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Abstract

STARR-seq technology has employed progressively more complex genomic libraries

and increased sequencing depths. An issue with the increased complexity and depth

is that the coverage in STARR-seq experiments is non-uniform, overdispersed, and

often confounded by sequencing biases, such as GC content. Furthermore, STARR-

seq readout is confounded by RNA secondary structure and thermodynamic stability.

To address these potential confounders, we developed a negative binomial

regression framework for uniformly processing STARR-seq data, called STARRPeaker.

Moreover, to aid our effort, we generated whole-genome STARR-seq data from the

HepG2 and K562 human cell lines and applied STARRPeaker to comprehensively and

unbiasedly call enhancers in them.

Background

The transcription of eukaryotic genes is precisely coordinated by an interplay between

cis-regulatory elements. For example, enhancers and promoters serve as binding plat-

forms for transcription factors (TFs) and allow them to interact with each other via

three-dimensional looping of chromatin. Their interactions are often required to initi-

ate transcription [1, 2]. Enhancers, which are often distant from the transcribed gene

body itself, play critical roles in the upregulation of gene transcription. Enhancers are

cell-type-specific and can be epigenetically activated or silenced to modulate transcrip-

tional dynamics over the course of development. Enhancers can be found upstream or

downstream of genes, or even within introns [3–5]. They function independent of their

orientation, do not necessarily regulate the closest genes, and sometimes regulate mul-

tiple genes at once [6, 7]. In addition, several recent studies have demonstrated that

some promoters—termed E-promoters—may act as enhancers of distal genes [8, 9].

Consensus sequences (or canonical sequences) have been identified at certain protein

binding sites, splice sites, and boundaries of protein-coding genes. However, there are

no known consensus sequences that characterize enhancer function, making it
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challenging to identify enhancers based on sequence alone in an unbiased fashion. The

noncoding territory occupies over 98% of the genome landscape, making the search

space very broad. Moreover, the activity of enhancers depends on the physiological

condition and epigenetic landscape of the cellular environment, complicating a fair as-

sessment of enhancer function.

Previously, putative regulatory elements were computationally predicted, indirectly,

by profiling DNA accessibility (using DNase-seq, FAIRE-seq, or ATAC-seq) as well as

histone modifications (ChIP-seq) that are linked to regulatory functions [10–12]. More

recently, researchers have developed high-throughput episomal (exogenous) reporter

assays to directly measure enhancer activity across the whole genome, specifically mas-

sively parallel reporter assays (MPRA) [13, 14] and self-transcribing active regulatory

region sequencing (STARR-seq) [15, 16]. These assays allow for quantitative assessment

of enhancer activity in a high-throughput fashion.

In STARR-seq, candidate DNA fragments are cloned downstream of a reporter gene

into the 3′ untranslated region (UTR). After transfecting the plasmid pool into host

cells, one can measure the regulatory potential by high-throughput sequencing of the

3′ UTR of the expressed reporter gene mRNA. These exogenous reporters enable ac-

curate and unbiased assessment of enhancer activity at the whole-genome level, inde-

pendent of chromatin context. Unlike MPRA—which utilizes barcodes—STARR-seq

produces self-transcribed RNA fragments that can be directly mapped onto the genome

(we call this STARR-seq output hereafter). The activities of enhancers are measured by

comparing the amount of RNA produced from the relative amount of genomic DNA in

the STARR-seq library (we call this STARR-seq input hereafter). STARR-seq has sev-

eral technical advantages over MPRA. Library construction is relatively simple because

barcodes are not needed. In addition, candidate enhancers are cloned instead of synthe-

sized, allowing the assay to test extended sequence contexts (> 500 bp) for enhancer ac-

tivity, which studies have shown to be critical for functional activity [17]. Importantly,

STARR-seq can be scaled to the whole-genome level for unbiased scanning of func-

tional activities. However, scaling STARR-seq to the human genome is still very chal-

lenging, primarily due to its massive size. A more complex genomic DNA library, a

higher sequencing depth, and increased transfection efficiency are required to cover the

whole human genome [16], which could ultimately introduce biases. Furthermore,

inserting a large fragment of DNA into the 3′ UTR of the reporter gene could inadvert-

ently introduce regulatory sequences that might affect mRNA abundance and stability,

which could lead to both false positives and false negatives. MPRA is more robust in

this regard because the activity of each candidate enhancer is quantified by multiple

molecular barcodes associated with the fragment, making it less prone to such artifacts

than STARR-seq. Generally, STARR-seq can be genome-wide and unbiased, but the

technique is limited to sequences that already exist in the genome. Although MPRA is

more limited in scale, it enables testing of multiple perturbed synthetic sequences in

the same system.

The processing of STARR-seq data is somewhat similar to that of ChIP-seq, where

protein-crosslinked DNA is immunoprecipitated and sequenced. A typical ChIP-seq

processing pipeline identifies genomic regions over-represented by sequencing tags in a

ChIP sample compared to a control sample. STARR-seq data is compatible with most

ChIP-seq peak callers. Hence, previous studies on STARR-seq have largely relied on
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peak-calling software developed for ChIP-seq such as MACS2 [16, 18, 19]. However,

one must be cautious using ChIP-seq peak callers, at least without re-tuning the default

parameters optimized for processing TF ChIP-seq [20].

In this paper, we describe key differences in the processing of STARR-seq versus

ChIP-seq data. Due to increased complexity of the genomic screening library and se-

quencing depth requirements, STARR-seq coverage is highly non-uniform. This leads

to a lower signal-to-noise ratio than a typical ChIP-seq experiment and makes estimat-

ing the background model more challenging, which could ultimately lead to false-

positive peaks. In addition, STARR-seq measures more of a continuous activity, similar

to quantification in RNA-seq, than a discrete binding event. Therefore, STARR-seq

peaks should be further evaluated using a notion of activity score. These differences ne-

cessitate a unique approach to processing STARR-seq data.

We propose an algorithm optimized for processing and identifying functionally active

enhancers from STARR-seq data, which we call STARRPeaker. This approach statisti-

cally models the basal level of transcription, accounting for potential confounding fac-

tors, and accurately identifies reproducible enhancers. We applied our method to two

whole human STARR-seq datasets and evaluated its performance against previous

methods. We also compared an R package, BasicSTARRseq, developed to process peaks

from the first STARR-seq data [15], which models enrichment of sequencing reads

using a binomial distribution. We benchmarked our peak calls against known human

enhancers. Thus, our findings support that STARRPeaker will be a useful tool for uni-

formly processing STARR-seq data.

