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Abstract: Factorial and fractional factorial designs are widely used for assessing the

impact of several factors on a process. Frequently, restrictions are placed on the

randomization of the experimental trials. The randomization structure of such a

factorial design can be characterized by its set of randomization defining contrast

subspaces. It turns out that in many practical situations, these subspaces will

overlap, thereby making it impossible to assess the significance of some of the

factorial effects. In this article, we propose new designs that minimize the number

of effects that have to be sacrificed. We also propose new designs, called stars, that

are easy to construct and allow the assessment of a large number of factorial effects

under an appropriately chosen overlapping strategy.
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1. Introduction

In the initial stages of experimentation, factorial designs with p independent

factors, each at q levels (usually q = 2), are commonly used to help assess the

impact of several factors on a process. Ideally, one performs the experimental

trials in a completely random order. Complete randomization of trials is often in-

feasible, and randomization restrictions are imposed. Indeed, in many situations

different factors must be held fixed at each stage of the experimental process

(e.g., see Mee and Bates (1998); Vivacqua and Bisgaard (2004); Bingham et al.

(2008)). In the analysis of the such experiments, there are variance components

associated with each stage of randomization. Preferably the experiment can be

designed so that the variance components have as little impact as possible on

the variance of the effect estimators. Designs aimed at minimizing the impact

of randomization restrictions on the analysis of multistage factorial experiments

are the primary focus of this work.

Bingham et al. (2008) proposed using randomization defining contrast sub-

groups (RDCSGs) to describe the randomization structure of multistage factorial
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designs (e.g., blocked designs, split-plot designs, strip-plot designs, split-lot de-

signs). This representation can be viewed as a generalization of a block defining

contrast subgroup (see, e.g., Sun, Wu and Chen (1997)). Recently, Ranjan, Bing-

ham and Dean (2009) developed a finite projective geometric formulation of the

RDCSGs, called randomization defining contrast subspaces (RDCSSs), that helps

establish the existence and construction of such designs in practical settings.

The RDCSSs indicate which effects are impacted by the variance from each

stage of randomization. It is important to note that each point in a subspace

is associated with a factorial effect. So, for non-overlapping subspaces, each

effect appearing in a RDCSS has a variance that is a linear combination of the

replication error variance and the variance component associated with that stage

of randomization. On the other hand, when RDCSSs are not disjoint, the effects

in the overlap will have variance that is a linear combination of all of the variances

associated with the overlapping subspaces. As a result, the distribution of an

effect estimator depends on its presence in different RDCSSs.

The selection of a design is usually based on properties from a data analysis

viewpoint. A common strategy for assessing the significance of factorial effects

in unreplicated factorial designs is to use half-normal plots (Daniel (1959)) with

the restriction that the effects appearing on the same plot must have the same

error variance. In the current setup, the RDCSSs indicate which effects have the

same variance and thus can appear on the same half-normal plot.

In this article, we focus on unreplicated experiments. However, if it is possi-

ble to replicate an experiment, one has a few choices. First, the experiment could

be replicated and the usual variance components analysis can be conducted. Un-

less the number of replicates is large, one would likely opt to use a half-normal

plot analysis since the error degrees of freedom would be small. Instead of repli-

cating the design, one has the option of performing a larger fractional factorial

design, perhaps with higher resolution. In this case, one would also use the visual

method to identify the significant effects.

A desirable feature for the randomization structure of an unreplicated facto-

rial design is to have disjoint RDCSSs that are large enough to construct useful

half-normal plots. However, it is not always feasible to construct a desired num-

ber of disjoint RDCSSs that satisfy the size requirement (Ranjan, Bingham and

Dean (2009)). Here we focus on regular (fractional) factorial designs with ran-

domization restrictions when an overlap among the distinct RDCSSs cannot be

avoided. Two RDCSSs Si and Sj are said to be distinct if (Si ∪ Sj)\(Si ∩ Sj)

is nonempty. We propose two new classes of factorial designs with randomiza-

tion restrictions: (a) when the overlap among the RDCSSs is minimized, and

(b) when overlap among the distinct RDCSSs is used as an advantage for con-

structing designs that allow for the assessment of a larger number of the factorial

effects.
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The paper is organized as follows. We introduce the notation necessary to

establish the relationship between randomization restrictions and RDCSSs in

Section 2. In Section 3, we propose adapting results from a projective geometric

structure called a minimal (t−1)-cover of PG(p−1, q) to construct (regular frac-

tional) factorial designs with randomization restrictions. An overlapping strategy

is proposed in Section 4 that leads to a new geometric structure we call a star

in PG(p − 1, q). The factorial designs constructed from stars allow for the as-

sessment of a relatively large number of effects. The existence and construction

of factorial designs based on stars are developed in Section 5. In Section 6, we

establish the relationship between stars and the minimal covers of PG(p − 1, q).

We conclude the paper with a brief discussion in Section 7.

2. Background Review and Notation

Throughout the article, q is a prime or prime power. Let b be a p-dimensional

pencil over the Galois field GF (q) (e.g., Dey and Mukerjee (1999)). For non-zero

α ∈ GF (q), b and αb represent the same q − 1 degrees of freedom pencil. A

pencil b represents an r-factor interaction if b has exactly r nonzero elements.

