
Starting a Knowledge Engineering Project: 
A Step-by-Step Approach 

Mike Freiling, Jim Alexander, Steve Messick, Steve Rehfuss, and Sherri Shulman 

Artificial Intelligence Department, Computer Resenrch Laboratory, Tektronix, 1~ , Post Office Box 
500, Beaverton, Oregon 97077 

Getting started on a new knowledge engineering proj- 
ect is a difficult and challenging task, even for those who 
have done it before. For those who haven’t, the task can of- 
ten prove impossible. One reason is that the requirements- 
oriented methods and intuitions learned in the develop- 
ment of other types of software do not carry over well to 
the knowledge engineering task. Another reason is that 
methodologies for developing expert systems by extract- 
ing, representing, and manipulating an expert’s knowledge 
have been slow in coming. 

At Tektronix, we have been using a step-by-step ap- 
proach to prototyping expert systems for over two years 
now. The primary features of this approach are that it 
gives software engineers who do not know knowledge en- 
gineering an easy place to start, and that it proceeds in 

a step-by-step fashion from initiation to implementation 
without inducing conceptual bottlenecks into the devel- 
opment process. This methodology has helped us collect 
the knowledge necessary to implement several prototype 
knowledge-based systems, including a troubleshooting as- 
sistant for the Tektronix FG-502 function generator and 
an operator’s assistant for a wave solder machine. 

One fundamental assumption we make is that knowl- 
edge is more valuable than inference strategies. Often a 
company may have only one chance to acquire the knowl- 
edge, but can work on it later at leisure. A second assump- 
tion is that a knowledge engineering project must provide 
adequate documentation of its progress. At any stage in 
the process, knowledge engineers must be able to show 
some fruits of their labor. 

The Need for Knowledge 
Engineering Methodologies 

In any large organization it is quite common to find “pock- 
ets of knowledge” or “knowledge bottlenecks.” Pockets of 

knowledge occur when knowledge crucial to the success of 
an organization is possessed by only one or a few individu- 
als. Knowledge bottlenecks are pockets of knowledge that 
impede an organization’s progress because the knowledge 
needs to be more widely distributed. 

For example, if knowledge about how to keep an im- 
portant manufacturing process running smoothly resides 
in the head of only one or two process engineers, we have 
a pocket of knowledge. If the company now wants to build 
several similar plants in different international locations, 
we have a knowledge bottleneck, because the knowledge 
cannot be distributed as easily as can the material used 
to build a factory. The lore of manufacturing processes 
includes stories of engineers who were shuttled by plane 
between factories in an effort to keep them all running. 

It is clear that knowledge pockets and bottlenecks are 
undesirable and should be eliminated if possible. Pockets 
of knowledge can quickly become serious bottlenecks if the 
individuals retire or decide to leave the organization. 

Expert system technology has been offered as a means 
for removing knowledge pockets and bottlenecks. But de- 
spite some notable successes, the path to expert system 
implementation is fraught with difficulties. Among these 
difficulties are 

. The “AI Mystique.” Terms like “artificial intel- 
ligence” or “knowledge engineering” give the im- 
pression that there is something magical and/or 
mystical involved in building expert systems. De- 
spite our claims about making it clear how every- 
one else does their job, we have had some difficulty 
making it clear how we do our own. As a result, 
knowledge engineering is often considered a tech- 
nology that is far too difficult to attempt. 

. The management problem. How is it possi- 
ble to manage the progress of an expert system 
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project? The common wisdom is to build a prototype as 
quickly as possible. But what can be done to manage the 
project while the first prototype is being built? 

. Choosing the right tool. A number of knowl- 
edge engineering tools are available on the market 
today. They range from simple backward chain- 
ing inference engines similar to EMYCIN (Van- 
Melle, 1984) to sophisticated object-oriented envi- 
ronments that permit a number of different infer- 
ence strategies to be implemented (Kunz, 1984). 
Assess the problem to be attacked before deciding 
which tool to use or whether a tool is needed at 
all 

. The acceptance problem. How people will re- 
act to using knowledge-based consultants is a big 
question mark Even in the prototyping stages, it 
is important to plan systems with acceptance in 
mind and to build an acceptance-oriented inter- 
face for the first prototype 

Several tools and methodologies have been developed 
to help manage the early phases of a knowledge engineering 
project. ETS is a knowledge acquisition system developed 
by Boeing Computer Services that acquires knowledge via 
a dialogue with the user and can actually build rule bases 
for several expert system tools (Boose, 1984). 