Results and discussion

Precise measurement of STARR-seq coverage

We binned the genome using a sliding window of length, l, and step size, s. Based on

the average size of the STARR-seq library, we defined a 500-bp window length with a

100-bp step size to be the default parameter. Based on the generated genomic bins, we

calculated the coverage of both STARR-seq input and output mapped to each bin. For

calculating the sequence coverage, other peak callers and many visualization tools com-

monly use the start position of the read [15, 21, 22]. However, given that the average

size of the fragments inserted into the STARR-seq libraries were approximately 500 bp,

we expected that the read coverage using the read start position may shift the estimate

of the summit of signal and dilute the enrichment. Some peak callers have used read

densities of forward and reverse strands separately to overcome this issue [23, 24]. To

precisely measure the coverage of STARR-seq input and output, we first inferred the

size of the fragment insert from paired-end reads and used the center of the fragment

insert, instead of start position of the read, to calculate coverage. For inferring the size

of the fragment insert, we first strictly filtered out reads that were not properly paired

and chimeric. Chimeric alignments are reads that cannot be linearly aligned to a refer-

ence genome, implying a potential discrepancy between the sequenced genome and the

reference genome and indicative of a structural variation or a PCR artifact [25]. We also

filtered out read pairs that had a fragment insert size greater than lmax and less than

lmin. By default, we filtered out fragment insert sizes less than 200 bp and greater than

1000 bp. After filtering out spurious read pairs, we estimated the center of the fragment
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insert and counted the fragment depth for each genomic bin. To assess the benefit of

using fragment-based coverage, we compared the coverage calculated using the center

of fragment insert to an alternate model using the start position of the sequencing read.

We found that the position of the peaks shifted up approximately 200 bp when we used

the alternate model (Fig. 1a, Additional file 1: Fig. S1A). Such a shift caused by the

read-based coverage could lead to the omission of TF binding sites located at the

boundary. Moreover, we observed that the read-based coverage diluted the overall

STARR-seq signal; as a result, peaks calculated based on the alternate model had lower

fold enrichment (ratio of STARR-seq output to input) and were less confident (based

on statistical significance of the identified peaks) and broader in size (Fig. 1b–d, Add-

itional file 1: Fig. S1B-D). Overall, the fragment-based coverage offered a more accurate

representation of the STARR-seq readout compared to the read-based coverage count-

ing scheme. We illustrated the benefits of using the center of the fragment in Fig. 1e,

which compares the average size of peaks and fold enrichments using alternate cover-

age counting methods.

Controlling for potential systemic bias in the STARR-seq assay

To unbiasedly test for the regulatory activity, a model needs to control for potential

systemic biases inherent to generating STARR-seq data. STARR-seq measures the ratio

of transcribed RNA to DNA for a given test region and determines whether the test re-

gion can facilitate transcription at a higher rate than the basal level. This is based on

the assumption that (1) the basal transcriptional level stays relatively constant across

the genome and (2) the transcriptional rate is a reflection of the regulatory activity of

the DNA insert. However, these assumptions may not always be true, and one needs to

consider potential systemic biases that can interfere with the quantification of regula-

tory activity when analyzing the data.

We next tested whether potential sequencing biases and other covariates confounded

STARR-seq readouts (Fig. 2 and Additional file 1: Fig. S2). We found that STARR-seq

RNA coverage was significantly correlated with GC content (PCC 0.61; P value 1E

−299) and mappability (PCC 0.45; P value 2.9E−148). This could be attributed to intrin-

sic sequencing biases in library preparation. A genome-wide reporter library is made

from randomly sheared genomic DNA, but DNA fragmentation is often non-random

[26]. Studies also have suggested that epigenetic mechanisms and CpG methylation

may influence fragmentation [27]. Furthermore, the isolated polyadenylated RNAs are

reverse transcribed and PCR-amplified before sequencing, and this process can further

confound the sequenced candidate fragments.

Notably, we found that STARR-seq coverage was also significantly confounded by

RNA thermodynamic stability (PCC − 0.55; P value 0). Unlike ChIP-seq, where both

the experiment and input controls derive from the same DNA origin, STARR-seq ex-

periments measure the regulatory potential from the abundance of transcribed RNA,

which adds a layer of complexity. For example, RNA structure and co-transcriptional

folding might potentially influence the readout of STARR-seq experiments [28]. Single-

stranded RNA starts to fold upon transcription and the resulting RNA structure might

influence the measurement of regulatory activity. Previously, researchers suggested a

potential linkage between RNA secondary structure and transcriptional regulation [29].
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In addition, the resulting transcribed RNA undergoes a series of post-transcriptional

regulation, and RNA stability might play a critical role. Moreover, previous reports have

shown that the degradation rates—the main determinant of cellular RNA levels [30]—

vary significantly across the genome and that RNA stability correlates with functionality

[31, 32].

Based on these findings, we built a regression-based model that accounts for various

confounding variables of test sequence fragments to unbiasedly identify potential

Fig. 1 Comparison of STARR-seq output coverage calculated using the center of the fragment to using the start

position of the sequencing read. a Distribution of the shift in final peak locations resulting from using two alternative

coverage counting schemes in HepG2. Comparison of b overall fold enrichment level, c P value, and d size of resulting

peaks. e Example highlighting the difference between fragment-based and read-based coverage counting schemes

and their resulting peak calls from HepG2 STARR-seq data. Asterisks represents statistical significance using the Mann-

Whitney-Wilcoxon test two-sided with Bonferroni correction; *P≤ 0.05, **P≤ 0.01, ***P≤ 0.001, ****P≤ 0.0001
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enhancer regions from STARR-seq data. Note that many of the covariates have appre-

ciable correlation with each other. However, we did find, using stepwise forward selec-

tion, that each of them contributes substantially and independently to the model fit as

assessed by Akaike information criterion (AIC) and Bayesian information criterion

(BIC) (Additional file 1: Fig. S3).

Accurate modeling of STARR-seq using negative binomial regression

To model the fragment coverage data from STARR-seq using discrete probability dis-

tribution, we assumed that each genomic bin is independent and identically distributed,

as specified in the Bernoulli trials [33]. That is, each test fragment can only map to a

single fixed-length bin. Therefore, we only considered a non-overlapping subset of bins

for modeling and fitting the distribution. We also excluded bins not covered by any

genomic input or those in which the normalized input coverage was less than a mini-

mum quantile tmin, since these regions do not have sufficient power to detect enrich-

ment. We selected the bin size and the minimum coverage based on the experimental

design of STARR-seq. We simulated and fit various discrete probability distributions to

Fig. 2 Confounding factors in the STARR-seq assay. STARR-seq output and input coverages are significantly

correlated with a input coverage, b GC content, c mappability, and d RNA structure folding. PCC: Pearson

correlation coefficient. Plots were from a sampling of 5000 random genomic bins. The HepG2 dataset was

used for the plot
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STARR-seq output coverage. We observed that the STARR-seq output coverage data

was overdispersed and fit the best with a negative binomial distribution (Fig. 3a). More-

over, a Q-Q plot of expected coverage against observed coverage further demonstrated

that the negative binomial model provides the best fit for the STARR-seq readout

(Fig. 3b). To demonstrate the generalizability of the method and assumptions, we tested

the model fit against previously published datasets that utilized different STARR-seq

protocols (Additional file 1: Fig. S4). We observed consistent properties of the STARR-

seq data across the different STARR-seq protocols and datasets.