Denote the (p− 1)-dimensional finite projective geometry, given by the set of all

p-dimensional pencils (or points) over GF (q), as PG(p − 1, q). In this sense, we

often refer to P = PG(p − 1, q) as the effect space. For q = 2, a pencil b with r

nonzero elements uniquely corresponds to an r-factor interaction in a 2p factorial

design with a single degree of freedom. Thus, the set of all effects (excluding

the grand mean) of a two-level factorial design with p independent factors is

equivalent to the set of all points in PG(p − 1, 2).

The restrictions on the randomization of experimental runs are equivalent

to grouping experimental units into sets of trials. We follow the usual approach

of forming these sets for factorial experiments by using independent pencils to

define the groupings. Blocked factorial designs, for example, use qt (t < p)

combinations of t independent pencils to divide qp treatment combinations into

qt blocks. These factorial effects are then completely confounded with the block

effects and represent t randomization restriction factors. The set S of all non-

null pencils formed from these t randomization restriction factors in P forms a

(t− 1)-dimensional projective subspace of P. We call such a subspace a RDCSS.

For a q-level factorial design with p independent factors and m stages of

randomization, the m RDCSSs can be denoted by the projective subspaces

S1, . . . , Sm contained in P. For each i, let Si be generated from ti independent

pencils (0 < ti < p), so that |Si| = (qti − 1)/(q − 1). It turns out that the exis-

tence of fractional factorial designs with randomization restrictions is equivalent

to the existence of distinct projective subspaces Si’s in P that accommodate the
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desired randomization structure. It is not easy to establish the existence of such

designs that can be analyzed effectively (Ranjan, Bingham and Dean (2009)).

For a factorial design with m stages of randomization and RDCSSs denoted

by Si, i = 1, . . . ,m, the error vector, ε, in the linear regression model is a sum of

m + 1 error terms, ε = ε0 + ε1 + · · · εm. Here, ε0 denotes the observational error

vector, and εi (1 ≤ i ≤ m) is the error vector associated with the randomization

restriction characterized by Si. Consequently, if a pencil belongs to more than

one RDCSSs (say, in Si and Sj), then the distribution, and hence the variance

of the estimator of any contrast representing the pencil, depend on a linear

combination of the variance associated with ε0, εi and εj (Ranjan, Bingham

and Dean (2009)). This necessitates separate analyses for pencils in Si ∩ Sj and

those in Si\(Si∩Sj). From this perspective, factorial designs with randomization

restrictions ideally have disjoint RDCSSs. Ranjan, Bingham and Dean (2009)

show that the existence of disjoint RDCSSs of equal size is equivalent to that of

full or partial (t − 1)-spreads.

A (full) (t − 1)-spread of P is a collection of (t − 1)-dimensional subspaces

of P which partition P, whereas a partial (t − 1)-spread of P is a collection of

(t − 1)-dimensional subspaces of P that are pairwise disjoint. The existence of

full and partial (t − 1)-spreads have been studied in André (1954) and Eisfeld

and Storme (2000). For practical use, however, mere existence is not enough,

one needs to find the designs. To this end, Ranjan, Bingham and Dean (2009)

proposed a methodology for constructing designs with disjoint RDCSSs, not nec-

essarily of the same size. We focus here on designs where the projective subspaces

corresponding to the RDCSSs are such that overlap among them is unavoidable.

3. Minimal Overlap and (t − 1)-covers

In this section, we adapt results used to study a geometric structure, called

a (t−1)-cover of PG(p−1, q), to construct designs that maximize the number of

distinct subspaces and minimize the overlap among the intersecting subspaces for

constructing distinct RDCSSs. The resulting subspaces are used to set the levels

of each factor at each stage of randomization, and also to identify which pencils

are estimated with the same error variance. Our aim is to construct designs that

are easy to analyze and allow the significance assessment of lower order effects.

Definition 1. A (t− 1)-cover, C, of P = PG(p− 1, q) is a set of distinct (t− 1)-

dimensional subspaces of P which cover all the points of P.

A (t− 1)-cover is called minimal if no other (t− 1)-cover contains a smaller

number of subspaces. Although the subspaces forming a minimal cover may

overlap, the size of the overlap is often small.
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Since effects appearing in the overlap have a different error variance than

effects not in the overlap itself, it is often preferable to minimize the degree

of intersection among the subspaces (we argue later that there are sometimes

advantages to not doing so). This makes minimal covers attractive for designs

with randomization restrictions where overlap among the RDCSSs is unavoidable.

Remarks. (i) For a half-normal plot analysis, the Si’s have to be reasonably

large (e.g., see Bingham et al. (2008)). For instance, in 2-level factorial designs,

the size of each Si should be at least 23−1 (i.e., ti ≥ 3). (ii) Factorial designs with

randomization restrictions are often larger than completely randomized designs.

Since, at each stage of randomization, multiple experimental units are processed

simultaneously. For example, Jones and Goos (2009) used a 128-run design to

analyze a cheese-making experiment, and Mee and Bates (1998) proposed 64-

wafer and 81-wafer designs for an integrated circuit experiment.

Example 1 presents a scenario where the overlap among the RDCSSs cannot

be avoided, and a minimal (t − 1)-cover is used to construct a good design.

Example 1. Following Bingham et al. (2008), consider a 25 factorial experiment

performed in three stages to identify the factors suspected to have a significant

impact on a specific plutonium alloy. The three stages of randomization were

characterized by S1 ⊃ {A,B}, S2 ⊃ {C}, and S3 ⊃ {D,E}, where A,B repre-

sented the casting mechanism for creating a type of plutonium alloy, and C,D,E

were the heat treatments applied in the manufacturing process.

