
A.-M. Kermarrec, L. Bougé, and T. Priol (Eds.): Euro-Par 2007, LNCS 4641, pp. 280–291, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Starvation-Free Transactional Memory-System
Protocols*

Mridha Mohammad Waliullah and Per Stenstrom

Department of Computer Science and Engineering
Chalmers University of Technology

SE-412 96, Göteborg, Sweden
{waliulla,pers}@ce.chalmers.se

Abstract. Transactional memory systems trade ease of programming with run-
time performance losses in handling transactions. This paper focuses on
starvation effects that show up in systems where unordered transactions are
committed on a demand-driven basis. Such simple commit arbitration policies
are prone to starvation. The design issues for commit arbitration policies are
analyzed and novel policies that reduce the amount of wasted computation due
to roll-back and, most importantly, that avoid starvation are proposed. We
analyze in detail how to incorporate them in a TCC-like transactional memory
protocol. The proposed schemes have no impact on the common-case
performance and add quite modest complexity to the baseline protocol.

Keywords: Multiprocessors, transactional memory, starvation.

1 Introduction

As multi-core architectures are becoming commonplace, the need to make parallel
programming easier is becoming acute. Transactional memory (TM) [1,2,3,4,7]
promises to reduce the programming effort by relieving the programmer from resolving
complex, fine-grain, inter-thread dependences by classical synchronization primitives
such as locks and event synchronizations. Instead, coarse program segments form
transactions that will either execute atomically or not at all. If transactions run by
different threads have no dependencies, they can run concurrently. On the other hand, if
a data dependency or a conflict appears, one of the transactions is squashed and must re-
execute. Therefore, transactional memory trades programming simplicity for wasted
execution at run-time.

Conflicts can be detected eagerly or lazily [4]. Under lazy conflict detections, such
as TCC [2], the modifications done by a transaction are isolated until the point when
the transaction is to commit. When the transaction commits, other transactions that
have speculatively read data modified by the committing transaction will be squashed.
Squashing does not only waste useful work. We show in this paper that it can cause
starvation.

* This research is sponsored by the SARC project funded by the EU under FET. The authors are

members of HiPEAC - a Network of Excellence funded by the EU under FP6.

 Starvation-Free Transactional Memory-System Protocols 281

This paper makes several contributions. Firstly, it analyzes in detail how to
implement feasible commit arbitration schemes for TCC-like TM protocols. Secondly,
and most importantly, it contributes with two novel starvation-free commit arbitration
policies. Our overall approach to detect and remedy a potential starvation problem is to
track how many times a certain transaction has been squashed. At the time a thread is
ready to commit, it will not be allowed to do so if there is an ongoing transaction that
has been squashed more times than the committing one. Then, the committing thread is
stalled until that transaction has committed. Apart from avoiding devastating starvation
situations, we show experimentally, using eight applications from SPLASH-2, that our
starvation-free policies have virtually no impact on common-case performance and that
they can be implemented with minor modifications to a TCC-like TM protocol.

As for the rest of the paper, we first introduce the architectural framework and
frame the problem in more detail in Section 2. Section 3 is devoted to the novel
arbitration schemes and especially how they are incorporated in the architectural
framework. We then move on to the experimental results in Sections 4-5 by first
describing the methodology. Section 6 puts our work in context of the TM literature
and we conclude in Section 7.

2 System Framework

In this section, we define the framework of our study including the software
assumptions in Section 2.1 and the architectural framework in Section 2.2. Finally, we
frame the problem addressed by this research in detail in Section 2.3.

2.1 Software Assumptions

We assume that parallel programs uses transactions only and that a transaction is
annotated by the programmer using start transaction (tx_begin) and end transaction
(tx_end) constructs. In case of parallel applications using critical sections and barriers
transactions are formed so that the following simple rules are followed: 1) critical
sections are guaranteed to be encapsulated within a transaction and 2) a transaction is
terminated and a new transaction starts at a barrier. However, a transaction can be
terminated and a new one can start between two barriers as long as it happens outside
critical sections [6,8,9,10].