In principle, we can also detect negative enrichments in the STARR-seq output

coverage, suggesting that some candidate fragments can repress the basal transcrip-

tional activity. However, these regions may contain sequences that can destabilize

mRNAs. In addition, additional experiments are necessary to demonstrate that STARR-

seq can reliably detect silencers. Therefore, we focus on positive enrichments in this

study, and we defer to a systemic method specifically designed for identifying silencers

for this task [34].

Peak-calling algorithm

To accurately model the ratio of STARR-seq output fragment coverage (RNA) to input

fragment coverage (DNA) while controlling for potential confounding factors, we ap-

plied a negative binomial regression. The overview of our model is outlined in Fig. 4.

Our model starts by fitting an analytical distribution to the observed fragment coverage

across fixed non-overlapping genomic bins. In doing so, we use covariates to model ex-

pected counts in the form of multiple regression. Subsequently, once a model is fit, we

evaluate the likelihood of obtaining the observed fragment counts and assign P values

using the null negative binomial distribution. In this testing phase, we use flexible gen-

omic bins with a sliding window in order to find enrichment peaks at a higher reso-

lution. Genomic bins with significant enrichments are selected based on their adjusted

P values using multiple testing correction. Finally, peak locations are fine-tuned to the

Fig. 3 STARR-seq output coverage is fit against simulated coverage using three distribution models; negative binomial,

binomial, and Poisson. a Density histogram of simulated distribution against STARR-seq output coverage. b Q-Q plot of

simulated distribution against STARR-seq output coverage. The red solid line represents where the observed count

equals the expected count
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summit of the direct fragment coverage. Note that the adjusted P value only refers to

the unlikelihood of a candidate region being an enhancer by chance while the fold en-

richment can be directly interpreted as a quantitative measure of enhancer activity.

Let Y be a vector of STARR-seq output (RNA) coverage, then yi for 1 ≤ i ≤ n denotes the

number of RNA fragments from a STARR-seq experiment mapped to the ith bin from

the total of n genomic bins. Let ti be the number of input library fragments (DNA)

mapped to the ith bin. We define X to be the matrix of covariates, where xi
! is the vector

of covariates corresponding to the ith bin and xij is the jth covariate for the ith bin.

Negative binomial distribution

A negative binomial distribution, which arises from a Gamma-Poisson mixture, can be

parameterized as follows [35–37] (see “Methods” for derivation).

f Y yijμi; θð Þ ¼
Γ yi þ θð Þ

Γ yi þ 1ð Þ∙Γ θð Þ
∙

θ

θ þ μi

� �θ

∙
μi

θ þ μi

� �yi

ð1Þ

A negative binomial is a generalization of a Poisson regression that allows the vari-

ance to be different from the mean, shaped by the dispersion parameter θ. There are

two alternative forms of parameterization for a negative binomial—NB1 and NB2—

Fig. 4 Overview of STARRPeaker peak-calling scheme. a In contrast to using read depth (gray), fragment

depth (red) offers more precise and sharper STARR-seq output coverage. Fragment inserts are directly

inferred from properly paired reads. b Workflow of STARRPeaker describing how coverage is calculated for

each genomic bin and modeled using a negative binomial regression model. The analysis pipeline can

largely be divided into four steps: (1) binning the genome; (2) calculating coverage and computing

covariate matrix; (3) fitting the STARR-seq data to the NB regression model; and (4) peak calling, multiple

hypothesis testing correction, and adjustment of the center of peaks

Lee et al. Genome Biology          (2020) 21:298 Page 8 of 24



which were first introduced by Cameron and Trivedi [36]. The difference between NB1

and NB2 is in the conditional variance of yi. Assuming yi has mean λi, the general vari-

ance function follows the form ωi = λi + αλi
p, where α is a scalar parameter. NB1 uses

p = 1, whereas NB2 uses the quadratic form of variance with p = 2. We use the most

common implementation of the negative binomial, NB2, hereafter. The variance for the

NB2 model is given as

σ2 ¼ μþ
μ2

θ
ð2Þ

We assume that the majority of genomic bins will have a basal level of transcription,

the expected fragment counts at each ith bin, E(yi), represents the mean incidence, μi,

and the count of RNA fragments Y follows the traditional negative binomial (NB2)

distribution.

E yið Þ ¼ μi
Y∼NB μ; θð Þ

ð3Þ

Negative binomial regression model

The regression term for the expected RNA fragment count can be expressed in terms

of a linear combination of explanatory variables, a set of m covariates ( x!). We use the

input library variable ti as one covariate. For simplicity, we denote ti as x0i hereafter.

lnμi ¼ β0x0i þ β1x1i þ⋯þ βmxmi

μi ¼ expðβ0x0i þ β1x1i þ⋯βmxmiÞ

μi ¼ expð x!
⊺

i βÞ

ð4Þ

Alternatively, instead of using the input library variable ti as one covariate, we can

directly use it as an offset variable. Generally, a fractional observation cannot be mod-

eled using discrete probability. However, an offset variable in a generalized linear model

can be used to correct the response term to behave like a fraction. One advantage of

using the input variable as an “exposure” to the RNA output coverage is that it allows

us to directly model the basal transcription rate (the ratio of RNA to DNA) as a rate re-

sponse variable. This mode could be beneficial in multiple scenarios. First, for a STAR

R-seq dataset in which the guide DNA library only contains discrete elements, direct

modeling of the basal transcription rate would provide a more accurate measure of ac-

tivity, especially in the absence of readouts from adjacent regions. Second, if a user ig-

nores the effect of covariate, this mode simplifies the model and provides peaks purely

based on the ratio of RNA to DNA. More details on this alternative parameterization

are included in the “Methods” section. In our STARRPeaker model, we used four co-

variates; fragment coverage of input genomic libraries, GC content, mappability, and

the thermodynamic stability of genomic libraries.

Maximum likelihood estimation

We fit the model and estimate regression coefficients using the maximum likelihood

method, where log-likelihood function is shown as follows.
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LNB μjy; θð Þ ¼
X

n

i¼1

yi ln
μi

θ þ μi

� �

þ θ ln
θ

θ þ μi

� �

þ ln
Γ yi þ θð Þ

Γ yi þ 1ð Þ∙Γ θð Þ

� �

ð5Þ

Substituting μi with the regression term, the log-likelihood function can be parame-

terized in terms of regression coefficients, β.