Stefik et al. (1982) have articulated a variety of infer- 

ence strategies, along with problem characteristics that 
dictate one choice or another. For instance, strategies 
which completely exhaust the possible answers and pur- 
sue a single line of reasoning are recommended only for 
problems where the number of possible solutions is small, 
the data is reliable, and the knowledge is also reliable. 
Complex search methods, such as opportunistic schedul- 
ing, are recommended when a single source of knowledge 
or line of reasoning is insufficient. 

At a more abstract level, Clancey (1984) has examined 
the inference structure of many classification systems and 
articulated two different types of inference step in these 
problems. 

The first type of step involves actions of abstraction 
and refinement which accomplish those parts of the problem- 
solving process that are fairly well-understood and auto- 
matic. Examples of abstraction steps include qualitative 
abstraction of numeric values, such as classifying a volt- 
age of 4.67 to be “high” and generalization of a particular 
collection of symptoms into a relevant general class of pa- 
tients, like “heavy smoker.” Examples of refinement steps 
include selection of a particular component fault to ac- 
count for some failure mode when the relevant faults can 
be exhaustively enumerated and checked, and the selec- 
tion of some specific disease from the category of diseases 
known to be causing the patient’s illness. 

The second type of step involves heuristic associa- 
tions which make intuitive leaps that cannot be deduc- 
tively justified and may require reconsideration. Exam- 
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ples of heuristic associations include the association be- 
tween symptom classes and disease categories that may 
be responsible, or between measured values in a circuit 
and failure modes that may be responsible. 

In a similar vein, Brachman and Levesque (1982) have 
identified rules related to terminology and rules related to 
the problem and argued that separate inference strategies 
or 

Lacl 

recess structure in Clancey’s terms) are needed for 

The methodology we will discuss here is not intended 
to replace any of this previous work. Rather, our approach 
provides a step-by-step approach to building familiarity 
with a knowledge engineering problem that makes it possi- 
ble to use techniques such as knowledge level analysis with 
a better understanding of what is involved in the problem. 

Requirements for a 

Knowledge Engineering Methodology 

Before we get into answering the above question, let us 
step back a minute and ask, “What would we wish from a 
knowledge engineering methodology?” 

The methodology must be simple. We all know 

knowledge engineering is a hard business, and there 

are many problems that exceed our ability right 

now. But there are also lots of small problems for 
which knowledge engineering in its present form 

is adequate. A methodology for attacking today’s 

doable problems should be easy to apply and should 
lend itself to a wide variety of problems. 

The methodology must be gradual. The people 

who need a knowledge engineering methodology 
most, are those who do not have much prior ex- 

perience with knowledge engineering Experience 

has shown that these people often encounter a 

conceptual bottleneck in attempting to formalize 
what initially appears to be an amorphous mass 

of knowledge. 

The methodology must azm at getting the knowledge 

first. As we have seen, there are lots of cases where 
knowledge acquisition is the time-critical compo- 

nent. A methodology must help with this stage. 

The methodology must provide measurable mile- 

stones. It is important to communicate a sense of 
progress in any project. If possible, there should 

be clear “deliverables” either on paper or in a 

working program to mark the progress towards a 

completed expert system. 

Origins of the Step-by-Step Approach 

Our approach had its start about two years ago when we 
began designing expert systems for troubleshooting Tek- 
tronix instruments. The project team consisted of an AI 
researcher, a cognitive psychologist, a software engineer, 
and an electronic engineer. The first problem we had to 
deal with was to establish a means of communication 
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among such a diverse group. From work on the SIDUR 
project at Oregon State University (Freiling, 1983; Kogan, 
1984)) we had had some experience using formal grammars 
of English fragments as a documentation and communica- 
tion tool. We decided to use a formal grammar to docu- 
ment the progress of our knowledge engineering efforts. 

In order to build a grammar, however, we needed 
something to start with. So we sat down with several 

electronic engineers and technicians, and a schematic for 
the Tektronix FG-502 Function Generator, which we chose 
for its simplicity. A function generator is an instrument 
that generates waveforms of known shape and frequency 
as stimuli for testing electronic equipment. We asked these 
experts to tell us how they would go about troubleshoot- 
ing the FG-502. We taped several hours of conversation 
and transcribed the troubleshooting knowledge onto pa- 
per. At this point, of course, the knowledge was in the 
form of English sentences. 

As we collected more of the knowledge, we began to 
notice regularities. For example, the engineers would fre- 
quently mention the temporal relationship between two 
signals. The behavior of one signal would be considered 
important only when some other signal was at a particular 
value, such as low, or had already exhibited some event, 
such as crossing zero. Noticing that temporal comparisons 
were haphazardly scattered throughout many types of ob- 
servations, we scheduled a couple of intensive sessions to 
define a systematic collection of comparisons between sig- 
nals. 

