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1 Introduction and motivation

Inflation [1–5] provides a well motivated framework to address some of the remaining

challenges facing the Cosmological Standard Model [6], such as the flatness and horizon

problems, as well as the absence of cosmological relics and the origin of cosmological fluc-

tuations. According to the paradigm of slow-roll inflation [7, 8], inflationary dynamics is

described by one (or several) scalar field(s) called inflaton(s). If the potential for such

scalar field is flat enough, then its dynamics will produce a source of negative pressure,

which is required to sustain a phase of cosmological exponential acceleration. Although

it is not possible to test inflation in a model independent way, it may be said that cur-

rent observational data [9] generally supports the inflationary paradigm and constrains the

dynamics of candidate inflationary models.

Over the past decades many proposals for inflationary models have been put for-

ward [10]. Many of these theoretically viable models, including the simplest chaotic models

based on polynomial potentials such as φ2 or φ4, have recently been excluded by cosmic mi-

crowave background (CMB) data from the Planck satellite [9]. The most recent data favours

inflation models with purely Gaussian fluctuations, a spectral index ns ≈ 0.96± 0.007 and

low tensor-to-scalar ratio r < 0.08. Of the surviving classes of models, some are based on

non-minimal gravity, such as the R2 inflation model Starobinsky [11–13], although similar

predictions arise in Higgs inflation [14] and related models [15, 16], as well as low scale

inflation models based on hybrid inflation [17, 18]. However, many of the surviving mod-

els suffer from being sensitive to possible Ultra-Violet (UV) physics. If not protected by

symmetry, generic corrections to the potential can provide an O(1) contribution to the

slow-roll parameter η spoiling the predictions required for a successful inflation. This is

known as the η-problem [7, 8], and is a theoretical challenge facing any inflationary model.

Supersymmetry (SUSY) has been extensively used in inflationary models, since such

theories generally allow better control over the high energy dynamics of scalars [19–21].

In particular, according to the Lyth bound [22], low values of the tensor-to-scalar ratio r
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imply that the scale of inflation should be less than the Planck scale, and SUSY provides a

mechanism for maintaining a hierarchy of scales without fine-tuning. The first implemen-

tations of supersymmetric models of inflation considered only global SUSY. But since the

dynamics of inflation occur at early stages of the history of the universe and is sensitive

to UV scales, it is necessary to also consider local SUSY or supergravity (SUGRA) (for

recent SUGRA inflation models see for example [23–28]). In SUGRA the so-called F -term

scalar potential is sensitive to the shape of the Kähler potential, and this can lead to the

re-emergence of the η-problem in the presence of quadratic contributions to the Kähler po-

tential. One solution to this problem is no-scale SUGRA [29], where the Kähler potential

takes a logarithmic form and circumvents the above problem. No-scale SUGRA models are

so-called because the scale at which SUSY is broken is undetermined in the first approx-

imation, and the scale of the effective potential responsible for inflation can be naturally

much smaller than the Planck scale, as required. Alternatives to no-scale SUGRA have

also been proposed, for example using a non-compact Heisenberg symmetry [30–34] or a

shift symmetry [35–40].

Recently, it was shown that, within a Wess-Zumino framework, where the superpoten-

tial consists of quadratic and cubic terms only [41, 42], no-scale SUGRA can behave like

a Starobinsky inflationary model [43, 44] (see also [45] for a realisation within an SO(10)

model, and for other No-Scale inflation realisations [46–56]). Such a model was shown to

be the conformal equivalent of an R+R2 model of gravity for a particular point in param-

eter space, and at this point, Starobinsky inflation was shown to emerge. However, in the

above approach, the mechanism of SUSY breaking was left unspecified, and formally the

gravitino mass is zero in the Starobinsky limit.

In this paper we consider the above model of Ellis, Nanopoulos, Olive (ENO) [43, 44],

together with a linear Polonyi term to the superpotential. The purpose of adding this term

is to provide an explicit mechanism for breaking SUSY. If the Polonyi term is dropped,

the model will reduce to the ENO model with Starobinsky inflation in a particular limit.

Including a Polonyi term, we shall show how one may successfully perturb away from the

Starobinsky limit of the ENO model, whilst maintaining successful inflation and at the

same time generate a gravitino mass with a strict upper bound m3/2 < 103 TeV, with

favoured values m3/2 . O(1) TeV. The model suggests that SUSY may be discovered in

collider physics experiments such as the LHC and the FCC.

This work is organised as follows. In section 2 we review the no-scale Kähler potential

and the general result for the supergravity potential. In section 3 we give the superpotential

of our model and present the inflationary potential and find its global minimum. In section 4

we discuss inflation and analyse the parameter space of the model, showing how this leads

to an upper bound on the gravitino mass. section 5 concludes the paper.