LNB βjy; θð Þ ¼
X

n

i¼1

yi ln
exi
!⊺

β

θ þ exi
!⊺

β

0

@

1

Aþ θ ln
θ

θ þ exi
!⊺

β

 !

þ ln
Γ yi þ θð Þ

Γ yi þ 1ð Þ∙Γ θð Þ

� �

ð6Þ

We can determine the maximum likelihood estimates of the model parameters by

setting the first derivative of the log-likelihood with respect to β, the gradient, to zero,

and there is no analytical solution for β. Numerically, we iteratively solve for the regres-

sion coefficients β and the dispersion parameter θ, alternatively, until both parameters

converge.

Estimation of P value

The P value is defined as the probability of observing equal or more extreme value than

the observed value at the ith bin, yi, under the null hypothesis.

P valuei ¼ Pr Y ≥yijHð Þ ð7Þ

As defined earlier, we assume the random variable Y comes from a negative binomial

distribution with the fit mean at the ith bin, μi, as the expected value, and θ as the dis-

persion parameter. Then, we can estimate the P value from the cumulative distribution

function CDF, which is the sum of the probability mass function fY from 0 to yi − 1.

Pr Y ≥yi Hjð Þ ¼ 1 −CDF yi − 1ð Þ ¼ 1 −
X

yi − 1

k¼0

f Y k μi;θ
�

�

�

� �

ð8Þ

Substituting (1) gives

P valuei ¼ 1 −
X

yi − 1

k¼0

Γ k þ θð Þ

Γ k þ 1ð Þ � Γ θð Þ
�

θ

θ þ μi

� �θ

�
μi

θ þ μi

� �k

ð9Þ

Finally, we calculate the false discovery rate using the Benjamini and Hochberg

method [38].

Application of STARRPeaker

We applied STARRPeaker to two whole human genome STARR-seq experiments,

K562 and HepG2, utilizing origin of replication (ORI)-based plasmids [39]. Based on

peaks identified from these datasets, we evaluated the quality and characteristics of the

identified enhancers as well as the performance of the peak caller by comparing to ex-

ternal enhancer resources.
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Initial evaluation of STARRPeaker enhancers

Our model assumes that most genomic regions have a basal level of transcription activ-

ity. To validate that our model is well calibrated under this assumption, we examined

the P value distribution against a theoretical uniform distribution. As expected, most

observed P values followed the null distribution, and the P values only deviated from

expectation for very low values (Additional file 1: Fig. S5).

We processed two biological replicates from each cell type independently and assessed

the correlation between each pair (see “Methods” for detail). We identified 50,389 and 52,

927 candidate enhancers from HepG2 replicates 1 and 2, and by consolidating peaks from

both replicates, we identified 32,929 (65.3% of rep 1; 62.2% of rep2) reproducible candi-

date enhancers from the HepG2 cell line. Similarly, by consolidating 30,194 and 41,810

candidate enhancers from K562 replicates 1 and 2, we identified 20,471 (67.8% of rep 1;

49.0% of rep 2) reproducible candidate enhancers from the K562 cell line (Additional file 2:

Table S1). Overall, we observed high correlation of RNA fragment coverage between two

replicates (PCC = 0.99 for both HepG2 and K562; see Additional file 1: Fig. S6). This re-

sult indicates the correlation is dominated by negatives. Although the total number of

peaks varied between HepG2 and K562, we observed a comparable number of peaks

within the accessible region of the genome. We found 12,019 (36.5%) and 11,420 (55.8%)

candidate enhancers from HepG2 and K562, respectively, within the open chromatin de-

fined by ENCODE DNase-seq hotspots. Consistent with previous findings [39], a substan-

tial fraction of candidate enhancers was epigenetically silenced at the chromatin level.

However, as demonstrated previously using a histone deacetylase inhibitor (HDAC) [16],

these poised enhancers can become functional under a more transcriptionally permissive

environment. Therefore, episomal reporter assays like STARR-seq have the unique advan-

tage of detecting potential enhancer activity independent from chromatin context. We

would like to note that it is important to identify poised enhancers located in heterochro-

matic regions of the genome, which could become functional during developmental or

pathological time courses.

Assessment of robustness and reproducibility of the method

A reliable peak-calling method allows one to identify stable peaks from suboptimal

datasets. To evaluate the robustness of the STARRPeaker method, we generated ran-

dom subsets of HepG2 whole-genome STARR-seq library after aligning the reads and

compared the quality of the peak calls. We subsampled randomly at various rates from

20 to 80% of the total dataset. We found that STARRPeaker was able to reliably identify

approximately 90% of the candidate enhancers (consolidated) using 80% of the original

sequencing library and 80% of the candidate enhancers using 40% of the original se-

quencing library (Additional file 1: Fig. S7A). When we focused on strong enhancer

candidates, approximately 98% of the top 5000 enhancers were recovered using only

60% of the original sequencing library (Additional file 1: Fig. S7B). However, the quality

of the peak calls started to deteriorate when 40% or less were used.

Evaluation of potential orientation bias in candidate enhancers

In general, enhancers are thought to function independent of orientation [40]. How-

ever, the fragment counts in one orientation could be skewed over the other due to
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orientation-specific activities, PCR, or sequencing artifacts. To test for potential

orientation-based biases, we ran a series of binomial tests on the candidate enhancers

we identified and evaluated for possible orientation-specific activities (see “Methods”).

We observed a small fraction of candidate enhancers showing orientation bias [2.58%

for HepG2 (n = 850); 4.49% for K562 (n = 919); FDR ≤ 0.01] in both replicates (Add-

itional file 1: Fig. S8). Furthermore, only a few candidates showed extreme bias [n = 3

for HepG2; n = 4 for K562; > 90% fragments on one strand]. Thus, true orientation-

dependent activities are unlikely in our STARR-seq data, but that the orientation may

have an effect on the efficiency. These findings provide further support that enhancers

function independent of orientation.

Performance comparison to other peak-calling algorithms

We evaluated the performance of STARRPeaker by comparing it to previously used al-

ternative methods, namely BasicSTARRseq and MACS2.

First, we qualitatively assessed the peak-calling algorithms using a simulated dataset

where the ground truth exists. The simulation was primarily designed for positives in

the dataset, and as a result, it emphasizes the sensitivity (as opposed to specificity) of

each method. We created an artificial STARR-seq dataset that contains 28 spike-in

controls; a hybrid of DNA input and RNA output libraries with active elements at pre-

defined loci (Additional file 7: Table S6; see “Methods” for details). All three methods

successfully identified peaks at 28 control regions (Additional file 1: Fig. S9). However,

we noticed that BasicSTARRseq peaks were fragmented and off-centered from the con-

trols due to its limitations of fixed peak size and read-based coverage calculation. As a

result, several false-positive peaks were called adjacent to the controls. We calculated

the sensitivity and specificity of each method using 28 controls as the gold standard

(Additional file 8: Table S7). We considered a result positive if at least 80% of the peak

overlapped with the control, and we assumed the presence of approximately 1000 true

negative regions. Both STARRPeaker and MACS2 had 100% sensitivity and specificity,

whereas BasicSTARRseq had 75% sensitivity and 94.9% specificity.