Gradually, our collection of example statements took 
the form of a grammar. During the transition, our docu- 
ment had a hybrid form which was part grammar and part 
examples. Finally, the grammar was at the point where we 
had enough to start the next phase of the knowledge engi- 
neering process. We christened the grammar GLIB (Gen- 
eral Language for Instrument Behavior) (Freiling, 1984). 

Figure 1 shows a simplified fragment of the GLIB gram- 
mar for expressing the temporal relationships mentioned 
above. The semantics of these expressions are roughly the 
same as those used by other researchers in more general 

representations of time (Vilain, 1982; Allen, 1981). 

At this stage, GLIB was not “complete” in any for- 
mal sense. GLIB is still undergoing modifications and 

extensions, as we learn new subtleties of the knowledge 
that electronic engineers and technicians possess. But the 
knowledge representation structures captured by GLIB at 
that point were sufficient to permit further progress. 

We used GLIB as a guide to expressing the rules for 
our first prototype, the FG-502 troubleshooting assistant 
(Alexander, 1985). Although we did not then have a frame- 
work for rigorously enforcing GLIB syntax in our rule for- 
mats, the presence of the GLIB grammar greatly shortened 
the effort expended on acquiring actual rules, since we now 
had a collection of well-defined formats for expressing the 
knowledge acquired. 

The primary focus of our prototype troubleshooting 
assistant for the FG-502 was on another aspect of the ex- 
pert system implementation process, the development of a 
credible interface for technicians to use (Freiling, 1984a). 

As we mentioned earlier, the problem of acceptance of 
expert system technology requires serious consideration. 
From many discussions with technicians, we found that 
they were much more likely to be enthusiastic about ex- 
pert systems if it offered them some personal added value. 

Our clues to what this added value might consist of 
came by asking technicians what parts of their job were a 
needless waste of time. Several replied that leafing through 
the manual to find where a part is located was a distracting 
and frustrating task. Using these clues, we designed an 
interface for the FG-502 troubleshooting assistant which 
eliminates the need to consult a manual for part locations 
during the troubleshooting and repair process. Our use 
of Smalltalk (Goldberg, 1983) with its rich environment 
of graphics primitives, made it possible to implement this 

interface in a matter of weeks. 

Using the interface, technicians can point to the loca- 
tion of a part in either a parts list, a schematic diagram, 
or a map of the actual circuit board, and retrieve the loca- 
tion and parts data automatically. This interface is also a 
great help during the troubleshooting process itself. Nodes 
which must be measured are indicated using icons that rep- 
resent an oscilloscope probe, and parts to be removed are 
highlighted by reversing their color. Figures 2 and 3 show 
examples of this interface in use. The use of this type of 
interface, even (or perhaps, especially) in the first proto- 
type, can have a major impact on the acceptance issues 
that every knowledge engineering project must face. 

In helping others build their own expert system ap- 
plications, we became aware of the wider applicability of 
this step-by-step approach to developing an expert system 
prototype. Communicating this approach to others has 
helped to minimize both development times and the level 
of external consulting required by other projects within 

Tektronix. 

Our experience in developing these prototypes has en- 
couraged us to build tools that support this approach to 
developing expert systems. One such tool is INKA (IN- 
glish Knowledge Acquisition), a knowledge acquisition sys- 
tem that uses the GLIB grammar to produce a parser that 
captures specific troubleshooting facts and rules (Phillips, 
1985). We will discuss INKA in more detail later. 

Steps to an Expert System Prototype 

The overriding goal of our approach has been to reduce 
the costs associated with expert system development. We 
have called this approach the DETEKTR (Development 
Environment for TEKtronix TRoubleshooters) methodol- 
ogy, after a development environment (DETEKTR) we 
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lFanaiBititi0n Paper knowledge base 
Qrgdzimg kmowledge KnowBedge acqtisition grammar 
Representhg knowledge Pmtermd kmowledge base formats 

AccpiPing knowledge 
Pmferemce stxategy design 
Interface design 

Knowledge base 
Hmference engine 
Hmterface 

Table 1. 

YF-- (11 vw2a is not equaf to YBN24f. 
TEN 411 thu source foffouer Mock is FAPLEB. 

EXPLANAT113eO: Under correct betasviw. 0 trianpis voltage is being 
gcnera,tcd at l&i% and N24, in phase roith each other. Oisrufation of 
the loop causes voltages to converge to DC values. bk2cause the 
loop itsaff is required for alternating behavior. 