In the assumed TM system, threads can execute beyond a barrier as long as they do
not conflict with a thread that has not reached the barrier. This is supported using the
notion of ordered as well as unordered transactions. A phase number is associated
with each transaction which is incremented when a barrier is passed. All transactions
that are started after the dynamic invocation of a certain barrier get the same phase
number. If two transactions have the same phase number they are unordered;
otherwise they are ordered and must commit in the ascending order of their phase
numbers. Let’s next consider the system model that supports this software model.

2.2 Architectural Framework

We consider a multi-core system that consists of n nodes where each node consists of
a processor core (or core for simplicity) with its private L1 (optionally L2) cache

282 M.M. Waliullah and P. Stenstrom

connected to a shared L2 (optionally L3) cache via a bus or other broadcast medium
according to Figure 1. Each core can be optionally (simultaneously) multithreaded
with k hardware threads, where k is typically a small number (four or less).

Each L1 cache is extended with meta data to keep track of which blocks have been
speculatively read and written using a read (R) and a write (W) bit, respectively, by
setting the corresponding bits. When a transaction is finished, it will try to commit by
requesting the bus. If a block that has been speculatively written is replaced, it is
placed in a victim cache (VC) attached to each L1 cache. VC overflow is treated as
described in [2].

In the baseline system, multiple commit requests are arbitrated through a central
arbitration unit (denoted as CAU in Figure 1). To adhere to the semantics of ordered
transactions, it attempts to select a committing transaction among the ones with the
lowest phase number. Among these unordered transactions, it selects a candidate
using FIFO.

Fig. 1. Baseline architecture framework

To implement the baseline arbitration policy, the CAU uses three components: phase
number counters (PNC), a lowest phase counter (LPC), and a FIFO with all commit-
requests. The PNCs keep track of the current phase number of each thread using N = n x
k phase-number counters, given n nodes and k hardware threads per node.

There are two types of commit requests: ordered and unordered. When a thread
passes a barrier, an ordered commit request is sent. When an ordered commit request
is granted by the CAU, the corresponding PNC is incremented. The LPC keeps track
of the lowest phase number of any thread, i.e., min(PNCi), i=1,…,N. Finally, the
FIFO simply keeps all pending commit requests on a first-come, first serve basis.
Given these components, the CAU uses the LPC to filter out the requests from the
FIFO that can commit, i.e., the transactions having the lowest phase numbers. It then
picks the first one of these in the FIFO queue. A node with a granted commit request
broadcasts its write set (the set of blocks having a W-bit set) to all L1 caches. All
nodes with a block belonging to the write set and with its R-bit set will be notified to
squash their ongoing transactions. Squashing a transaction involves the following

W R

L2

L1 L1V V

CAU
Commit RequestLPC

 PNC1 PNC2 PNCn

P1 P2

T1 …. Tk T1 …. Tk

 Starvation-Free Transactional Memory-System Protocols 283

steps: 1) invalidate all blocks having either the R or W-bit set; 2) gang-clear all R and
W bits; and, 3) restart the transaction by reinstalling the architectural state.

2.3 A Starvation Scenario

A major limitation of any transactional memory system is the performance lost due to
squashes. More seriously, the simple arbitration policy assumed in the original TCC
proposal is actually prone to starvation as the example in Figure 2 clearly demonstrates.

Fig. 2. A starvation scenario

Let’s consider two threads (T1 and T2) that execute the code in Figure 2A. T1
executes a transaction (Tx1) that reads variable X followed by another transaction that
does not conflict with any (Tx3). On the other hand, T2 executes a transaction (Tx2)
that modifies X N times. Further, the execution time of Tx1 is assumed to be longer
than that of Tx2.