Second, we quantitatively assessed the peak-calling algorithms using the whole hu-

man genome STARR-seq dataset. After uniformly calling peaks from each method

using the recommended default settings, we evaluated the quality of the candidate en-

hancers identified. We found that both BasicSTARRseq and MACS2 called significantly

more peaks (4- to 20-fold higher) than STARRPeaker (Additional file 5: Table S4).

While it is uncertain how many true enhancers were present in each sample, we had to

ensure that we make a fair comparison across different methods due to the tradeoff be-

tween sensitivity and specificity. An increase in sensitivity is generally achieved at the

expense of a decrease in specificity, as described in receiver operating characteristic

curves. In our context, a method having higher specificity suffers from having less over-

lap with open chromatin and previously identified enhancers from other assays. Sup-

pose each method is generating a set of randomized peaks, then the method with the

greater number of peaks is likely to have more overlap solely by chance. To eliminate

this artifact, we used a uniform P value threshold of 0.001 and subsampled the peaks

down to the same number before the comparison. After uniformly processing the data-

set using each method, we measured the level of epigenetic profile enrichment around
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the peaks. We observed higher enrichment of DNase-hypersensitive sites, as well as

more distinct double-peak patterns of H3K27ac and H3K4me1, using STARRPeaker

compared to BasicSTARRseq or MACS2 (Fig. 5, Additional file 1: Fig. S10). Further-

more, STARRPeaker peaks had significantly higher enrichment of TF binding events

(based on the number of TF ChIP-seq binding sites) compared to the peaks identified

using other methods.

Comparison to previously characterized enhancers

First, we compared the peaks identified by STARRPeaker to previously characterized

enhancers from HepG2 or K562 cell lines by CAGE [41], MPRA [17, 42], and STARR-

seq [19] (Fig. 6, Additional file 3: Table S2). Since most of the previous enhancer assays

were not at a genome-wide scale and were limited in scope to specific loci, we focused

on how many previously characterized enhancers were recovered using different

methods. Overall, we observed a higher fraction of STARRPeaker peaks overlapping

with external datasets compare to other methods. Moreover, we found higher overlaps

when peaks from both replicates were merged, due to fewer but more precise candidate

enhancers from merging replicates. However, we noticed reduced agreement across dif-

ferent types of enhancer assays. Low overlap between assays may arise from different

formats or layouts of reporter plasmids, such as differing enhancer cloning sites or pro-

moters, or differences in the complexity of the screening library. Furthermore, CAGE is

Fig. 5 Enrichment of epigenetic signals around peaks in HepG2. All peaks were centered at the summit, uniformly

thresholded using P value < 0.001, and 10,000 peaks were randomly selected. Aggregated read depth at 2000 bp

upstream and downstream were plotted for a DNase I hypersensitive sites (DHS), b H3K27ac, c H3K4me1, and d

aggregated TF ChIP-seq profile. For DNase-seq, enrichment indicates unique read depth. For histone ChIP-seq,

enrichment indicates fold change over control. For TF ChIP-seq aggregate, enrichment indicates the number of

TFs binding
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an entirely different assay from episomal reporter assays like MPRA and STARR-seq,

with enhancers defined based on bidirectional transcripts originating from an eRNA.

Second, we examined the nine distal enhancers from the GATA1 and MYC loci char-

acterized in depth by a CRISPRi tiling screen [43]. Using the nine enhancers as the

ground truth and assuming there are approximately 1300 potential negative elements

in the span of a 1.3-Mb genomic sequence, we performed sensitivity and specificity

analyses of three competing methods. We think this is a substantial dataset to bench-

mark the performance as it provides an orthogonal line of evidence for true in vivo en-

hancers and highlights that the most genomic regions are dominated by negatives. As

speculated, we found that STARRPeaker had the highest specificity. While both Basic-

STARRseq and MACS2 identified a few more enhancers, their false-positive rate was

much higher than that of STARRPeaker (Additional file 1: Fig. S11, Additional file 9:

Table S8). Furthermore, upon close examination of three enhancers that were missed

by STARRPeaker, we observed the coverage was much lower than other regions identi-

fied as enhancers.

Application to external STARR-seq datasets

To ensure that STARRPeaker can be generally applied to different variants of STARR-

seq assays, we tested STARRPeaker on previously published STARR-seq datasets.

First, we applied STARRPeaker to the whole-genome ORI-STARR-seq dataset on

HeLa-S3 [39] and assessed the quality of the peaks identified. Consistent with the previ-

ous claim that IFN-I signaling may induce false-positive enhancers, we identified more

peaks in untreated HeLa-S3 samples (n = 28,381) compared to inhibitor-treated samples

(n = 16,150). Furthermore, peaks from untreated samples had lower enrichment of

chromatin accessibility (DNase-seq) than those from inhibitor-treated samples, sup-

porting that TBK1/IKK/PKR inhibition reduces false-positive enhancer signals related

Fig. 6 Comparison of peaks using an external dataset for a HepG2 or b K562 cell lines. Peaks identified

from STARRPeaker as well as BasicSTARRseq and MACS2 were compared against a published dataset. For a

fair comparison, all peaks were centered at the summit, uniformly thresholded using P value < 0.001, and

20,000 peaks were randomly drawn from peaks identified by each peak caller using the recommended

settings. The fraction of overlap was computed for each replicate. We used the total number of peaks in

each dataset as the denominator. We considered it an overlap when at least 50% of peaks intersected

each other
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to IFN-I signaling (Additional file 1: Fig. S12A). Moreover, STARRPeaker recovered

77.5% (n = 7451) of published peaks, which were called using BasicSTARRseq and then

further shortlisted using a stringent threshold (P value 1E−5 with corrected enrichment

≥ 4). When we compared the quality of STARRPeaker peaks (n = 16,150) to the pub-

lished post hoc filtered peaks (n = 9610), we found that STARRPeaker peaks were

highly enriched with chromatin accessibility signals despite having 6540 additional

peaks from the same HeLa-S3 dataset (Additional file 1: Fig. S12B). When we applied

the same post hoc filtering approach to STARRPeaker peaks, the chromatin accessibil-

ity enrichment was further improved (Additional file 1: Fig. S12C).