For a half-normal plot analysis we need |Si| ≥ 7 for all i. Using a result

from Ranjan, Bingham and Dean (2009), we find that any two distinct Si share

at least one effect. Bingham et al. (2008) also reached this conclusion after an

exhaustive search.

The design proposed by Bingham et al. (2008), is characterized by S1 =

〈A,B,ABCDE〉, S2 = 〈C,AD,ABCDE〉 and S3 = 〈D,E,ABCDE〉 where, for

instance, 〈A, B,ABCDE〉 is the subspace spanned by the pencils representing

the factorial effects A, B and ABCDE.

Note that S1, S2, S3, together with S4 = 〈AC,AE,ABCDE〉 and S5 =

〈BC,BD,ABCDE〉, form a minimal 2-cover of P = 〈A,B,C,D,E〉. That is, the

design proposed in Example 1 can be constructed without using an exhaustive

computer search. The following result specifies the size of such a minimal cover.

Lemma 1 (Eisfeld and Storme (2000)). A minimal (t − 1)-cover of P =

PG(p−1, q) contains qs [(qkt − 1)/qt − 1]+1 distinct (t−1)-dimensional subspaces

of P, where p = kt + s, 0 < s < t < p, and k ≥ 1.
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It turns out that for any t < p, there always exists a minimal (t − 1)-

cover with qs [(qkt − 1)/(qt − 1)] + 1 distinct (t− 1)-dimensional subspaces of P.

This is indeed very useful for design construction. Next, we outline a recursive

technique for constructing a minimal (t − 1)-cover, C, of P = PG(p − 1, q).

The proposed method shares features with the construction of a maximal partial

(t − 1)-spread (see Eisfeld and Storme (2000) and Ranjan, Bingham and Dean

(2009) for details).

Construction: A minimal (t−1)-cover of P consists of qs [(qkt − 1)/(qt − 1)]−

qs disjoint (t−1)-dimensional subspaces of P if k > 1, and qs +1 distinct (t−1)-

dimensional subspaces that overlap on a common (t−s−1)-dimensional subspace.

The construction of qs [(qkt − 1)/(qt − 1)] − qs disjoint elements of the minimal

cover C begins by defining a sequence of indices wi = it + s for i = 1, . . . , k − 1,

and setting P ′

k = P. The recursive algorithm starts from i = k − 1 and goes

down to i = 1.

1. Construct a projective space Pi = PG(2wi − 1, q) that contains P ′

i+1.

2. Construct a (wi − 1)-spread S ′

i of Pi that contains an (wi − 1)-dimensional

subspace, Ui, of P ′

i+1.

(a) Construct a (wi − 1)-spread S ′′

i of Pi as in Ranjan, Bingham and Dean

(2009).

(b) Transform the spread S ′′

i to S ′

i by finding an appropriate collineation (see

Batten (1997) and Ranjan, Bingham and Dean (2009)) such that Ui ∈ S ′

i.

3. Construct Si = {S ∩ P : S ∈ S ′

i\{Ui}}.

4. Define P ′

i = Ui and then set i = i − 1. If i > 0 go to Step 1.

For every i ∈ {1, . . . , k−1}, Si is a set of (t−1)-dimensional subspaces in P, and

Si ∩ Sj = φ for i 6= j. Finally, S = ∪k−1
i=1 Si contains qs [(qkt − 1)/(qt − 1)] − qs

disjoint (t − 1)-dimensional elements of C. The construction of the remaining

qs +1 elements is shown in a more general setup (Section 5), where we also show

that the set of such overlapping elements of C form a new geometric structure

called a star.

The above technique facilitates the construction of minimal (t−1)-covers and

hence factorial designs with efficient assessment of many factorial effects except

for a few higher order interactions. Although constructing a minimal (t−1)-cover

does not require an exhaustive computer search, the pencils (or effects) in the

subspaces constituting the minimal cover may have to be relabeled to get the

desired design. Next, we revisit Example 1 and construct the design proposed in

this example using a minimal (t − 1)-cover approach.

Example 1 (contd.) From Lemma 1, a minimal 2-cover C of P = PG(4, 2)

contains 5 (since t = 3, k = 1 and s = 2) distinct subspaces. Also note that, any
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Table 1. The ANOVA table for the plutonium alloy experiment.

Effects Appearing on Variance Degrees of Freedom
the Same Half-normal Plot

S1\{ABCDE} 2
2

25 σ2

1
+ 1

25 σ2 6

S2\{ABCDE} 2
2

25 σ2

2
+ 1

25 σ2 6

S3\{ABCDE} 2
2

25 σ2

3
+ 1

25 σ2 6

{ABCDE} 2
2

25 (σ2

1
+ σ2

2
+ σ2

3
) + 1

25 σ2 1

P\(S1 ∪ S2 ∪ S3)
1

25 σ2 12

pair of 2-dimensional subspaces of PG(4, 2) shares at least one effect. That is,

|Si ∩ Sj | ≥ 1 for all i 6= j and Si, Sj ∈ C. This also meets the size constraint

