceful exit is, therefore, imple-
mented.
Subsequently the radiation component becomes sub-

dominant and the matter dominated era appears. This
is the point when the c0/H

2 term in Eq.(53) surfaces and
starts to dominate over αH2/H2

I because the early de Sit-
ter era is left well behind (H ≪ HI). In this case Eq.(36)

boils down to Λ(H) = Λ̃0 + 3ν(H2 −H2
0 ) which corrects

the concordance ΛCDM model à posteriori. Notice, that

Λ̃0 = 3c0 + 3νH2
0 (57)

is the vacuum (cosmological constant) energy density at
the present time, which is positive, and should not be
confused with the negative tree-level Λ0 of the SUGRA
model (19). This can be understood by studying the
evolution of the universe at a time after recombination,
therefore consisting of dust (ωm = 0) plus the running
vacuum fluid with H ≪ HI . In this case, using d/dt =
aH d/da, we can rewrite Eq.(53) as

a
dH2

da
+ 3(1− ν)H2 − 3 c0 = 0 ,

The solution satisfying the boundary condition H = H0

at present (a = 1) is:

H2(a) =
H2

0

1− ν

[
(1− Ω0

Λ) a
−3(1−ν) +Ω0

Λ − ν
]
.

Note that the aforementioned boundary condition fixes
the value of the parameter c0 as follows: c0 = H2

0 (Ω
0
Λ−ν).

For ν = 0 we correctly recover the behavior of the
ΛCDM. However, for small ν the Universe possesses a
mildly evolving vacuum energy that could appear as dy-
namical dark energy without invoking spurious scalar
fields. Furthermore, the above vacuum model is in agree-
ment with the latest cosmological data and it predicts a
growth rate of clustering which is in agreement with the
observations (for more details concerning the late dynam-
ics, see [21, 22, 24, 25]).
Let us note that the main stage of the cosmic evolu-

tion where we can match the SUGRA model of Sect. IV
with the RVM is the early period comprising inflation
and the incipient radiation epoch, to which it leads af-
ter graceful exit, as described in this section. Later on
the microscopic description of the SUGRA model is more
difficult to analyze and we adopt here the point of view
that the subsequent effective behavior of the Universe
still follows the RVM flow dictated by the general RG
equation (4), which, to order H4, entails the dynamical
vacuum energy density (36). As previously mentioned,

at low energies this implies that only the dynamical part
∼ H2 is active and may lead to interesting phenomeno-
logical implications for the dynamical DE of the current
universe [21, 22, 25])

V.3. Geometrical description: RVM versus

Starobinsky

Finally, let us focus now on some aspects of the infla-
tionary era that are especially relevant for the present
study. As we have already mentioned, in this epoch we
have a de Sitter solutionH2 ≃ (1−ν)H2

I /α =const. Now,

as previously indicated, Ḣ ≃ 0 in this period and hence
R ≃ 12H2. Finally, neglecting the matter component
from the action (46), which is justified in the inflation-
ary period, and using Λ(H) ≃ 3αH4/H2

I [see Eq.(36)] we
schematically find

SR,Λ =

∫
d4x

√−g
[

1

2κ2
R− ρΛ(H)

]

∼ 1

2κ2

∫
d4x

√−g
(
R− 6α

H4

H2
I

)
. (58)

This demonstrates our point that an inflationary vacuum
can be connected smoothly, under the RVM, with a late
epoch ΛCDM Universe. However, there is no unique way
by means of which we can associate the inflationary era
RVM effective action (58) to a microscopic model, which,
as already mentioned, is to be expected due to the generic
features of the RVM that describe classes of models and
therefore may correspond to more than one microscopic
theories, as far as the exit from inflationary phase is con-
cerned.
An interesting point concerns Eq. (58) if one replaces

H4 by the square of the Ricci scalar. In this case one may

write SR,Λ ≃
∫
d4x

√−g 1
2κ2

(
R − α R2

24H2

I

)
. Notice that,

since α > 0 in our case, the RVM model is not formally
and directly equivalent to a Starobinski-type model, for
which the effective Lagrangian has the form (5) corre-
sponding to a negative α coefficient in (58). This point
has also been discussed in [15]. The root of the problem
lies in the fact that the metric tensors of the two mod-
els, (5) and (58) are different, related by a non-trivial
conformal transformation (6) involving the linearising
Hubbard-Stratonovich field ϕ, which plays the rôle of the
“physical” inflaton. The RVM metric is identified with
the Einstein-frame metric gEµν in (6), while the original
one-loop effective SUGRA action is described in terms of
the gµν metric. Nevertheless, contact with Starobinsky-
type models, like the one induced within the context of
SUGRA model examined here, can be achieved by ob-
serving that it is precisely the passage from the Einstein
to Jordan-frame actions, via (6), which guarantees the
opposite sign, relative to the Ricci scalar term, of the
effective potential (8) of the Hubbard-Strstonovich infla-
ton field in (7). Upon making the identification for large
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κϕ≫ 1