2 The no-scale Kähler potential

An important part of model is described by the Kähler potential alone, namely the kinetic

term and a simple formula for the scalar potential can be found using only the Kähler
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potential. The no-scale Kähler potential is given by

K = −3M2
Pl ln

(

T + T ∗

MPl

− |Z|2
3MPl2

)

, (2.1)

where T is a modulus field and Z is another field in the hidden sector which will be

responsible for inflation and SUSY breaking.

The kinetic term depends on the second derivatives of the Kähler potential, or Kähler

metric given by,

Kj
i = ∂2K/∂φ∗i∂φj , (K−1)kiK

j
k = δji . (2.2)

Using eqs. (2.1), (2.2), we find the kinetic term in the Lagrangian,

LK =
3

(

T+T ∗

MPl
− |Z|2

3M2

Pl

)2
(∂µZ

∗, ∂µT
∗)

(

T+T ∗

3MPl
− Z

3MPl

− Z∗

3MPl
1

)(

∂µZ

∂µT

)

. (2.3)

In order to proceed we follow the procedure in ENO [43], where it is assumed that

the T modulus is fixed (or stabilised) by some other mechanism to be equal to a constant

value, so that its derivatives vanish and therefore is not dynamical during inflation. For a

more in-depth study on how T is stabilised see [44]. Then only the (1,1) element of the

matrix in eq. (2.3) is non-zero, where this element depends on the real vacuum expectation

value of the T modulus,

c = 〈T + T ∗〉. (2.4)

The canonical normalisation of the remaining Z kinetic term is somewhat non-trivial to

achieve since it is multiplied by a function of |Z|2. However, the problem has been solved

by ENO [43, 44] who change variables from Z to χ where,

Z =
√

3cMPl tanh

(

χ

MPl

√
3

)

(2.5)

in terms of which the kinetic term reads

LK = sech2

[

2Im(χ)

MPl

√
3

]

(∂µχ
∗)(∂µχ) . (2.6)

In the limit Im(χ) → 0 we get a canonically normalised kinetic term for Re(χ), which is

identified as the inflaton in this limit.

Leaving every dimension explicit, the supergravity potential is given by

V = Kj
i FjF

∗i − 3eK/M2

Pl

|W |2
M2

Pl

, (2.7)

where the supergravity F term is given by

Fi = −eK/2M2

Pl(K−1)ji

(

W ∗
j + W ∗ Kj

M2
Pl

)

. (2.8)

– 3 –



J
H
E
P
0
7
(
2
0
1
7
)
0
3
3

Using these results one finds, for any choice of superpotential W , the potential:

V =
1

(

T+T ∗

MPl
− |Z|2

3M2

Pl

)2

∣

∣

∣

∣

∂W

∂Z

∣

∣

∣

∣

2

. (2.9)

The last result manifests the main characteristic of a no-scale model that the potential

is positive semi-definite.

Another important quantity is the gravitino mass m3/2, whose square is given by

m2
3/2 =

Kj
i FjF

∗i

3M2
Pl

= eK/M2

Pl

|W |2
M4

Pl

, (2.10)

where the quantities are to be evaluated at the ground state vacuum, and the second

equality above assumes that V = 0 at the minimum.

Both the potential and the gravitino mass depend crucially on the superpotential W

to which we now turn.

3 Wess-Zumino-Polonyi model of inflation

The superpotential of our model consists of a Wess-Zumino model with quadratic and

trilinear terms, of the kind considered in ENO [43, 44], together with a new linear Polonyi

term that we are adding in order to break SUSY:

W = M2Z +
µ

2
Z2 − λ

3
Z3 . (3.1)

In the limit that M = 0, the Polonyi term vanishes and the model reduces to the Wess-

Zumino model considered by ENO.

Using W in eq. (3.1), the potential in eq. (2.9) becomes,

V =
1

(

c
MPl

− |Z|2

3M
Pl2

)2

∣

∣M2 + µZ − λZ2
∣

∣

2
.