EXPLANATION: Under correct behavior, the voltage at RI9 acts 8s 
a ‘tcrainating conditiona for the ramp being gemsrated. Normally, 
them. it should be opposite in sign from the voftagc at fQ%. bftm 
this does not occur. the coqmrator block is not gemrating the 
corruct voftage at MS. 

F-- 411 Vw24~ is kal. 
Am 921 vwm is LW. 
Ala (31 VW91 is mu. 

THEN (13 tfm triangle uave comparator block is FAILED. 

LW’LAbSATfW: AI f three of sufes a-3. EL-S. and 8L-6 art 
needed to deduce failwe in tk%e triangle nave comparator 
block, because aff QRree conditions 2ra Ranifestations of 
various failure paodes for that block. 

Figure 4. 
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have been building to support it. We originally envi- 
sioned DETEKTR as a collection of domain-specific tools 

j 
; 

for building troubleshooters (Alexander, 1985a) because i 
the costs of developing the grammar and interface could i 

be amortized over a large number of troubleshooting as- i 
IllmwIsnd~m2l 

fo- for IUKA 

sistants. But as WC began to use our tools to support I Nlobze 

projects around Tektronix, we discovered that aspects of I 

the methodology are relevant to almost any knowledge en- j 

gineering problem. 

Our methodology is divided into six steps, which fall 
into two general phases of the knowledge engineering proj- 

ect. The first phase is aimed at acquiring and representing 
the knowledge necessary for solving the problem. The sec- 
ond phase is aimed at actually constructing a prototype 

expert system. 

Each step in the process also has an associated proj- 
ect document that forms a ‘Ldeliverable” to mark successful 
conclusion of the step. This is important from the stand- 
point of managing a knowledge engineering project, since 
it is possible to demonstrate progress by means of these 
documents, even before programs are written. 

The Knowledge Definition Phase 

This is a phase of analysis and definition of the knowl- 

edge structures that precedes actual acquisition of knowl- 
edge and implementation of a prototype. The emphasis at 
this stage is to make progress on decomposing a large and 
complex problem, while not getting bogged down in the 

Figure 5. 

spec&s of the problem. 

Step 1: Familiarization. The purpose of the first, 

exploratory stage of a knowledge engineering project is to 

determine the scope and complexity of the task. Expe- 
rienced knowledge engineers often know how to initiate 

this process by a combination of relatively unstructured 
interviews and observation sessions. Aspiring knowledge 
engineers, however, often get stymied at this point. 

We have found it helpful to add structure to the ini- 
tial interviews. The first thing to do is to pick a sample 
problem to work on that is more or less representative of 
the task for which you wish to build an expert system. It 
helps if this first example is on the simpler end of the com- 
plexity scale. It is possible to conduct the first sessions by 
either watching an expert solve the problem or talking to 
the expert about how the problem is most easily solved. 
Although experienced knowledge engineers might prefer 
the former approach because it is less intrusive, the more 
verbal approach is usually easier to start with. 

A record of the sessions are made by taping them or by 
taking notes. After the session is over, the tape and the 
notes should be combed to produce a “paper knowledge 
base” consisting of English sentences that are representa- 
tive expressions of the facts and rules the expert has given 
you. They do not, of course, need to be direct quotes from 

the expert. But they do need to be sentences that the ex- 
pert can recognize as clear and unambiguous descriptions 
of relevant knowledge. 

Figure 4 shows a fragment of the actual paper knowl- 
edge base produced in developing the FG-502 troubleshoot- 
ing assistant. Notice that the paper knowledge base may 

employ highly stylized formats to make the knowledge 
structures clear. Also notice that at this stage of the 
knowledge engineering process, it is useful to store expla- 
nations for every single rule. 

It may require many sessions with the expert to review 
and clarify the paper knowledge base before it reaches a 
stable form. The documentation of this stage of the proj- 
ect is the paper knowledge base itself. 

Step 2: Organizing Knowledge. As the paper knowl- 
edge base collected in step 1 gets larger, it becomes un- 
wieldy. At the same time, it should begin to exhibit some 
regularity in the sense that expressions of similar form 
reappear frequently in the document. The next step is 
to capture these regularities by building a knowledge ac- 
quisition grammar to express the facts and rules in the 
paper knowledge base. We are not suggesting that the 
grammar must be built along linguistic lines, which would 
require the use of grammatical categories like ‘Lpreposi- 
tional phrase” and ?elative clause.” It is easier to build 
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a “semantic grammar,” (Burton, 1976) especially if the 
personnel involved do not have a background in linguis- 
tics. In a semantic grammar, the grammatical categories 
are derived from concepts related directly to the problem 

under consideration. For example, the GLIB syntax for 
the category ( rule) is 

(rule) ::= IF (observation) THEN (conclusion) 

and one grammar rule defining the category (observation) 
is 

(observation) ::= (signal) HAS (property) OF (value) 

Figure 1 shows a fragment of the syntax of GLIB. The 
documentation at this step of the project is the syntactic 
definition of this knowledge acquisition grammar. 