3α
H4

κ2H2
I

= Veff(ϕ) =
3M2

(
1− e−

√
2

3
κϕ
)2

4 κ2
(59)

where in the SUGRA model the scalaron mass scale
M is given by (32), one obtains the connection of the
RVM with the microscopic Starobinsky-type inflationary
SUGRA model. The exit from the inflationary phase,
then, which in fig. 1 corresponds to the region of small
κϕ < 4, which in the context of the SUGRA model would
require detailed knowledge of the matter content of the
theory, is then “effectively” described by the RVM evo-
lution with the initial condition (59), that “fills up” the
missing details in the exit-phase of the evolution in a
rather generic manner. Below we compare the two cos-
mological models at the dynamical level.

V.4. Scalar field description: RVM versus

Starobinsky

Although the fundamental origin of the RVM has a
root in the general structure of the effective action of
QFT in curved space-time, we cannot provide the latter
at this point, see [12] for an explanation. However, we
can resemble it via an effective scalar field φ using a field
theoretical language. We may call this scalar field φ as
vacuumon. Based on Friedmann’s Eqs.(48)-(49) and fol-

lowing standard lines, namely ρtot ≡ ρφ = φ̇2/2 + U(φ)

and ptot ≡ pφ = φ̇2/2− U(φ) we arrive at

φ̇2 = − 2

κ2
Ḣ , (60)

U =
3H2

κ2

(
1 +

Ḣ

3H2

)
=

3H2

κ2

(
1 +

aH
′

3H

)
, (61)

where U(φ) is the effective potential, Ḣ = aHH
′

and
prime here denotes derivative with respect to the scale
factor. Integrating Eq.(60) we have

φ =

∫ (
−2Ḣ

κ2

)1/2

dt =

√
2

κ

∫ (
−H

′

aH

)1/2

da . (62)

Now, for ωm = 1/3 the Hubble parameter (54) takes
the form

H(a) =

(
1

α

)1/2
HI√

Da4 + 1
. (63)

Notice that, we have set ν = 0 in Eq.(54), which is not
important for the study of the early universe. Inserting
Eq.(63) into Eq.(62) and performing the integration in
the interval [0, a] we find

FIG. 3. The RVM effective potential ακ2U/H2
I (solid line)

versus the scalaron field κϕ. In order to produce the curve
we utilize M ∼ MX ∼ 1016Gev, HI ∼ 0.81 × 1014Gev [see
Eq.(3)] and α ∼ 10−4. The dashed line corresponds to the
Starobinsky effective potential (see Fig. 1).

φ(a) =
1

κ
sinh−1

(√
Da2

)
,

=
1

κ
ln
(√

Da2 +
√
Da4 + 1

)
. (64)

In this context, utilizing Eqs.(61)-(63) the effective po-
tential is given by

U(a) =
H2
I

ακ2
3 +Da4

(1 +Da4)2
, (65)

which implies

U(φ) =
H2
I

ακ2
3 + sinh2(κφ)

[1 + sinh2(κφ)]2
(66)

or

U(φ) =
H2
I

ακ2
2 + cosh2(κφ)

cosh4(κφ)
. (67)

At this point we would like to pose the following dynam-
ical question: Under what conditions the RVM potential
is equal to that of Starobinsky, namely U(φ) = Veff(ϕ) in
Eq. (59)?
Equating the right-hand-side of Eqs.(8) and (67), after

some calculations, we can express the vacuumon field in
terms of the scalaron

φ(ϕ) =
1

κ
ln
[
χ(ϕ) +

√
χ(ϕ)2 − 1

]
(68)

where χ(ϕ) > 1 as easily shown (hence no restrictions on
the scalar fields) and it is given by

χ(ϕ) =

[
1 +

√
1 + 8F (ϕ)

2F (ϕ)

]1/2
, (69)
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F (ϕ) =
3αM2

(
1− e−

√
2

3
κϕ
)2

4H2
I

=
ακ2

H2
I

Veff(ϕ) > 0 .