(3.2)

Since the potential is positive semi-definite, it is minimised for V = 0. The minimum

of the potential is given by setting the numerator equal to zero, leading to a quadratic

equation for Z with solution,

Z =
1

2λ

(

µ±
√

µ2 + 4M2λ
)

. (3.3)

Using the reparametrisation of the field as in eq. (2.5),

Z =
√

3cMPl tanh

(

χ√
3MPl

)

, (3.4)

and writing χ in terms of its real and imaginary parts

χ =
1√
2

(x + iy) , (3.5)
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the potential in eq. (3.2) becomes,

V = a sec2

(

√

2

3

y

MPl

)

∣

∣

∣

∣

cosh

(

x + iy

MPl

√
6

)∣

∣

∣

∣

4 ∣
∣

∣

∣

b + f tanh

(

x + iy

MPl

√
6

)

− tanh2

(

x + iy

MPl

√
6

)∣

∣

∣

∣

2

,

(3.6)

where
a = |3λM2

Pl|2

b =
M2

3cλMPl

f =
µ

λ
√

3cMPl

χ =
1√
2

(x + iy) .

(3.7)

For real parameters, we have checked that the potential is always minimised by y = 0 for

any value of x in the range of interest for inflation. Moreover, we have checked that the

steepness of the potential in the y direction always exceeds that in the x direction in the

range of interest.

Setting y = 0, we then identify the inflaton as x, with the inflationary potential

V = a

∣

∣

∣

∣

cosh

(

x

MPl

√
6

)∣

∣

∣

∣

4 ∣
∣

∣

∣

b + f tanh

(

x

MPl

√
6

)

− tanh2

(

x

MPl

√
6

)∣

∣

∣

∣

2

. (3.8)

The value of x at the global minimum of the potential is

x0 =
√

6MPl tanh−1

(

1

2
(f ±

√

4b + f2)

)

, (3.9)

which can also be obtained from eq. (3.3). Without loss of generality, for concreteness we

will choose the lower sign, so that inflation will happen with x rolling from x∗ > x0.

The ENO limit amounts to taking M → 0, which means b → 0. Without loss of

generality, we take f to be positive and take the lower sign in eq. (3.9). Then, in the limit

b → 0, we find that x0 → 0, which also means Z → 0 and hence W → 0 at the end of

inflation. Then, since V = 0 at the global minimum, and the F term is zero, SUSY is

unbroken, and the ENO limit implies a massless gravitino according to eq. (2.10).

In the ENO limit, Starobinsky-like inflation is found in the further limit that

λ =
µ√

3cMPl

, (3.10)

which in our case would account to take

f = 1 . (3.11)

Therefore, Starobinsky-like inflation results from the limiting case of the above poten-

tial formula:
b = 0

f = 1 .
(3.12)
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Figure 1. Comparison of the shape of the potential for different values of b, keeping f = 1. As

b deviates from zero, the value of the field at the global minimum x0 shifts away from zero, while

maintaining V = 0. For small values of b the potential retains a plateau where inflation will happen.

In these limits, inflation occurs at x∗ ≃ 5.35MPl. As we can see in figure 1, keeping f = 1, a

small value for b represents a small deviation from the Starobinsky limit of the ENO model.

This means that we can expect a successful inflation scenario very similar to Starobinsky

inflation for small values of b. This is of interest since, for non-zero b, SUSY is broken and

the gravitino mass becomes non-zero at the end of inflation.

4 Inflation and parametric study of the model

First we introduce the usual inflation functions. The potential slow-roll parameters are

dimensionless and read

ǫ =
1

2
M2

Pl

(

V ′

V

)2

(4.1)

and

η = M2
Pl

V ′′

V
, (4.2)

where prime means derivative regarding the inflaton field, x.

From these we can derive two crucial dimensionless observables, the tensor-to-scalar

ratio, r,

r ≃ 16ǫ (4.3)

and the scalar tilt, ns,

ns ≃ 1 − 6ǫ + 2η . (4.4)

A last observable is the scalar amplitude, which reads

As =
1

24π

V

M4
Pl
ǫ
, (4.5)

which is the only observable sensitive to the overall scale of the potential, i.e. of the pa-

rameter a.
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Furthermore, in order for inflation to be successful the dynamics of the inflaton has to

significantly increase the scale factor. This is accounted by the N-folds quantity, that reads

N∗ =

∫ xf

x∗

1√
2ǫ

dx , (4.6)

where x∗ is the field value at which inflation starts, and xf the value at the end of inflation,

which we can safely approximate by x0, the field value at the global minimum of the

potential.

In the following we shall take the Starobinsky-like inflationary limit while allowing for

a non-zero Polonyi term,

b 6= 0

f = 1 .
(4.7)

In order for the potential to stabilise the scalar component of Z with vanishing imaginary

component, y, we enforce that eq. (3.9) is real. In the limit f = 1 this accounts for the

constraint

− 1 ≤ 1

2
(1 ±

√
4b + 1) ≤ 1 (4.8)

with 4b + 1 ≥ 0. In their paper, ENO showed that deviations from f = 1 limit will change

the shape of the potential and the range of the predictions of inflationary parameters

without altering the massless nature of the gravitino. Therefore, we expect gravitino masses

to be proportional to the value of b and in henceforth keep the f = 1 limit.