(5([23 − 1] − [21 − 1]) + [21 − 1] = 25 − 1) on the subspace structure of C. The

construction of a minimal 2-cover (same as a star in this case) of PG(4, 2), as out-

lined in Section 5.2, results in C = {S1, . . . , S5}, where S1 = 〈D,BC,ABCDE〉,

S2 = 〈C,AB,ABCDE〉, S3 = 〈B,ACD,ABCDE〉, S4 = 〈A,BD,ABCDE〉,

and S5 = 〈CD,AC,ABCDE〉. Since these subspaces do not satisfy the desired

requirements on the RDCSSs, by using the relabeling

A −→ CD B −→ D C −→ BD

D −→ A E −→ E

we get S1 = 〈A,B,ABCDE〉, S2 = 〈BD,C,ABCDE〉, S3 = 〈D,ABC,ABCDE〉,

S4 = 〈CD,AD,ABCDE〉, and S5 = 〈ABD,ACD,ABCDE〉; these meet the re-

strictions on the three stages of randomization. Bingham et al. (2008) found the

same design via a computer search. Since S1, S2, and S3 intersect in ABCDE,

the error variance of ABCDE effect estimator is a linear combination of all the

components. Constructing a half-normal plot with one point is not informative,

and hence ABCDE could not be assessed (see Table 1). Sacrificing the assess-

ment of ABCDE was not an issue here because the impact of the five-factor

interaction ABCDE was assumed to be negligible.

There are a few issues worth noting. First, sometimes lower order inter-

actions in the common overlap are unavoidable. For instance, consider a 25

regular fractional factorial design setup with two stages of randomization, where

S1 ⊃ {A,B,C,D} and S2 ⊃ {E}. Since |S2| ≥ 7 is required for significance

assessment of effects in S2, if S1 = 〈A,B,C,D〉 and S2 ⊃ {E} with |S2| = 23−1,

then |S1 ∩ S2| ≥ 3. Moreover, since S1 ∩ S2 is a subspace of S1, at least one

2-factor interaction is contained in S1 ∩S2. This results in sacrificing the assess-

ment of the three pencils in S1 ∩ S2 and four pencils including one main effect

in S2\(S1 ∩ S2). That is, the assessment of seven factorial effects including one
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main effect and at least one two-factor interaction have to be sacrificed, which

is certainly undesirable. Second, if a regular fractional factorial design has to be

constructed, sacrificing the assessment of even higher order interactions of the

base factorial design (constructed from the basic factors only) is not always de-

sirable; many good regular fractional factorial designs (e.g., minimum aberration

designs) tend to choose higher order interactions for the fractional generators.

As a result, minimizing the size of the overlap among the RDCSSs is also not

desirable. In the next section, we propose a strategy for choosing RDCSSs with

larger overlaps to allow the assessment of all effects.

4. A New Overlapping Strategy

The key idea in this section is that when an overlap among the RDCSSs is

unavoidable, the size of the overlap itself can be made large enough to allow anal-

ysis of all the factorial effects. That is, we can use the overlap to our advantage

rather than being forced to sacrifice the assessment of the pencils therein.

In Example 1, since the design was a full factorial, sacrificing the assessment

of a 5-factor interaction was possible. If instead, a fractional factorial was to

be performed, one might construct a design by assigning the added factors to

the higher order interactions of the basic factors. Example 2 presents a scenario

where a larger overlap leads to a better design.

Example 2. Consider the plutonium alloy example in Example 1 (Section 3).

Suppose the experimenter wishes to introduce two additional factors (F,G) at

the second stage of randomization without increasing the run size (i.e., a 27−2

fractional factorial experiment). If we consider the randomization structure of

Example 1 for the base factorial design, the minimum aberration design has

resolution IV with fractional generators F = ABDE and G = ACE. This leads

to sacrificing the assessment of FC = ABCDE, as it is common to all Si. This

is certainly undesirable, as two-factor interactions are of utmost priority.

Instead of minimizing the overlap, we suggest finding a design with large

enough overlap to construct a separate half-normal plot for the pencils in the over-

lap. For instance, the desired 27−2 regular fractional factorial split-lot design with

3 stages of randomization can be constructed by defining S1 =〈A,AB,DE,ACD〉,

S2 = 〈C,AB,DE,ACD〉 and S3 = 〈D,AB,DE,ACD〉 with the same fractional

generators F = ABDE and G = ACE. The resulting design has minimum aber-

ration and allows the assessment of all the factorial effects using four separate

half-normal plots (Table 2).

A key feature of a good overlapping strategy is that all non-disjoint subspaces

should have a common overlap. This keeps the number of half-normal plots small,
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Table 2. The sets of effects having equal variance in the 25 split-lot design.

Effects Variance Degrees of Freedom

S1\〈AB,DE,ACD〉 2
1

25 σ2

1
+ 1

25 σ2 8

S2\〈AB,DE,ACD〉 2
1

25 σ2

2
+ 1

25 σ2 8

S3\〈AB,DE,ACD〉 2
1

25 σ2

3
+ 1

25 σ2 8

〈AB,DE,ACD〉 2
1

25 (σ2

1
+ σ2

2
+ σ2

3
) + 1

25 σ2 7

Table 3. The ANOVA table for the battery cell experiment.

Effects Variance Degrees of Freedom

S1 ∩ S2
2
2

26 σ2

1
+ 2

3

26 σ2

2
+ 1

26 σ2 1

S1\(S1 ∩ S2)
2
2

26 σ2

1
+ 1

26 σ2 14

S2\(S1 ∩ S2)
2
3

26 σ2

2
+ 1

26 σ2 6

P\(S1 ∪ S2)
1

26 σ2 42

i.e., with m stages of randomization, at most m+2 half-normal plots are needed

to assess the significance of all the pencils.

Given the number of independent basic and added factors and the random-

ization restrictions, the existence and construction of designs with large enough

overlap is not straightforward. The RDCSSs are also often stipulated by the

experimenters and are likely to be of different sizes (see Example 3), thereby

complicating matters.