Step 3: Representing Knowledge. 

Once the English-like knowledge acquisition grammar 
has been specified, it is then used to guide the process 
of deciding how the knowledge is to be represented in a 
prototype expert system. The simplest way to do this is to 
begin with the categories of the semantic grammar. Nearly 
all these categories will be meaningful from the standpoint 
of a representation. It is necessary to determine a specific 
form for storing instances of the category. Assuming the 

target inference engine will run in Prolog, a corresponding 
syntax for the rule about observations might be 

(observation) ::= (property) ((signal) , (value)) 

which produces structures like 

voltage (signal-3, high) 

frequency (signal-3, 5000) 

The documentation at this stage the definition of in- 
ternal knowledge base formats as they relate to the acqui- 
sition grammar syntax. We have used lexical functional 
grammar constraints (Kaplan, 1982) to accomplish this, 
but any appropriate mapping technique will suffice. Lexi- 
cal functional grammar constraints will be discussed later. 
Figure 11 shows an example of these constraints, attached 
to a fragment of the GLIB grammar. 

The Prototype Implementation Phase 

Once the external and internal knowledge base formats 
have been defined, they can be used to guide the imple- 
mentation of a prototype expert system. The implemen- 
tation process consists of acquiring the knowledge base, 
building an inference engine, and building an appropriate 
interface. 

Sample circuit display in INKA. 

Figure 6. 

Step 4: Acquiring Knowledge. Once a semantic 
grammar and a mapping to internal rule formats have 
been defined, it is possible to make a wholesale effort to 
acquire knowledge relevant to a particular task. This can 
be accomplished in several ways. The most convenient 
is to use a tool that allows the expert to generate En- 
glish expressions conforming to the knowledge acquisition 
grammar and translates these automatically into the tar- 
get formats. 

Figure 5 shows some sample external and internal rules 

captured by the INKA knowledge acquisition tool for trou- 
bleshooting the simple circuit shown in Figure 6. We will 
discuss INKA in more detail later. 

The documentation of this step is a prototype knowl- 
edge base, containing facts and rules specifically relevant 
to the prototype under construction. The prototype knowl- 
edge base will exist in two forms, an external knowledge 
base consisting of rules as acquired from the expert in En- 
glish and an internal knowledge base, ready to be pro- 
cessed by some inference engine. 

Step 5: Inference Strategy Design. Once a partial 
knowledge base has been acquired, it is time to build or 
select an inference engine to process the knowledge base. 
This is the point at which the work by Stefik et al. (1982) 
becomes relevant. Because of their prior exercises in ac- 
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quiring and building the knowledge base, the project team 
has a much better familiarity with the requirements of the 
problem and are able to make a more educated choice of 
inference strategies. Ideally, choices about the knowledge 
representation would enlighten this decision, but to date 
we have not found any method to improve on Stefik’s infor- 
mal analysis. We have found in some simple cases, how- 
ever, that the same knowledge base can be reused with 
progressively more sophisticated inference engines. 

These findings partially confirm our hypothesis that 
extracting and articulating the knowledge is the most im- 
portant phase of the expert system development process. 
Figure 7 shows simplified Prolog code for two different in- 
ference strategies for troubleshooting an electronic instru- 
ment. The first is called top-down localization and is simi- 
lar to the engine used in INKA. The second uses a strategy 
of direct hypotheses to make educated guesses about where 
to look for failures. Although additional knowledge (in 

the form of heuristics) is required to make the hypothesis- 
based engine work, the actual tests are determined by the 
same knowledge as used by the first strategy. 

The documentation at this stage of the project is a 
running inference engine. 

Step 6: Interface Design. As we mentioned before, 

the design of an effective interface is extremely important 
in delivering acceptable expert systems. Generally this 
involves trying to discover what parts of the task are rou- 
tine and can be handled in an effective interface. In the 
FG-502 troubleshooting assistant, for instance, we found 
that helping the technicians locate parts could save them 
time in troubleshooting instruments. Similar techniques 

have been used in managing graphical service documents 
at Brown (Feiner, 1982) and also on the Steamer project 
at BBN (Hollan, 1984). The number and quality of avail- 
able primitives can have a large effect on the quality of 
an interface that can be produced in some fixed period of 
time. The documentation at this point in the project is a 
prototype interface. 