In order to study the inflationary dynamics, we need to specify the values for (x∗, a, b)

such that

50 < N∗ < 60 . (4.9)

Since N∗ = N∗(x∗, b), the above conditions do not fix a. For that we use the central

observational value for scalar spectrum amplitude, As. Therefore, we need only to scan a

two-dimensional parameter space (x∗, b) to study the inflationary dynamics of our model.

In figure 2 we show the dependency of m3/2 on b, with fixed x∗ = 5.35MPl. We have

rescaled the results around the origin to show that for b = 0, m3/2 = 0, which is the ENO

model limit.

In figure 3 we show the results of a scan over the parameter space (x∗, b), in the

(m3/2, ns) and (m3/2, r) planes. These results show that successful inflation can be achieved

for a gravitino mass satisfying the strict upper bound m3/2 < 106 GeV, with favoured values

m3/2 . O(103) GeV.

In figure 4 we show the subset of (ns, r) predictions, applying the restriction m3/2 .

O(103) GeV, in the plane of the latest Planck results.

Further analysing the results, we found that the value of the inflaton field at the start

of inflation satisfies the bounds

5.24 .
x∗
MPl

. 5.45 (4.10)

for the region where m3/2 . O(103) GeV.

– 7 –
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Figure 2. Dependency of m3/2 on b, with fixed x∗ = 5.35MPl.

Finally, in order to determine the value of the overall coefficient of the potential, a, we

turn to the scalar amplitude eq. (4.5). This can be written as

As = af(x∗, b) , (4.11)

where f is some function of x∗ and b and therefore, for each point (x∗, b), we can determine

a by using the observed central value 109As ≃ 2.2. For the region of the parameter space

yielding m3/2 . O(103) GeV, we find

1.27 × 10−10 .
a

M4
Pl

. 1.81 × 10−10 . (4.12)

The above results can be used to constrain the parameters of the Kähler and Super-

potential. For example, the range for a above means that λ ≃ O(10−5). Furthermore, if

one assumes c ≃ O(MPl), in the Starobinsky limit f = 1, the bilinear mass term param-

eter becomes µ ≃ 10−5MPl. Under the same assumption, the results that suggest a light

gravitino mass for |b| . 10−5, and we find the Polonyi mass, M , to satisfy the bound

M . O(10−5)MPl . (4.13)

5 Discussion and conclusion

Before concluding we would like to give a short critique of some of the hidden assumptions

and fine tunings inherent in the general approach of the no-scale supergravity Wess-Zumino

model, on which our proposal is based. The first observation is that, as visible eqs. (2.3)

and (3.2), in general both the kinetic term and the F-term scalar potential develop a

pole at |Z| =
√
c3MPl at the end of inflation. Such models have been classified as “pole

inflation” [57, 58]. However, in the present approach, as seen in figure 1, the potential

is in fact always finite during and after inflation for f = 1 corresponding to Starobinsky

– 8 –
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parameter space (x∗, b), keeping f = 1.

inflation. This can also be readily understood analytically since the pole is cancelled by

the vanishing numerator of the potential. Indeed, as fully discussed in [43, 44], successful

inflation requires f to be tuned to |f−1| . O(10−4). Another problem is that of T modulus

stabilisation, a mechanism for which is discussed in [43, 44]. However there is the danger

that any ultraviolet completion of such a T modulus stabilisation mechanism could induce

corrections to the f = 1 condition. There are examples of string models which yield a

similar no-scale structure in the effective theory, in which the higher order corrections are

under control, for example “fibre inflation” [59].

In conclusion, we have proposed a simple modification of the no-scale supergravity

Wess-Zumino model of Starobinsky-like inflation to include a Polonyi term in the superpo-

tential. The purpose of this term is to provide an explicit mechanism for supersymmetry

breaking at the end of inflation. We have shown how successful inflation can be achieved

for a gravitino mass satisfying the strict upper bound m3/2 < 103 TeV, with favoured values

m3/2 . O(103) GeV. The model suggests that SUSY may be discovered in collider physics

experiments such as the LHC or the FCC.
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Figure 4. (ns, r) predictions (in yellow) with the restriction m3/2 . O(103) GeV. The small

endpoint of the yellow bar represents N∗ = 50, while large endpoint represents N∗ = 60. The

predictions are compared to the PLANCK 2013 (Grey), PLANCK TT + lowP (Pink), and PLANCK

TT, TE, EE + lowP (Blue) observational constraints [9].
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