Example 3. Consider the battery cell experiment in Vivacqua and Bisgaard

(2004). In this setup, a company manufacturing electric batteries was interested

in identifying the factors that could have significant impact on the open circuit

voltage of batteries. A 26 factorial experiment was performed, where the man-

ufacturing took place in a two-stage process: (a) assembly - characterized by

S1 ⊃ {A,B,C,D}, and (b) curing - characterized by S2 ⊃ {E,F}. The original

design used S1 = 〈A,B,C,D〉 and S2 = 〈E,F 〉. Since |S2| = 3 and the half-

normal plots require more than six effects per plot, the effects in S2 could not be

assessed. One could instead use a design with S2 = 〈E,F,ABCD〉 to allow the

assessment of all factorial effects except ABCD (see Table 3).

Since the minimal (t− 1)-cover approach focusses on projective subspaces of

equal size only, it is not possible to appeal to related results. A new geometric

structure, a star, is proposed in the next section. This is quite general and

accommodates unequal sized RDCSSs. We revisit Example 3 in Section 5.2,

where stars are used to construct similar designs with unequal sized RDCSSs.
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5. Stars and RDCSSs

The geometric structure called a star was introduced (Shaw and Maks (2003))
for a set of 1-dimensional projective subspaces with a common overlap on a point
in PG(p − 1, 2). Here, we first propose a generalization of the star to (t − 1)-
dimensional subspaces of P = PG(p− 1, q), for arbitrary 1 < t < p and prime or
prime power q, and then to subspaces of unequal sizes. Next, we develop results
for the existence and construction of stars in P. The designs constructed allow
large overlaps that facilitate the assessment of all factorial effects.

A star with equal sized subspaces consists of two components: (i) a set of
(t − 1)-dimensional subspaces (πt’s) in P that we call rays of the star, and (ii)
the common overlap on a (t0 − 1)-dimensional subspace (πt0), called the nucleus

of the star, where t0 < t < p. Such a star is also a (t − 1)-cover of P if its rays
cover the effect space P.

Definition 2. A star St(µ, πt, πt0) is a set of µ rays consisting of (t − 1)-
dimensional subspaces (πt’s) of P = PG(p − 1, q), and a nucleus πt0 , where
πt0 (t0 < t) is a (t0 − 1)-dimensional subspace of P contained in each of the µ
rays.

If a star Ω = St(µ, πt, πt0) exists in P = PG(p− 1, q), the maximum number
of rays in Ω is given by (qp − qt0)/(qt − qt0). For a star with the dimension of
rays being fixed, the smaller the nucleus, the fewer the number of rays (µ).

Stars can be further generalized for a set of subspaces of unequal sizes with a
common overlap. Suppose a star consists of exactly k distinct-sized rays. Let fi

be the number of rays with dimension (ti −1), for i = 1, . . . , k, with the common
overlap for every pair of rays a (t0 − 1)-dimensional subspace of P. Such a star
can be denoted by St(f1, . . . , fk; πt1 , . . . , πtk ; πt0), where the total number of rays
is µ =

∑k
i=1 fi. Hereafter, without loss of generality, let 0 < t0 < t1 < t2 < · · · <

tk < p. A star is called balanced if all its rays are of the same size (i.e., k = 1),
otherwise it is called unbalanced and k ≥ 2. Next, we establish the existence of
both balanced and unbalanced stars.

5.1. Existence of stars

If there exists a star that covers the entire effect space P = PG(u− 1, q), for
positive integer u > 1, one can select an appropriate subset of rays to construct
the desired set of RDCSSs. Thus, our results focus on the existence of stars that
cover P. It turns out that stars and spreads are very closely related in terms of
their geometric structure.

Definition 3. A (h1−1, . . . , hµ−1)-spread S of P = PG(u−1, q) is a collection
of µ pairwise disjoint subspaces Si, i = 1, . . . , µ, such that |Si| = (qhi −1)/(q−1)
and P = ∪µ

i=1Si.
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Rains, Sloane and Stufken (2002) refer to such a (h1 − 1, . . . , hµ − 1)-spread
as a mixed spread of strength 2. If h1 = · · · = hµ (= t, say) then a (h1 −
1, . . . , hµ − 1)-spread reduces to a (t − 1)-spread; otherwise, we call it a mixed
spread of PG(u − 1, q). Though the existence of a (t − 1)-spread of P is trivial
and well established (André (1954)), determining the existence of a mixed spread
is nontrivial.

Lemma 2. For the existence of a (h1 − 1, . . . , hµ − 1)-spread S of PG(u− 1, q),
the following conditions are necessary:

(i) qu − 1 =
∑µ

i=1(q
hi − 1),

(ii) hi + hj ≤ u for every i 6= j (i, j = 1, . . . , µ).

Proof of Lemma 2(i) follows trivially from the definition of a spread, and
Lemma 2(ii) comes from Ranjan, Bingham and Dean (2009, Thm. 6). The con-
ditions in Lemma 2 are not sufficient. For example, let u = 5, q = 2, and µ = 11,
where h1 = · · · = h10 = 2 and h11 = 1. Then both Lemma 2(i) and (ii) hold. If
such a (h1 − 1, . . . , hµ − 1)-spread exists, then following Wu, Zhang, and Wang
(1992), we would get an orthogonal array L32(4

10×21) of strength two and hence
L32(4

10) of strength two, which does not exist due to the Bose and Bush (1952)
bound. To our knowledge, no necessary and sufficient conditions are known for
the existence of a mixed spread in PG(u − 1, q) for arbitrary positive integer u
and prime or prime power q. Nevertheless, see in Section 5.2, the cases that are
of interest in statistical considerations can be completely settled. Next, we show
the equivalence between a star and a spread.