Second, we tested if STARRPeaker can be reliably applied to captured STARR-seq

datasets (Cap-STARR-seq). We applied STARRPeaker to a previously characterized

GM12878 STARR-seq dataset based on an ATAC-seq-capture technique called HiDRA

[44] and compared its performance with published results. The HiDRA dataset was re-

ported to have ~ 65,000 regions with enhancer function. In the STARRPeaker run, we

identified 52,857 regions with significant enhancer activities from the five replicates

they produced. Approximately half of STARRPeaker peaks overlapped with the pub-

lished results (n = 26,318). While it is debatable to claim that one method is superior to

the other, this result clearly demonstrates that STARRPeaker can be applied to the

Cap-STARR-seq dataset.

Third, we further evaluated the performance of the peak-calling methods by applying

STARRPeaker and two other peak-calling methods to another published Cap-STARR-

seq dataset on K562 [19]. The dataset covers approximately 91% of the surrounding 3

Mb of the MYC locus. Consistent with the earlier analysis, we observed that STAR

RPeaker is highly specific and identifies fewer candidate enhancers (n = 26) compared

to the other methods (BasicSTARRseq n = 223; MACS2 n = 136). Furthermore, a four-

way comparison (STARRPeaker, BasicSTARRseq, MACS2, and published peaks)

showed that all of the STARRPeaker peaks overlapped with peaks from other methods

but not the other way around (Additional file 1: Fig. S13). These results indicate that

STARRPeaker is more robust and reliable at identifying reproducible candidate en-

hancers from various STARR-seq datasets than previous methods.

Conclusions

In summary, we developed a reliable peak-calling analysis pipeline named STARRPea-

ker that is optimized for large-scale STARR-seq experiments. To illustrate the utility of

our method, we applied it to two whole human genome STARR-seq datasets from

K562 and HepG2 cell lines, utilizing ORI-based plasmids.

STARRPeaker has several key improvements over previous approaches including (1)

precise and efficient calculation of fragment coverage; (2) accurate modeling of the

basal transcription rate using negative binomial regression; and (3) accounting for po-

tential confounding factors, such as GC content, mappability, and the thermodynamic

stability of genomic libraries. We demonstrate the superiority of our method over pre-

viously used peak callers, supported by strong enrichment of epigenetic marks relevant

to enhancers and overlap with previously known enhancers.

To fully understand how noncoding regulatory elements can modulate transcriptional

programs in human, STARR-seq active regions must be further characterized and vali-

dated within different cellular contexts. For example, recent applications of CRISPR-
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dCas9 to genome editing have allowed researchers to epigenetically perturb and test

these elements in their native genomic context [45, 46]. The next step for CRISPR-

based functional screens is to overcome the current limitation of a small scale by lever-

aging barcodes and single-cell sequencing technology [47]. In the meantime, we envi-

sion that the STARRPeaker framework could be utilized to detect and quantify

enhancers at the whole-genome level, thereby aiding in prioritizing candidate regions

in an unbiased fashion to maximize functional characterization efforts.

Methods

Cell culture

We cultured K562 cells (ATCC) in IMDM (Gibco #12440) supplemented with 10%

fetal bovine serum (FBS) and 1% pen/strep and maintained in a humidified chamber at

37 °C with 5% CO2. We cultured HepG2 cells (ATCC) in EMEM (ATCC #30-2003)

supplemented with 10% FBS and 1% pen/strep, maintained in a humidified chamber at

37 °C with 5% CO2.

Generating an ORI-STARR-seq input plasmid library

We sonicated human male genomic DNA (Promega #G1471) using a Covaris S220

sonicator (duty factor, 5%; cycle per burst, 200; 40 s) and ran it on a 0.8% agarose gel to

size-select 500-bp fragments. After gel purification using a MinElute Gel Extraction kit

(Qiagen), we end-repaired, ligated custom adaptors, and PCR-amplified DNA fragments

using Q5 Hot Start High-Fidelity DNA polymerase (NEB) (98 °C for 30 s; 10 cycles of

98 °C for 10 s, 65 °C for 30 s, and 72 °C for 30 s; 72 °C for 2 min) to add homology arms

for Gibson assembly cloning.

We used AgeI-HF (NEB) and SalI-HF (NEB) to linearize the hSTARR-seq_ORI plas-

mid (gift from Alexander Stark; Addgene plasmid #99296) and cloned the PCR prod-

ucts into the vector using Gibson Assembly Master Mix (NEB); we set up 60 replicate

reactions to maintain complexity. We purified the assembly reactions using SPRI beads

(Beckman Coulter), dialyzed them using Slide-A-Lyzer MINI dialysis devices (Thermo

Scientific), and concentrated them using an Amicon Ultra-0.5 device (Amicon). We

transformed the reaction into MegaX DH10BTM T1 electrocompetent cells (Thermo

Fisher Scientific) (with 25 replicate transformations to maintain complexity) and let

them grow in 12.5-L LB-Amp medium until they reached an optical density of ~ 1.0.

We extracted the plasmids using a Plasmid Gigaprep Kit (Qiagen) and dialyzed the

plasmid prep using Slide-A-Lyzer MINI dialysis devices before electroporation.

Electroporation-mediated transfection of ORI-STARR-seq input plasmid library into K562

and HepG2 cell lines

We electroporated the ORI-STARR-seq library using an AgilePulse Max (Harvard

Apparatus) and generated two biological replicates for each cell line. For K562 cells, we

electroporated 5.6 mg of input plasmid library into 700 million cells per biological repli-

cate by delivering three 500-V pulses (1 ms duration with a 20-ms interval). For HepG2

cells, we electroporated 8mg of input plasmid library into one billion cells in one repli-

cate, and 5.6 mg into 700 million cells in another replicate by delivering three 300-V

pulses (5 ms duration with a 20-ms interval).
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Generation of an Illumina sequencing library

Output RNA library

We harvested cells 24 h after electroporation and extracted total RNA using an

RNeasy Maxi kit (Qiagen). We further isolated polyA-plus mRNA using Dyna-

beads® Oligo (dT) kit (Thermo Fisher Scientific), treated it with TURBO DNase

(Invitrogen), and purified the reaction using an RNeasy MinElute Kit (Qiagen). We

synthesized cDNA using SuperScript III (Thermo Fisher Scientific) with a custom

primer that specifically recognizes mRNAs that had been transcribed from the

ORI-STARR-seq library. After reverse transcription, we treated the reactions with a

cocktail of RNase A and RNase T1 (Thermo Fisher Scientific). We split cDNA

samples into 160 replicate sub-reactions, and PCR-amplified each sub-reaction with

a primer with a unique index (helping to identify PCR duplicates) using Q5 Hot

Start High-Fidelity DNA polymerase (NEB) with the following program: 98 °C for

30 s; cycles of 98 °C for 10 s, 65 °C for 30 s, 72 °C for 30 s (until they reached mid-

log amplification phase; we cycled 18 cycles for K562 Rep.1; 16 cycles for K562

Rep. 2; 18 cycles for HepG2 Rep. 1; and 15 cycles for HepG2 Rep2); 72 °C for 2

min). After PCR, we re-combined all sub-reactions into one and purified it with

Agencourt Beads. We generated 100-bp paired-end reads for each biological repli-

cate on an Illumina Hiseq4000 at the University of Chicago Genome Facility.