Features of the Methodology 

As we mentioned before, one major advantage of a method- 
ological approach to knowledge engineering is that it pro- 
vides a basis for communicating about the progress of a 
knowledge engineering project. All too often, knowledge 
engineering projects become a black hole, and managers 
have difficulty perceiving signs of progress. With a clear 
sense of stages and documentation which can be delivered 
at each milestone, it becomes possible to say “We’ve com- 
pleted the knowledge organization phase and we’re now 
defining the representation,” rather than “We’re working 
on it.” 

The major question that arises about our methodology 
is whether it is possible to define the forms for represent- 
ing knowledge before understanding the uses to which the 
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Figure 7. 

knowledge will be put. It has been observed by many 
researchers that knowledge engineering is very much a 
chicken and egg phenomenon (Buchanan, 1983). The types 
of knowledge that will be useful and the forms in which 
this knowledge should be represented depend on the in- 
ference strategies to process the knowledge. On the other 
hand, determining an appropriate inference strategy re- 

quires knowing something about the knowledge required 
to solve the problem. 

How can this loop be broken? Our experience is that 

158 THE AI MAGAZINE Fall, 1985 



the knowledge as elicited from the expert consists primar- 
ily of references to objects, relations, observations, and 
events which are well known in the problem world. Only 
at the final level of grammatical processing do these refer- 
ences aggregate into heuristic connections, say between an 
observation and a conclusion. The part of GLIB that re- 
lates to specific assumptions about the inference strategies 
to be used, for instance, amounts to probably less than 1% 
of the total. 

This knowledge is likely to contain much in the way 
of qualitative descriptions and categories which the expert 
finds useful in discussing the problem. To a first approx- 
imation, it is precisely these hints as to the correct levels 
of abstraction that we want to acquire from the expert in 
the first place. 

If an expert instrument troubleshooter uses a rough 
qualitative characterization of voltage levels, such as “high” 
and “low” in describing how to troubleshoot the device, 
this qualitative categorization of the rules represents an 
abstraction that the expert finds useful. Whatever infer- 
ence strategies we may utilize to heuristically connect be- 
havior and its interpretation, it is quite likely that the 
underlying knowledge will be most effectively processed at 
this level of abstraction. 

Of course, the problem still remains as to how to char- 
acterize the qualitative distinctions between “high” and 
“low” when measurements are made that do not automat- 
ically correspond to the expert’s categorization. Brown 

et al. (1982) h ave discussed techniques for performing 

this particular qualitative abstraction. We are currently 
working on an analytical technique for defining these ab- 
stractions and their effects in any knowledge engineering 

problem. 

With respect to the interpretation of specific heuristic 
associations, we note that these connections tend to ap- 
pear only at the highest level of aggregation of an expert’s 
knowledge. For example, particular troubleshooting rules 

might be captured from an expert in the form 

IF (observation) THEN (conclusion) 

These rules might be interpreted as defining rigorous 
tests that guarantee the conclusion or heuristic associa- 
tions that relate symptoms to their causes. Distinguishing 
between these possible interpretations is not possible on 
the basis of the syntactic expression alone. 

In either case, the syntactic structure shown above is 
likely to be used. It is therefore possible to build the syntax 
for an expert’s expressions without needing immediately to 
assign an interpretation to them. Herein lies the useful- 
ness of having an external knowledge base, because these 

associations can even be captured without specific com- 
mitment to their interpretation in a particular inference 
strategy. When interpretation finally becomes inevitable, 
the external knowledge base provides a store of expressions 

for processing under whatever assumptions about inter- 
pretation are most appropriate. Even when changes are 
made to these interpretations, the knowledge need not be 
re-acquired. Even in extreme cases where a dialogue with 
the expert is necessary to make the correct interpretation, 
the syntactic structures of the external rule base provide 
a convenient means for discriminating those expressions 
that will require close analysis from those that will not. 

****************** 

WAVESOLDER ASSISTANT 

MENU 

************x***** 

a. hxsufficient Solder 

b. Voids 

c. Solder bridges 

d. Icicles 

e. Peeling solder resisr 

f. Nonwetting 

g. Warping 

h. Rosin fiIm 

i. Removed Print 

j. Raised components 

k. Solder balls 

I. MiSSed joints 

m. Front edge of board 1)oorly soldered 

n. Rough Solder 

cl. QUlT 

SELECT YOUR PROBLEM (a,b,c.. . .) d SHOW PROBLEM 

DEFINITION (y/n> y 

ICICLES: spike, flag, coneshaped peak or sharp point of sol- 

der 

Return to menu? (y/n) n Is the solder temperature lower 

rhan 450 degrees? (y,n) n Is the flux density higher than 850t 

(y/n) n 1s the preheat temperature lower Khan 730 degrees? 