Now consider the execution scenario in Figure 2B in which the execution of Tx1,
Tx2, and Tx3 is tracked along the vertical time axis and where the commit and squash
points are marked. As Tx1 and Tx2 obviously conflict, Tx2 will successfully commit
whereas Tx1 will be squashed. As T2 will invoke Tx2 again, while T1 attempts to re-
execute Tx1, the same scenario may repeat N times. As a result, the execution of all
transactions will be serialized.

In another scenario, assuming the same code, Tx1 could have successfully
committed before the first invocation of Tx2. Then, the execution of Tx3, and
possibly subsequent transactions, could overlap the execution of the N-1 invocations
of Tx2. Clearly, although the commit arbitration mechanism assumed in TCC meets
fairness objectives at the level of commit requests between ordered and unordered
transactions, it may result in starvation at the software level.

We have observed that a nearly as bad scenario showed up for Raytrace in
SPLASH-2 (to be discussed in Section 5). The key reason for the devastating scenario
of Figure 2B is that the CAU is completely unaware of the history by which
transactions get squashed. In the next section, we propose novel arbitration policies
that address this shortcoming.

T2{
for(i=1;i++;i<N){

Tx2_begin{
…
X=…;
…
}

}
}

B

T1{
Tx1_begin{
…=X;
…
…
}
Tx3_begin{
 Unrelated();
}

}

Tx1

Tx1

Tx1

Tx1

Tx3

T1 T2

Tx21

Tx22

Tx2N

Commit

Squash

A

284 M.M. Waliullah and P. Stenstrom

3 Starvation-Free Arbitration Policies

To avoid starvation, the overall approach is to give priority to ongoing transactions
that have already suffered from being squashed. We consider two schemes that differ
in the way transactions are given priority to be selected and in implementation
complexity. They are referred to as the naïve and the elaborate schemes. Both
schemes extend the already existing central arbitration unit in the baseline system.

3.1 The Naïve Scheme

Recall that the baseline scheme selects a transaction to commit among the threads
with the lowest phase number on a first-come-first-serve basis. In the naïve scheme,
we also select a thread to commit in this set. However, we put an additional constraint
on which threads to commit based on how many times their ongoing transactions have
been squashed. A thread can only commit if it has been squashed at least the same
number of times as any other thread with the lowest phase number. Unlike in the
baseline scheme, the set of threads that can commit can be the empty set, i.e., all
threads attempting to commit so far can be stalled.

To keep track of the number of squashes per thread, the CAU is extended with N
miss-speculation counters (MSC), assuming N threads, where each MSC is initially
cleared. When a thread suffers from a squash, the corresponding MSC is incremented.
Conversely, when a thread commits its transaction, the corresponding MSC is cleared.
In Figure 3, we show the extra mechanisms needed by the naïve scheme.

The CAU obviously knows when a thread can commit its ongoing transaction but
lacks knowledge about when a transaction is squashed. Hence, it needs to know when
to increment the MSCs. This is accomplished by requiring that each time a node
selects to squash a transaction, it notifies the CAU so that the corresponding MSC can
be incremented. Hence, the commit protocol involving broadcasting the write set and
matching it against the read set in each node, must be extended with a final phase to
notify the CAU about the hardware threads on each node that were squashed.

One solution is to let all nodes serially report to the CAU about squashed
transactions. This would obviously cause a lot of overhead so we propose the
following solution. All hardware threads have a SQUASH signal that is raised when a
transaction has been squashed. Further, the bus is extended with N dedicated lines;
one for each SQUASH-signal. These lines are used as increment-enable signals to the
set of MSCs maintained by the CAU as shown in Figure 3.

In summary, in terms of structures, the naïve scheme is extended with as many
miss-speculation counters as the number of hardware threads. Additionally, it needs a

Fig. 3. Mechanisms used by the naive scheme not part of the baseline

MSC1

SQUASHn

INCR
MSC2 MSCn

SQUASH2 SQUASH1

 Starvation-Free Transactional Memory-System Protocols 285

special-purpose bus with as many lines as the number of hardware threads. Given the
fairly limited number of nodes and hardware threads per core in a multi-core chip for
a foreseeable future, this solution appears to be reasonable.