Input DNA library

We PCR-amplified a total of 200 ng of input plasmid library (in 16 replicate reactions)

using Q5 Hot Start High-Fidelity DNA polymerase (NEB) with the following program:

98 °C for 30 s; 4 cycles of 98 °C for 10 s, 65 °C for 30 s, and 72 °C for 20 s; 8 cycles of

98 °C for 10 s and 72 °C for 50 s; 72 °C for 2 min. After PCR, we combined all products

into one and purified it with Agencourt Beads. We generated 100-bp paired-end reads

on an Illumina Hiseq4000 at the University of Chicago Genome Facility.

Sequencing and preprocessing

For each of 160 replicates, paired-end sequencing reads were aligned to the human refer-

ence genome GRCh38 downloaded from the ENCODE portal (ENCSR425FOI) using

BWA-mem (v0.7.17). Alignments were filtered against unmapped, secondary alignments,

mapping quality score less than 30, and PCR duplicates using SAMtools (v1.9) and Picard

(v2.9.0). All of the replicates were pooled and sorted for downstream analysis.

Fitting of distributions to the STARR-seq dataset

To build a statistical model that best describes the STARR-seq readout, we tested fit-

ting of various univariate distributions to the output coverages of the STARR-seq data-

set. To eliminate the influence of input coverage on output coverage, we subsampled

bins with an input coverage value of 20 (approximately a median input coverage for

both the HepG2 and K562 datasets) and used their output coverage values for the

underlying observed distribution. We fit binomial, Poisson, and negative binomial dis-

tributions and estimated parameters using MLE. For binomial distributions, we as-

sumed the number of the trial as the sum of the STARR-seq input and output

coverage, and the probability of success as the sum of the STARR-seq output coverage
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divided by the total input and output coverage, as described previously [15]. The Pois-

son distribution is described by a single parameter λ, whereas the negative binomial

distribution is described by both μ and the shape parameter θ. For example, we found

λ = 41.6, μ = 41.6, and θ = 8.9 for the HepG2 dataset. Based on estimated parameters,

we plotted the expected distribution quantiles from 0 to 100 percentiles against the ac-

tual observed quantiles. We plotted a straight diagonal line to show how well each dis-

tribution fit with the actual observed data.

Negative binomial distribution

A negative binomial distribution, which arises from Gamma-Poisson mixture, can be

parameterized for y ≥ 0 as follows.

Pr Y ¼ yijμi; θð Þ ¼ f Y yi; μi; θð Þ ¼
yi þ θ − 1
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Alternative parameterization of negative binomial regression using a rate model

Alternative parameterization allows STARR-seq data to be modeled as a rate model. In

contrast to using input coverage as one of the covariates, we can consider it as “expos-

ure” to output coverage. This “trick” allows us to directly model the basal transcription

rate (the ratio of RNA to DNA) as a rate response variable. We defined the transcrip-

tion rate (RNA to DNA ratio) as a new variable, πi.
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yi
ti
¼ πi

If we assume the majority of genomic bins will have the basal transcription rate, we

can model the transcription rate at each ith bin following the traditional negative bino-

mial (NB2) distribution.

πi � NB
μi
ti

; θ

� �

The expected basal transcription, E(πi), becomes the mean incidence rate of yi per

unit of exposure, ti.

E
yi
ti

� �

¼
μi
ti

By normalizing μi by ti, we are modeling a rate instead of a discrete count using the

negative binomial distribution. The regression term for the expected transcription rate

can be expressed in terms of a linear combination of explanatory variables, j covariates

( x!).

ln
μi
ti
¼ β1xi1 þ β2xi2 þ⋯þ β jxij

Rearranging in terms of the expected value of y, or μ, gives

lnμi − ln ti ¼ β1xi1 þ β2xi2 þ⋯þ β jxij

lnμi ¼ ln ti þ β1xi1 þ β2xi2 þ⋯þ β jxij

μi ¼ exp ln ti þ β1xi1 þ β2xi2 þ⋯þ β jxij

� �

The natural log of ti on the RHS ensures μi is normalized in the model, acting as an

offset variable. In STARRPeaker software, we allow users to optionally choose this al-

ternative rate model (implemented as “mode 2”) instead of the default covariate model

described in the main text. This alternate model is useful if constant basal transcription

is expected throughout the genome or if covariates are available for directly modeling

the basal transcription rate π.

Evaluation of potential orientation bias

For all enhancer peaks identified from both the HepG2 and K562 cell lines, we evalu-

ated if there was an overrepresentation of fragments in a specific orientation. If there is

no orientation bias, the STARR-seq active region should be equally represented by both

forward- and reverse-stranded fragments. We performed a binomial test for the statis-

tical significance on how unlikely it is to have a fragment distribution skewed on one

strand.
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where p is 0.5 (equal chance of being either forward or reverse stranded), n is number

of all supporting fragments, and k is the number of forward-stranded fragments. We

adjusted P values using FDR (BH) and used 0.01 as a cutoff. We ran binomial tests for

both replicates. To call a region orientation-biased, we ensured that genomic DNA

fragments were equally represented in both forward and reverse strands, and we

checked for significant strand bias in both replicates. If strand bias is already present in

a genomic DNA library, it is more likely that the bias will be due to amplification by

PCR rather than being a result of orientation-specific activity.

BasicSTARRseq

We used BasicSTARRseq R package version 1.10.0 downloaded from Bioconductor

(https://bioconductor.org/packages/release/bioc/html/BasicSTARRseq.html). We used

the default settings as described in the software manual, except for disabling deduplica-

tion (minQuantile = 0.9, peakWidth = 500, maxPval = 0.001, deduplicate = FALSE,

model = 1), to call peaks.

MACS2

We used MACS2 version 2.1.1 [23] with the optimal parameters suggested for a human

STARR-seq dataset (-f BAMPE -g hs). We also used an option to allow duplicates in

read (--keep-dup all), since our STARR-seq dataset was multiplexed. We called peaks

with an FDR cutoff of 0.05 (-q 0.05), as recommended by the author of the software.

Calculating folding free energy

We used the LinearFold [48] algorithm to estimate the folding energy of each genomic

bin iteratively across the whole genome. Specifically, we used the Vienna RNAfold

thermodynamic model [49] with parameters from Mathews et al. [50]. We imple-

mented a parallel processing scheme to leverage multicore processors to expedite the

calculation of folding free energy.