(y/n) y Increase the preheat temperature to 730 degrees. 

Sample DiaBogue with 
Wave Solder Machine Operator’s Advisor 

Figure 8. 

Variations on the Methodology 

The methodology we have presented is, in fact, quite de- 
tailed. There are many examples of simple knowledge engi- 

neering applications where it does not make sense to follow 
this approach rigidly. Steps can be skipped or combined, 
depending on the common sense of the project team and 
its management. 
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An example of how this methodology may be varied to 
suit particular needs is provided by the history of devel- 
opment of a Wave Solder Machine Operator’s Assistant, 
being built by Sal Faruqui and Bill Barton in Tektronix’ 
Lab Instrumdnts Division. 

insufficient solder (holes not fulL or poor wicking. or several 

leads nor soldered; affecting the integfity of solder joints) 

decrease conveyo? speed :- several leads not soldered, or holes 

nor full, and conveyor speed high (5) 

increase flux level :- holes noK full. or poor wicking, or several 

leads non soldered, and flux ievel low (3) 

increase preheat temoerature :- several leads not soldered, 

and preheat temperature low (4) 

increase soider wave :- bores not full, and solder wave low (4) 

VOD (blowhole. of pinhole, or hollow area; poor bond affecK- 

ing the integrity of soider joints) 

decrease flux density :- Popping rosin beads exist. and flux 

densiry high (5) 

increase preheat temperature :- pfeheat temperature low (4) 

recycle boards :- Process ok, and voids exist after first pass 

(4) 

decrease conveyor speed :- conveyor speed high (3) 

increase solder temperature :- solder ter?Werature low (4) 

isolate boards and contact manager :- contamination exisKs 

(4) 

solder bridge (deposir of solder that Short circuiKs,an elecfricat 

connection> 

increase solder temperature .- solder KemoeraKure low [4] 

decrease flux density :- flux density high [4] 

increase orehear temperature :- preheat temperature low [S] 

fotate board 90 degrees :- problem leads are lined ug in the 

direction of travel 

isolate boards and contact manager :- teads are longer than 

3/16 

icicle (spike. or flag. or cone-shaped peak, or sharp ooint of 

solder Ovef 3/16) 

increase solder temperature :- solder temPeraMe low [5] 

decrease flux density :- flux density high [3] 

increase preheat temperature :- Preheat temperature iow 

Wave Solder rule base in transit to Prolog &uses. 

Figure 9. 

Figure 8 shows a sample dialogue with the program. 
This program is not especially complicated. The wave 
solder machine operator checks boards as they are soldered 
for obvious defects like bridges or holes. When a defect is 

noticed, the operator must adjust one or more operating 
parameters of the soldering machine. 

The important thing about the wave solder operator’s 
assistant is that, though simple, it is typitial of many small 

problems that can be profitably attacked with a knowledge 
engineering solution, provided costs can be kept accept- 
ably low. 

A variation on the DETEKTR methodology was used 
to manage development of this system. Because of the 
simplicity of the problem and the fact that it was to be a 
one-of-a-kind system, it was not necessary to formally de- 
fine a knowledge acquisition grammar. Instead, the paper 
knowledge base was transcribed directly to Prolog. 

Figure 9 shows an example of the paper knowledge 
base as it migrated into Prolog. The wave solder ma- 
chine operator’s assistant has passed preliminary testing 
by an expert on the solder machine’s operation. Opera- 
tional testing is scheduled for June, 1985. 

Tools for Knowledge Engineering 

The DETEKTR methodology provides a view of the knowl- 
edge engineering process that emphasizes acquisition and 
analysis of the knowledge prior to construction of a proto- 
type. The inference strategy to be employed is considered 
only after much work has already been done. 

This view dictates a concrete approach to the idea of 
a development environment for expert systems. Inference 
mechanisms are only one of the tools needed to support 
the progress from interview transcripts to prototype. The 
knowledge engineering environment to support a method- 
ology like this will also need tools to: 

l support the mapping from paper knowledge base to 
grammar. 

l support analysis of the grammar and definition of the 
internal knowledge base formats. 

0 permit selection from a catalog of inference strategies. 

l build natural language and graphical interfaces. 