3.2 The Elaborate Scheme

In the naïve scheme, a committing transaction is stalled when any transaction with the
lowest phase number and a higher MSC exists in the system disregarding the fact that
these transactions could be data independent of each other. Intuitively, it would be
unwise to stall a transaction that has no conflict with a transaction that has a higher
MSC because, then, it is not the cause of a potential starvation scenario.

In the elaborate scheme, a committing transaction that has the lowest phase number
and has no conflict with any transaction with the same phase number and a higher
MSC is allowed to commit. Conversely, the CAU will stall a transaction either if the
committing transaction has not the lowest phase number (as in the baseline) or it has
the lowest phase number and it conflicts with another transaction that has the same
phase number and a higher MSC.

Unfortunately, the CAU has no knowledge about what transactions would be
squashed if it grants a commit request. Therefore, we need to extend the naïve scheme
by breaking up a commit operation into two phases: 1) check-for-data-races 2) make-
commit-decision where the first phase is not part of the naïve and the baseline scheme.

To check for data conflicts, the committing node first broadcasts the write set of its
transaction. Each node checks locally whether its ongoing transaction conflicts with
the committing transaction. If this is the case, it activates the SQUASH signal
introduced in the naïve scheme (see Figure 3). The CAU will check the MSCs of the
transactions with their SQUASH signals activated and if any of them is higher than
the MSC of the committing node and they have the same (lowest) phase number, the
committing node is not allowed to commit. On the other hand, if the committing
transaction will be allowed to commit, the CAU will notify the nodes that have their
SQUASH signals activated to squash their ongoing transactions.

In summary, in comparison with the naïve scheme, the elaborate scheme must
extend the commit protocol with a phase that checks whether the transaction that
requests to commit can do so without squashing a thread that has the same phase
number but a higher MSC value. Note that even if a committing transaction will stall,
a bus transaction that checks for conflicts is still needed. Thus, the elaborate scheme
causes more traffic than the naïve scheme.

4 Experimental Methodology

In order to analyze whether the new arbitration schemes result in fewer useless cycles
in terms of delays (waiting time for commit decision) or miss-speculations, we have
built a simulation model of the baseline system and augmented it with the naïve and
the elaborate scheme.

As we are only concerned with the number of cycles lost due to stalling a committing
thread and a thread that miss-speculates, we have opted for a simple model of the
memory system. Hence, we do not charge any cycles for cache misses at any level of
the memory hierarchy. We model a 16-core system with a single hardware thread per

286 M.M. Waliullah and P. Stenstrom

core. Each node has a 128-Kbyte, 4-way L1 cache with a block size of 16 bytes. This
would correspond to multi-cores with a combined L1/L2 inclusive cache hierarchy of
the same capacity. Further, we maintain an infinite buffering space for speculatively
modified blocks by assuming an infinite victim cache.

The system model is driven by traces generated by the eight SPLASH-2 applications
[11] in Table 1. We use a trace-driven methodology to drive the system model. Each of
the eight benchmarks is first run on Simics [5] with Sun Sparc as the target machine.
Benchmarks are run with the original synchronization primitives and we collect
statistics only in the parallel phase of each benchmark.

Table 1. Benchmarks and their data sets

Applications Inputs Applications Inputs
Barnes 2048 particles Ocean 34x34 grid

Radix 1024 radix, 256K keys FFT 216-data points, cache
line size-16, number
of cache line-8K

Raytrace teapot.env

 FMM 2048 particles Volrend Head
LU-Non contig. 512x512 matrix

Transactions are marked by using the Simics magic instructions in-lined in the
implementation of locks and barriers in the ANL-macros. There is a magic instruction
at the beginning and at the end of these macros. All memory references between these
magic instructions are filtered out of the trace.