In Fig. 3 we present the RVM effective potential
ακ2U/H2

I (solid curve) as a function of κϕ. In the same
figure we plot the effective Starobinsky (dashed curve)
potential which is showed in Fig. 1. From the comparison
it becomes clear that, although the RVM and Starobinsky
models live in different geometrical backgrounds, namely
GR and R2, the two models are similar from the point of
view of those features of inflation that can be described
by an effective scalar-field dynamics. However, in other
important aspects they are different. We should mention
that the RVM model provides a simple description of the
graceful exit and reheating problem, see [16, 17, 19, 58]
for details. As for the Starobinsky model, the reheating
of the universe after the exit of the inflationary phase it
has been discussed for example in [59]. In contrast to the
Starobinsky model, a general effective action from where
the RVM can be derived is not known [12], and currently
this has been achieved only in some cases [10].

VI. CONCLUSIONS

In the light of the latest Planck+Bicep2 results [5] it
has been proposed that the Starobinsky inflation plays a
key role because it fits quite well the Cosmic Microwave
Background (CMB) data on inflation. In the present pa-
per we have further investigated the class of the running
vacuum models (RVM) [14] (based on renormalization-
group approach in curved spacetimes) and their impli-
cations on the inflationary universe [16, 17]. In partic-
ular, we have addressed the possibility that they can
mimic both the original Starobinsky model and the spon-
taneously broken SUGRA models based on dynamically
induced gravitino condensates [8].
We have shown that the vacuum energy density ρΛ(H)

of these SUGRA models can be expressed as an even
power series (4) of the Hubble parameter, which can be
naturally truncated at the H4 term. This is exactly the
generic form expected in the simplest class of running
vacuummodels and therefore we can apply the known im-
plications of these models for inflation [16, 17]. Namely,
after computing the modified form of the Friedmann
equation, we find that the physics of inflation (which
in our case occurs for H ≃ HI , a value associated to
the spontaneously broken SUGRA model) is mainly de-
scribed by the H4-term. Furthermore, being H4 of order
R2, we can trace some relationship of this model with
Starobinsky inflation, although of course there is not a
full identification or equivalence. Most noticeably we
point out the distinguishing feature that within the en-
tire class of running vacuum models – and hence, in par-
ticular, the SUGRA model that we have studied (which
adapts to the same pattern) – the RVM performs suc-
cessful graceful exit from the inflationary phase into the

standard radiation regime [16, 17]. This feature is charac-
teristic of the running type of vacuum models, in contrast
to the original Starobinsky model. Nevertheless, we have
also shown here that the RVM model admits a scalar
field description as well, via the vacuumon field, and its
potential can be made equivalent to the Starobinsky po-
tential upon appropriate scalar field redefinitions, despite
the fact that the geometric backgrounds of the two mod-
els are very different. This dynamical equivalence implies
that the two models should provide the same inflationary
features, at least in all the aspects that can be described
through an effective scalar field potential. Not so in other
aspects which may differ from one model to the other. In
particular let us emphasize that the Starobinsky model
derives from a local effective action whereas the struc-
ture of the effective action in the general case RVM is
not presently known, except in particular cases in which
it is found to be non-local.

The low energy physics, on the other hand, and in
particular the evolution of the Universe in the current
epoch, is determined by the constant additive term of
ρΛ(H) and the power H2, which provides a remnant dy-
namical evolution still in our days, which is of the form
ρΛ(H) = ρ0Λ+(3 ν/κ2)(H2−H2

0 ). Such evolution is mild
because the coefficient of H2 is small (it is interpreted
as the β-function coefficient of the running vacuum en-
ergy at present). The signature of the RVM at present
is precisely that mild quadratic dynamical behavior of
the vacuum energy density around the current value ρ0Λ
which is parameterized by the small parameter ν. The
model has been thoroughly put to the test recently and
it allows values of |ν| = O(10−3) [21, 22, 24, 25]). On the
other hand, its successful performance in describing the
physics of the early Universe (in particular the graceful
exit of the inflationary phase into the standard radiation
one) is also quite encouraging, especially after realizing
that specific QFT models lead to this kind of behavior.
In this paper we have shown that SUGRA models with a
dynamically induced massive gravitino phase lead to the
RVM behavior and therefore provide a strong support for
a fundamental description of the cosmic history.

Finally, we would like to stress that, in the context of
the running vacuum model, the universe evolution, and
especially its accelerated phase either during inflation or
at late times, is not attributed to an ad hoc scalar field,
or to a modification of the gravitational interaction, but
rather arises from the modification of the vacuum itself,
which is endowed with a dynamical nature. Remarkably,
the SUGRA framework studied here provides a concrete
realization of this possibility within the fundamental con-
text of quantum field theory in curved spacetime.
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[30] J. Solà, Running Vacuum in the Universe: current phe-

nomenological status, to appear in the Proc. of the
14th Marcel Grossman Meeting, Rome (2015), e-Print:
arXiv:1601.01668.

[31] J. Solà, A. Gómez-Valent, J. de Cruz Pérez, Astrophys.
J. 811 (2015) L14.
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