DETEKTR is designed as a prototype development 
environment for expert systems that consists of a collec- 
tion of tools of the form described. These tools have been 
specialized in our case to support development of expert 
systems for troubleshooting electronic instruments. The 
principles behind the tools, however, apply to other prob- 
lem worlds as well. 

INKA is a tool that supports the acquisition of trou- 
bleshooting rules for electronic instruments. Using the IN- 
GLISH interface (Phillips, 1984)) INKA translates expres- 
sions from GLIB into Prolog clauses, which are processed 
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by a specialized troubleshooting inference engine written 
in Prolog. INKA could easily be modified to provide a 
knowledge acquisition system for other problems as well. 
The input to INKA is a semantic grammar representing 
the external knowledge base format, and a mapping to an 
internal format. INKA acquires troubleshooting rules in 
the external format and passes them to a prolog inference 
engine for processing. Figure 10 shows INKA in operation. 

The mapping to an internal format is accomplished 
by supplying lexical functional constraints (Kaplan, 1982) 
that map categories from the GLIB grammar to internal 
forms. 

Figure 11 shows a fragment of the GLIB grammar that 
has been annotated with the necessary lexical functional 
constraints. 

When a rule has been parsed, as shown in Figure 12, 
the constraints act to propagate functional attributes, like 

FORM, STATE, and IND, from lower grammatical cate- 
gories to higher ones. Referring to Figure 12, for instance, 
the constraint above the category (condition), 

(t COND) =j 

governs propagation of all functional attributes (including 
one called FORM) to the level of the category (rule), to 
be stored under the functional attribute COND In like 
manner, the first constraint above (conclusion), 

(t CNCL) =J 

governs propagation of all attributes to the CNCL property 
of the (rule) category. Then the second constraint above 

(conclusion), 

(FORM) = (rule((? COND FORM), (t CNCL FORM))) 

retrieves these two attributes, COND and CNCL, and com- 
bines their FORMS to build a FORM for the category (rule). 
The final rule constructed, then, resides in the FORM at- 
tribute of (rule) and is passed on to Prolog as 

rule(state(led-2,on),status(transistor-l7,failed)). 

These lexical functional constraints are the sole defini- 
tion of the Prolog-based internal knowledge base formats. 
The GLIB grammar itself depends in no way on the choice 
of Prolog as a target representation. The rules acquired 

could be as easily compiled into Lisp, or some other for- 
mat. 

INKA combines the semantic acquisition grammar and 
internal format definitions to build a parser that acquires 
rules in the grammar and translates them into the proper 
internal forms. The rules can then be tested by an infer- 
ence engine running in the background. 

Several features make this a convenient interface to 

use. When typing a rule, menus can be selected to guide 
the user (Figure 13). The system also supports phrase 
completion and spelling correction. 

PIKA (Pictorial Knowledge Acquisition) is a graph- 
ics editor that produces as its output not a simple picture, 
but a collection of structured graphical objects. The struc- 
ture is important to facilitate their use for pointing to and 
cross-referencing components of the dia&am. These struc- 

tured objects can be assembled to support a multi-level 
display interface. 

Figure 14 shows an example of PIKA being used to 
create a circuit schematic. 

A third tool-still in the design stages-is CHEKA 
(Checker for Knowledge Acquisition). CHEKA accepts 
a collection of integrity constraints developed during the 
analysis of a problem and checks new rules being added by 
INKA for consistency with these constraints. CHEKA will 

use techniques developed at the Japanese Institute for New 
Generation Computer Technology (Kitakami, 1984, Miy- 
achi, 1984) that relies on explicit statement of constraints 
to determine consistency of a particular set of facts and 

rules. 

In a complete development, environment to support, 
our methodology, some tools would be general purpose, 
while others might be specifically tuned to a particular 
problem world. People using the tools would choose prob- 
lem specific tools when available and general tools when 
specific tools did not exist. The important thing is that 
the collection of tools support a step-by-step approach to 
knowledge engineering, always providing some way to keep 
making progress on the problem at hand. 

Conclusions 

From our experience in teaching the knowledge engineer- 
ing process to software engineers at Tektronix, we have 
discovered that the most important need for expert, sys- 
tem prototype development is the need for techniques to 
examine a problem and begin to turn its amorphous shape 
into something concrete enough so that a prototype system 
can be created. 

We have demonstrated one approach to this problem 
that uses formal grammars as a documentation technique 
in managing these early stages of development. Much more 
work needs to be done, however, to provide a gradual and 
step-by-step approach that does not require years of train- 
ing before it can be used. Tools which support, these steps 
of familiarization, definition, and acquisition of an expert’s 
knowledge will doubtless form the backbone of future ex- 
pert system development tools. 
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