A new transaction starts at a barrier and will terminate at the next barrier or after
1000 instructions, which of them happens first, unless that point occurs inside a critical
section. If so, the transaction is continued until the corresponding unlock construct is
executed. For nested locks, we flatten them out with the outermost lock, i.e., no
transaction can start or terminate within the boundary of this outermost critical section.

It is well-known that a trace-driven approach that we use will not reflect the correct
interleaving of events. However, as our goal is not to assess absolute performance but
rather to compare the number of useless cycles using the different arbitration policies,
we feel that the methodology adopted is adequate for this purpose.

5 Experimental Results

In Section 5.1, we experimentally confirm that the starvation scenario in Section 2.3
can happen. Then, we analyze the tradeoffs between the baseline, the naïve scheme,
and the elaborate scheme in detail in Section 5.2

5.1 The Case for Starvation of the Baseline Protocol

Figure 4 shows the execution time of each of the 16 threads normalized to the slowest
running thread when running the application Raytrace on three systems. For each
thread, the three bars correspond to the baseline system, the naïve scheme, and the
elaborate scheme, from left to right. Further, each bar is decomposed into three

 Starvation-Free Transactional Memory-System Protocols 287

Fig. 4. Execution time of individual threads in Raytrace normalized to the slowest thread. The
first, second, and third bars in each cluster correspond to the baseline, the naive and the elaborate
arbitration scheme respectively.

sections that break down the execution time into useful cycles, useless cycles, and idle
cycles (waiting for commit decision), from bottom to top.

As can be seen in Figure 4, there is a huge difference in execution time between
different threads under the baseline arbitration scheme. For example, the baseline
system execution time for thread 8 is five times longer than that of thread 10!
However, the number of useful cycles across the threads is about the same so the
effect is not attributed to load imbalance. The difference stems from the number of
useless cycles. Trace inspection has revealed that Raytrace suffers from a similar
starvation situation as described in Section 2.3 which degrades the performance.

Considering the execution times across threads for the naïve and the elaborate
schemes (the two rightmost bars in each cluster), we can see that the difference
between the slowest and the fastest threads is small. This suggests that these schemes
successfully eliminate starvation. In fact, the execution time, which is dictated by the
slowest thread, is cut down by as much as between 55% and 59% using the naïve and
the elaborate schemes.

Continuing with the difference between the naïve and the elaborate schemes, it is
clear from Figure 4 that the naïve scheme suffers a lot from stalling. However, it is
interesting to note that the elaborate scheme also suffers from useless cycles which
are attributed to miss-speculations. A close inspection of Figure 4 reveals that the
naïve scheme tends to reduce the number of cycles lost for miss-speculations at the
expense of cycles lost for stalling threads. However, the elaborate scheme performs
slightly better than the naïve scheme – the execution time is around 4% shorter.

5.2 Tradeoffs Between the Naïve and the Elaborate Scheme

In Figure 5, we present the same results as in Figure 4 but for the ocean application. A
striking observation is that the naïve scheme suffers from a huge idle time. This is
caused by transactions that have to wait for unrelated transactions with a higher miss-
speculation count to commit. This is unfortunate, as the waiting transactions could
have been committed in the first place.

On the other hand, the elaborate scheme manages to keep the number of stall
cycles low but at the expense of extending a commit transaction with a “check-for-
data-races” phase. It is interesting to understand whether a simple modification of the
naïve scheme could reduce the number of idle cycles.

288 M.M. Waliullah and P. Stenstrom

Fig. 5. Execution time of individual threads in Ocean normalized to the slowest thread. The first,
second, and third bars in each cluster correspond to the baseline, the naive, and the elaborate
arbitration scheme respectively.