Lemma 3. The existence of a star Ω = St(f1, . . . , fk; πt1 , . . . , πtk ;πt0) in PG(p−
1, q), that is also a cover of PG(p − 1, q), is equivalent to the existence of a

(h1 − 1, . . . , hµ − 1)-spread S of PG(u − 1, q), where u = p − t0, and for each i,
fi is the number of hj’s that are equal to ti − t0.

Proof. For any 0 < t0 < p, there exist two disjoint subspaces U1 and U2 in
PG(p− 1, q) such that |U1| = (qt0 − 1)/(q − 1) and |U2| = (qp−t0 − 1)/(q − 1). If
there exists a (h1 − 1, . . . , hµ − 1)-spread S of U2, a star Ω can be constructed
with nucleus U1 and the set of rays defined by {Ri = 〈U1, Si〉 |Si ∈ S, 1 ≤ i ≤ µ}.

Now suppose, there exists a star Ω = St(f1, . . . , fk; πt1 , . . . , πtk ; πt0) that
covers PG(p − 1, q). Without loss of generality, let U1 = πt0 = 〈F1, . . . , Ft0〉 be
the nucleus and U2 = 〈Ft0+1, . . . , Fp〉, where the Fi, i = 1, . . . , p form a basis for
PG(p − 1, q). Then the set of µ =

∑k
i=1 fi rays of Ω can be used to construct

a (h1 − 1, . . . , hµ − 1)-spread S = {Ri ∩ U2 |Ri is a ray of Ω, 1 ≤ i ≤ µ} of U2.
Thus, the existence of the star Ω and the spread S are equivalent.

Combining Lemma 2 and Lemma 3, we obtain necessary conditions for the
existence of a possibly unbalanced star that is also a cover of PG(p − 1, q).
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Lemma 4. For the existence of a star Ω = St(f1, . . . , fk; πt1 , . . . , πtk ; πt0) in

P = PG(p−1, q) that is also a cover of P, the following conditions are necessary:

(i) qp−t0 − 1 =
∑k

i=1 fi(q
ti−t0 − 1),

(ii) ti + tj − t0 ≤ p for every i 6= j (i, j = 1, . . . , k),

(iii) 2ti − t0 ≤ p for every i such that fi ≥ 2.

The conditions in Lemma 4are not sufficient. In the special case of balanced

stars, however, Lemma 3 suggests that a balanced star St(µ, πt, πt0) covering P

exists if and only if there exists a (t − t0 − 1)-spread of PG(p − t0 − 1, q). In

conjunction with a result in André (1954), this leads to the following lemma.

Lemma 5. There exists a balanced star St(µ, πt, πt0) in P = PG(p − 1, q) that

covers P, if and only if (t − t0) divides (p − t0). Furthermore, if (t − t0) divides

(p − t0), the number of rays is µ = (qp−t0 − 1)/(qt−t0 − 1).

Corollary 1. For every t (2 ≤ t < p) and t0 = t− 1, there exists a balanced star

St(µ, πt, πt0) in P = PG(p− 1, q) that covers P, where µ = (qp−t+1 − 1)/(q − 1).

Although most of the results developed in this section focus on the general

scenario (i.e., the existence of St(f1, . . . , fk; πt1 , . . . , πtk ; πt0) for k ≥ 2), balanced

stars are more useful for designs with relatively smaller run size. Unbalanced

stars that are useful from statistical perspective tend to have large run sizes. For

instance, for a 2p factorial design, unbalanced stars that lead to informative half-

normal plots must contain at least 64 experimental units, since Si’s of unequal

sizes that overlap on at least 7 effects force t1 ≥ 4 and t2 ≥ 5 (as t2 > t1). This

further implies that p ≥ 6. While this may appear to apply for large designs,

as we have previously noted, multistage experiments are frequently larger than

completely randomized designs.

5.2. Construction

We first consider balanced stars covering P. By Lemma 5, such a star Ω =

St(µ, πt, πt0) exists if and only if (t − t0) divides (p − t0). If this holds, then the

construction is precisely as in the first paragraph of the proof of Lemma 3 via

consideration of disjoint subspaces U1 and U2. Cyclic projectivities (Hirschfeld

(1998)) can be used to construct a (t − t0 − 1)-spread of U2. For instance, in

Example 1 (contd.), U1 = {ABCDE} and U2 = 〈A, B,C,D〉. The 1-spread of

U2 obtained by using the primitive polynomial w4 + w + 1 is shown in Table 4

(see Ranjan, Bingham and Dean (2009, Sec. 5.1) for details).

In Example 2 also, the design proposed is a star St(3, π4, π3) with U1 =

〈AB,DE,ACD〉 and U2 =〈A,C〉. The 0-spread of U2, given by {{A}, {C}, {AC}},

was used to construct the three rays (or the three subspaces) S1, S2, and S3.
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Table 4. A 1-spread of PG(3, 2).
S1 S2 S3 S4 S5

D C B A CD
BC AB ACD BD AC

BCD ABC ABCD ABD AD

In this approach the experimenter has control over the choice of pencils in

the nucleus, but the spread construction limits the composition of the rays to

some extent. If necessary, as in Example 1 (contd.), one can find an appropriate

collineation (e.g., Batten (1997); Ranjan, Bingham and Dean (2009)) to trans-

form the spread (i.e., rays of Ω) to meet the experimenter’s requirement for the

RDCSSs.