Recommended parameters for the model

We determined the model parameters from the experimental design of the STARR-seq

assay. Our STARR-seq input library was based on DNA fragments that were size-

selected on an agarose gel for 500 bp. Therefore, we defined the bin size to be 500 bp

with a step size of 100 bp. Furthermore, we chose the minimum and maximum tem-

plate size to be 200 and 1000 bp, respectively, to recover RNA generated from the

STARR-seq input library. We recommend setting the minimum template size no less

than 200 bp, as a shorter template can become more prone to PCR bias during sequen-

cing. Based on the sequencing depth, we determined the minimum coverage for the

whole genome to be 10. To guide users on how to choose these parameters, we provide

a sensitivity analysis of how changing the parameters affects the results (Additional file 6:

Table S5). Overall, more than 80% of peaks were consistent regardless of varying the

parameters. We found that changing the bin size affected the average peak size and
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changing the step size affected the resolution. However, we found that using a 50-bp

step size approximately doubled the processing time.

Simulation of the STARR-seq dataset

We created an artificial STARR-seq dataset where the ground truth exists. We used the

original STARR-seq input library as the base of the simulation. We focused on an ap-

proximately 2.6-Mbp region spanning the MYC locus (chr8:127128459-129731914).

We artificially selected 28 control regions equally sized at 500 bp. Among these control

regions, we included coordinates of four in vivo MYC enhancers identified from Fulco

et al. (MYC-e1, chr8:127898897-127898963; MYC-e2, chr8:127960392-127960502;

MYC-e5, chr8:129581781-129582461; MYC-e6, chr8:129689361-129689694) [43]. We

selectively generated paired-end reads that only support control regions. Since we ex-

pect the background regions to have a basal level of transcription, we matched the read

distribution of the input library to make the transcription rate equal to 1. All 28 control

regions were then merged to create an artificial STARR-seq output library, and finally,

the read coverage was visually inspected to ensure that it resembles one from the actual

STARR-seq dataset.
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Additional file 1: Supplementary Figure S1. Comparison of STARR-seq output coverage calculated using the

center of the fragment to using the start position of the sequencing read. (A) Distribution of shift in final peak

locations resulting from using two alternative coverage counting schemes in HepG2. Comparison of (B) overall fold

enrichment level, (C) P value, and (D) size of resulting peaks. Supplementary Figure S2. (Shadow figure of Fig. 2)

Correlation of STARR-seq output coverage with covariates (STARR-seq input coverage, GC content, mappability, and

RNA structure) in various STARR-seq datasets, including (A) K562, (B) HeLa-S3 untreated WG-STARR-seq (Muerdter

2018), (C) GM12878 HiDRA ATAC-STARR-seq (Wang 2018), and (D) K562 Cap-STARR-seq (Rathert 2015). PCC: Pearson

Correlation Coefficient. Supplementary Figure S3. Contribution of covariates and model selection. (A) Q-Q plots

of residuals for various models with different sets of covariates showing the goodness of fit. (B) Both AIC and BIC

measure relative qualities of statistical models considering the trade-off between the goodness of fit and the sim-

plicity of the model. DNA: genomic DNA fragment coverage; GC: GC-bias; MAP: mappability, FOLD: folding free en-

ergy; AIC: Akaike information criterion; BIC: Bayesian information criterion. Supplementary Figure S4. (Shadow

figure of Fig. 3) Fitting of various STARR-seq datasets using three distribution models: negative binomial, binomial,

and Poisson. Datasets included (A) K562, (B) HeLa-S3 untreated WG-STARR-seq (Muerdter 2018), (C) GM12878 HiDRA

ATAC-STARR-seq (Wang 2018), and (D) K562 Cap-STARR-seq (Rathert 2015). Supplementary Figure S5. Q-Q plots

of the P value distribution. (A) HepG2 and (B) K562. The red line is a reference line where the expected P values

match the observed ones. Supplementary Figure S6. Correlation of RNA fragment coverage between replicates

for (A) HepG2 or (B) K562 cell lines. Pairwise coverage was calculated using 1000 bp bins across the genome. The

X- and Y-axis represent the natural log of fragment counts. A pseudo count of 1 was added to the fragment counts

for plotting only. Bins with abnormally high fragment counts were removed to avoid inflation of the Pearson cor-

relation. We used the median absolute deviation method with a scaling factor of 200 to filter extremely large devia-

tions from the median. Supplementary Figure S7. Comparison of peaks called from subsamples of the original

STARR-seq library, highlighting the robustness of STARRPeaker using (A) the whole dataset and (B) 5000 subset of

peaks. Supplementary Figure S8. Orientation biases analysis for (A-B) HepG2 or (C-D) K562 cell lines. The ratio

between forward and reverse stranded fragments was tested for statistical significance using a binomial test. Or-

ange dots represent peaks with significant strand bias (FDR q-value < 0.01). Supplementary Figure S9. Compari-

son of peaks identified by various methods using a simulated STARR-seq dataset containing 28 spike-in control

regions. Supplementary Figure S10. Enrichment of epigenetic signals around peaks in K562. All peaks were cen-

tered at the summit, uniformly thresholded using P value < 0.001, and 10,000 peaks were randomly selected. Ag-

gregated read depth at 2000 bp upstream and downstream were plotted for (A) DNase I hypersensitive sites (DHS),

(B) H3K27ac, (C) H3K4me1, and (D) aggregated TF ChIP-seq profile. For DNase-seq, enrichment indicates unique

read depth. For histone ChIP-seq, enrichment indicates fold change over control. For TF ChIP-seq aggregate, en-

richment indicates the number of TFs binding. Supplementary Figure S11. (A-C) Genome browser session com-

paring STARRPeaker to other peak-calling methods at validated distal enhancers from CRISPRi tiling screen.

Supplementary Figure S12. Application of STARRPeaker on an external HeLa-S3 dataset. (A) Comparison of chro-

matin accessibility (DNase-seq) for STARRPeaker peaks between untreated and inhibitor-treated samples. (B) Com-

parison of STARRPeaker peaks to published results without post-hoc filtering. STARRPeaker found 6540 additional

peaks that were equally enriched with chromatin accessibility signals. (C) Comparison of STARRPeaker peaks to

published results with the same post-hoc filtering approach (P-value ≤1E-5 with corrected enrichment ≥4).
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Supplementary Figure S13. Venn diagram for four-way comparison of peaks identified by various methods using

a published dataset from Rathert et al. 2015.
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Additional file 5: Supplementary Table S4. Comparison of peaks identified from various peak callers (STAR

RPeaker, BasicSTARRseq, and MACS2).

Additional file 6: Supplementary Table S5. Sensitivity analysis of using alternative parameters against default
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