 (a) Barnes (b) FFT

 (c)FMM (d) LU-Nc

 (e) Ocean (f) Radix

 (g) Raytrace (h) Volrend

Fig. 6. Relative performance of the commit arbitration schemes for the eight applications using
threshold values 0, 2, 4, 16, and 32 plotted through diagrams (a) to (h). The 1st and 2nd clusters
under each threshold represent the execution time for the slowest and fastest running threads
respectively. Each cluster uses three bars that represent the relative execution time for the same
thread using all three arbitration schemes.

 Starvation-Free Transactional Memory-System Protocols 289

This encouraged choosing threads that have to stall under the naïve scheme more
selectively. Recalling the example starvation scenario in Section 2.3, the chief
observation is that a symptom of a starvation situation is that a request has been
denied several times in a row. In our improved naïve scheme, we allow a transaction
(with the lowest phase number) to commit if its MSC count is lower than another one
(with the lowest phase number) minus an offset, which we refer to as a threshold.

Obviously, a key issue is to select an appropriate threshold. Therefore, we
experimented with several threshold values. Figure 6 shows the performance of the
eight applications under the naïve scheme using threshold values of 0, 2, 4, 16, and 32
for the naïve scheme which correspond to the different bar clusters (each consisting of
six bars) in each diagram. In the figure, we have depicted the execution time for the
longest (L) and the shortest (S) running thread for each application. This enables us to
pinpoint a starvation scenario if it exists.

As we go from lower to higher threshold values, the idle time for the naïve scheme
is reduced significantly. It is important to note that it becomes as low as the baseline
arbitration for a threshold value of 16 for the applications which do not encounter any
starvation.

When an application uses barrier synchronizations, the performance of an
application that is run under a transactional memory paradigm will suffer from idle
cycles lost due to ordered commits. This is because a transaction with a higher phase
number must wait for a transaction with a lower phase number to commit. As a result,
also the baseline scheme suffers from idle cycles in all applications that use barriers to
synchronize as can be seen from Figure 6. One exception is Raytrace which does not
use barriers.

A striking observation is that as we increase the threshold, the performance
difference between the naïve scheme and the elaborate scheme diminishes. Therefore,
our recommendation is that the naïve scheme with a fairly high threshold (16 for
example) can safely eliminate starvations.

6 Related Work

We have proposed arbitration schemes for TM systems to avoid starvation. Hill et al.
have classified TM systems in two groups depending on lazy/eager conflict detection
[4]. While [1,4,7] are referred to as eager, [2] does lazy conflict resolution. This paper
has focused on the starvation problem for TM systems using lazy conflict resolution.

Rajwar et al. [9] proposed to timestamp a transaction when it is instantiated for
prioritizing transactions and in a conflicting scenario lower priority transactions
rollback or wait. The policy ensures forward progress and starvation freedom in a
system where conflicting scenario is visible before making a commit decision. The
author also assumed a system configuration where conflict is visible at the time of the
conflicting memory access. On the other hand, in a lazy conflict detecting system,
conflict is visible only after a transaction commit and memory modification is
revealed to others. However, we can use the timestamp based prioritization scheme to
serialize all commits disregarding the fact that many transactions don’t have any
conflict among them (independent transactions). Nevertheless, a concern is that it
would unnecessarily force independent transactions to wait.

290 M.M. Waliullah and P. Stenstrom

TM systems that detect conflict lazily, know about the conflict at the commit point
of any of the involving transactions. The straightforward first-come first-serve
arbitration policy used in TCC may lead to a starvation as described in Section 2.3.
Our proposed arbitration scheme targets a TM system that detects conflicts lazily and
especially uses a central arbitration unit to select a thread to commit.

Hammond et al. [2] propose the use of pseudo-barriers to make forward progress
for all processors. The idea is to arbitrarily insert a barrier implicitly so that a thread
that is subject to starvation will get a chance to catch up. Unfortunately, the paper
does not elaborate on how to make use of the idea. In fact, we have shown in this
paper that it is important to monitor when a starvation scenario is about to happen.
We do this by using miss-speculation counters. By arbitrarily inserting barriers, there
is simply no such monitoring mechanism to provide feedback.