Turning to unbalanced stars, recall that the conditions in Lemma 4 are not

sufficient. While this precludes the development of a general construction, the

cases that are of practical interest from statistical considerations can easily be

constructed. We discuss the existence and construction of two-level factorial

designs that are obtained from stars covering PG(p − 1, 2), where p ≤ 7. In

terms of a star St(f1, . . . , fk; πt1 , . . . , πtk ; πt0), the cases of interest are as follows:

(a) p = 4, 5, 6, 7; t0 = 1, ti ≥ 3 (i = 1, . . . , k),

(b) p = 5, 6, 7; t0 = 2, ti ≥ 4 (i = 1, . . . , k),

(c) p = 5, 6, 7; t0 = 3, ti ≥ 4 (i = 1, . . . , k),

(d) p = 6, 7; t0 = 4, ti ≥ 5 (i = 1, . . . , k),

(e) p = 7; t0 = 5, ti ≥ 6 (i = 1, . . . , k).

The cases listed do not exhaust all feasible configurations of the parameters,

but the remaining cases are either trivial or do not lead to good designs. For

instance, consider the scenario with t0 = 2, ti = 3 for each i and p = 4. From

Corollary 1, there exists a star St(3, π3, π2) that covers PG(3, 2). Denoting the

rays of this star by R1, R2, R3, note that |Ri ∩ Rj | = 3 and |Ri\(Ri ∩ Rj)| = 4

for all i 6= j. The resulting design is not useful because none of the half-normal

plots has a sufficient number of effects. In general, designs with t0 = 2 lead to

sacrificing the assessment of at least three factorial effects that are assigned to

the nucleus of the star. We consider the interesting cases one-by-one.

(a1) p = 4, t0 = 1, ti ≥ 3 (i = 1, . . . , k). Since ti < p, the only possibility is ti = 3

for all i. Nonexistence follows from Lemma 5.

(a2) p = 5, t0 = 1, ti ≥ 3 (i = 1, . . . , k). Then, ti is either 3 or 4. Lemma 4(i)

yields 15 = 3f1 + 7f2, with the only solution for (f1, f2) as (5, 0). This

corresponds to ti = 3 for each i, and existence follows from Lemma 5.
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(a3) p = 6, t0 = 1, ti ≥ 3 (i = 1, . . . , k). In this case, ti can be either 3, 4

or 5. Lemma 4(i) yields 31 = 3f1 + 7f2 + 15f3, and the only solution for

(f1, f2, f3), meeting Lemma 4(ii) and (iii) as well, is (8, 1, 0). The existence

and construction for (f1, f2, f3) = (8, 1, 0) follows from Example (iii) after

Lemma 1 in Rains, Sloane and Stufken (2002).

(a4) p = 7, t0 = 1, ti ≥ 3 (i = 1, . . . , k). The choices for ti are 3, 4, 5 and 6.

From Lemma 4(i), 63 = 3f1 + 7f2 + 15f3 + 31f4, and the only solutions

for (f1, f2, f3, f4), meeting Lemma 4(ii) and (iii) as well, are (16, 0, 1, 0),

(0, 9, 0, 0), (7, 6, 0, 0), (14, 3, 0, 0), and (21, 0, 0, 0). The existence and con-

struction for the first four cases follow from Rains, Sloane and Stufken

(2002, Theorem 13), while the last case corresponds to a balanced star,

and its existence and construction follow from Lemma 5.

(b1) p = 5, t0 = 2, ti = 4 (i = 1, . . . , k). Nonexistence follows from Lemma 5.

(b2) p = 6, t0 = 2, ti ≥ 4 (i = 1, . . . , k). The choices for ti are 4 and 5. From

Lemma 4(i), 15 = 3f1 + 7f2. This is the same scenario as in (a2).

(b3) p = 7, t0 = 2, ti ≥ 4 (i = 1, . . . , k). In this case, ti = 4, 5 or 6. Lemma 4(i)

yields 31 = 3f1 + 7f2 + 15f3, leading to the same scenario as in (a3).

(c1) p = 5, t0 = 3, ti = 4 (i = 1, . . . , k). Existence follows from Corollary 1.

(c2) p = 6, t0 = 3, ti ≥ 4 (i = 1, . . . , k). The options for ti are 4 and 5. The

necessary condition in Lemma 4(i) yields 7 = f1 + 3f2, and the only so-

lutions for (f1, f2) that meet Lemma 4(ii) and (iii) as well are (7, 0) and

(4, 1). For each of the two cases, the existence and construction follow in a

straightforward manner; see e.g., Wu, Zhang, and Wang (1992).

(c3) p = 7, t0 = 3, ti ≥ 4 (i = 1, . . . , k). Then ti = 4, 5 or 6. Lemma 4(i) yields

15 = f1 + 3f2 + 7f3, and the only solutions for (f1, f2, f3) meeting Lemma

4(ii) and (iii) as well are (8, 0, 1) and (15 − 3j, j, 0), 0 ≤ j ≤ 5. For each of

these, existence and construction follow from Wu, Zhang, and Wang (1992).

(d1) p = 6, t0 = 4, ti = 5 (i = 1, . . . , k). Existence follows from Corollary 1.

(d2) p = 7, t0 = 4, ti ≥ 5 (i = 1, . . . , k). Thus ti = 5 or 6. Lemma 4(i) yields

7 = f1 + 3f2, leading to the same scenario as in (c2).

(e) p = 7, t0 = 5, ti = 6 (i = 1, . . . , k). Existence follows from Corollary 1.

We now revisit Example 3 and illustrate how the use of an appropriately

chosen star can entail a better experimental plan in the sense of making all

half-normal plots informative, thus allowing inference on all factorial effects.

Example 3(contd.) Among all cases (a1)−(e), only (a3), (c2), and (d1) meet

the requirement that p = 6 with ti ≥ 4 for at least one ray of the star. The design

proposed in Example 3, given by S1 = 〈A,B,C,D〉 and S2 = 〈E,F,ABCD〉, is

an example of St(8, 1;π3, π4; π1) discussed in (a3). This star leads to sacrificing
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the assessment on the factorial effects corresponding to the pencil in the nucleus

{ABCD}, which could be an issue if one wishes to construct a regular fractional

factorial design with the added factor being in S1 or S2. However, if more stages of

randomization are to be introduced with added factors in them, St(8, 1;π3, π4; π1)

can serve the purpose.

Alternate designs can be constructed using St(4, 1;π4, π5; π3) or St(3;π5; π4),

the existence and construction of stars is discussed in (c2) and (d1), respectively.

These two stars meet the size requirement and lead to construction of fractional

factorial designs that allow assessment of all the factorial effects.

The use of a star in designing the overlapping structure among the RDCSSs

turns out to be advantageous, but there is a tradeoff between number of effects

that can be assessed and the variance of the effect estimates. The effects in the

common overlap (πt0) are estimated with a relatively large variance compared to

other effects. If the design under consideration is an unreplicated full factorial,

one may prefer to sacrifice a few effects by minimizing the overlap. On the other

hand, if unreplicated fractional factorial designs are required, sacrificing higher

order interactions of the basic factors is not desirable, and stars with relatively

large overlap as in Examples 2 and 3 (contd.) are more useful.

6. Balanced Stars and Minimal (t − 1)-covers

We begin by establishing a connection between balanced stars and minimal

covers, introduced in Section 3, and then indicate its applications.

Lemma 6. Let p = kt + s, where 0 < s < t < p and k ≥ 1. Then there exists a

minimal (t−1)-cover C of P = PG(p−1, q) that consists of qs((qkt − 1)/(qt − 1)

−1) disjoint (t− 1)-dimensional subspaces of P and a star St(qs + 1, πt, πt−s) in

P.

Proof. Let U be a (t+s−1)-dimensional subspace of P. Following Corollary 2.3

in Eisfeld and Storme (2000), there exists a collection S of qs[(qkt − 1)/(qt − 1)−

1] disjoint (t−1)-dimensional subspaces of P which do no intersect U and form a

partition of P\U . Moreover, by Lemma 5, there exists a star Ω = St(µ, πt, πt−s)

in U that also covers U , and the number of rays in Ω is µ = qs + 1. Thus, the

disjoint (t − 1)-dimensional subspaces in S, together with the rays of Ω form a

minimal (t − 1)-cover C of P, as envisaged in Lemma 1.

In particular, for k = 1, Lemma 6 implies the existence of a minimal (t− 1)-

cover of P = PG(t+s−1, q) which equals St(qs+1, πt, πt−s) in P. It is, however,

important to note that in many practical situations, one can find stars that are

not minimal covers but perform better in the present context than the stars that

are. For instance, both Ω1 = St(7, π4, π3) and Ω2 = St(5, π4, π2) cover PG(5, 2).
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Although Ω2 is a minimal cover and Ω1 is not, the nucleus of Ω1 is large enough

to allow an informative half-normal plot, while that of Ω2 fails to do so.

Returning to Lemma 6, in the same spirit, one can consider replacing the

star Ω = St(qs + 1, πt, πt−s) in the minimal cover C by a star of larger nucleus,

whenever the nucleus of Ω is too small to allow an informative half normal plot.

The resulting geometric structure, say C∗, has more (t−1)-dimensional subspaces

than C and can entail greater flexibility in the sense of accommodating more

RDCSSs, if required. The idea of replacing the star in C has potential applications

in areas such as microchip experiments where one can afford to have a reasonably

large number of experimental units. For instance, if p = 10, q = 2, and t = 4,

then the minimal 3-cover C in Lemma 6 consists of 64 disjoint 3-dimensional

subspaces and a star St(5, π4, π2). If we modify C by using a star St(7, π4, π3)

instead of St(5, π4, π2), the resulting structure C∗ would allow assessment of all

the effects in P = PG(9, 2).

7. Discussion

We have proposed two classes of designs for efficient planning of full and

fractional factorial experiments under multistage randomization: designs that

adapt minimal (t− 1)-covers, and designs obtained from stars. It is seen that, in

contrast to minimal covers, stars enjoy considerable flexibility with regard to the

size of the overlap and hence have much greater scope in assessing the significance

of factorial effects.

As a practical guideline, if the assessment of all the effects is required, or a

few of the RDCSSs are of unequal size, stars can be used to construct designs

with multistage randomization. Whereas, since the effects in the common overlap

(nucleus of the star) are estimated with a larger effect variance, if one can sacrifice

the assessment of a few higher order interactions and the desired RDCSSs are of

equal sizes, minimal (t − 1)-covers can be used to construct designs.
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