7 Concluding Remarks

In this paper, we have proposed novel commit arbitration schemes for TM systems
that avoids starvation. We show how they can be implemented in a framework based
on TCC. As a general approach to avoid starvation, we propose that the commit
arbitration policy should be provided with feedback on squash counts of other threads.
To this end, we propose the naïve scheme and the elaborate scheme. Through a
detailed implementation and performance evaluation study we found the following.
Both proposed schemes can avoid starvation but do it at the expense of lost cycles due
to delaying the point at which a thread can commit.

We analyzed the design space of the simplest policy – the naïve policy – and found
that it can eliminate most of the stall cycles by introducing a threshold value between
the committing thread’s and the other ongoing thread’s miss-speculation count. By
doing this, we have found that naïve manages to remove most of the stall cycles at the
expense of some quite modest structure and protocol extensions. Overall, this paper
shows that it is possible to avoid starvation of transactional memory protocols at a
modest implementation cost.

References

1. Ananian, C.S., Asanovi’c, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded
Transactional Memory. In: Proceedings of the 11th International Symposium on High-
Performance Computer Architecture, San Franscisco, CA, February 2005, pp. 316–327 (2005)

2. Hammond, L., Wong, V., Chen, M., Hertzberg, B., Carlstrom, B., Davis, J., Prabhu, M.,
Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional Memory Coherence and Consistency.
In: Proc. of the 31st Annual International Symposium on Computer Architecture, München,
Germany, June 19-23, pp. 102–113 (2004)

3. Herlihy, M., Moss, J.E.B.: Transactional Memory: architectural support for lock-free data
structures. In: Proceedings of the 20th International Symposium on Computer Architecture,
pp. 289–300 (1993)

4. Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood, D.A.: LogTM: Log-based
Transactional Memory. In: Proceedings of the 12th Annual International Symposium on
High Performance Computer Architecture (HPCA-12), Austin, TX (February 11-15, 2006)

 Starvation-Free Transactional Memory-System Protocols 291

5. Magnusson, P.S., Christianson, M., Eskilson, J., et al.: Simics: A full system simulation
platform. IEEE Computer 35(2), 50–58 (2002)

6. Martinez, J., Torrellas, J.: Speculative synchronization: Applying thread-level speculation to
parallel applications. In: Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems (October 2002)

7. Rajwar, R., Herlihy, M., Lai, L.: Virtualizing transactional memory. In: Proceedings of the
32nd International Symposium on Computer Architecture, June 2005, pp. 494–505 (2005)

8. Rajwar, R., Goodman, J.: Speculative Lock Elision: enabling highly concurrent
multithreaded execution. In: MICRO 34: Proceedings of the 34th ACM/IEEE International
Symposium on Microarchitecture, pp. 294–305. IEEE Computer Society Press, Los Alamitos
(2001)

9. Rajwar, R., Goodman, J.: Transactional Lock-free Execution of Lock-Based Codes. In:
Proceedings of 10th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (October 2002)

10. Rundberg, P., Stenstrom, P.: Reordered speculative execution of critical sections. In:
Proceedings of the 2002 International Conference on Parallel Processing (February 2002)

11. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 Programs:
Characterization and Methodological Considerations. In: Proceedings of the 22nd
International Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June
1995, pp. 24–36 (1995)

	Starvation-Free Transactional Memory-System Protocols
	Introduction
	System Framework
	Software Assumptions
	Architectural Framework
	A Starvation Scenario

	Starvation-Free Arbitration Policies
	The Naïve Scheme
	The Elaborate Scheme

	Experimental Methodology
	Experimental Results
	The Case for Starvation of the Baseline Protocol
	Tradeoffs Between the Naïve and the Elaborate Scheme

	Related Work
	Concluding Remarks
	References

