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ABSTRACT
◥

Breast cancers are divided into subtypes with different prog-

noses and treatment responses based on global differences in gene

expression. Luminal breast cancer gene expression and prolifer-

ation are driven by estrogen receptor alpha, and targeting this

transcription factor is the most effective therapy for this subtype.

By contrast, it remains unclear which transcription factors drive

the gene expression signature that defines basal-like triple-

negative breast cancer, and there are no targeted therapies

approved to treat this aggressive subtype. In this study, we

utilized integrated genomic analysis of DNA methylation, chro-

matin accessibility, transcription factor binding, and gene expres-

sion in large collections of breast cancer cell lines and patient

tumors to identify transcription factors responsible for the basal-

like gene expression program. Glucocorticoid receptor (GR) and

STAT3 bind to the same genomic regulatory regions, which were

specifically open and unmethylated in basal-like breast cancer.

These transcription factors cooperated to regulate expression of

hundreds of genes in the basal-like gene expression signature,

which were associated with poor prognosis. Combination treat-

ment with small-molecule inhibitors of both transcription factors

resulted in synergistic decreases in cell growth in cell lines and

patient-derived organoid models. This study demonstrates that

GR and STAT3 cooperate to regulate the basal-like breast cancer

gene expression program and provides the basis for improved

therapy for basal-like triple-negative breast cancer through ratio-

nal combination of STAT3 and GR inhibitors.

Significance: This study demonstrates that GR and STAT3

cooperate to activate the canonical gene expression signature of

basal-like triple-negative breast cancer and that combination treat-

ment with STAT3 and GR inhibitors could provide synergistic

therapeutic efficacy.

Introduction
Breast cancers can be divided into subtypes with different prognoses

and treatment responses based on global gene expression differ-

ences (1). These expression differences reflect the transcription factors

(TF), epigenetic states, and gene regulatory networks in the normal

cells from which the tumors arise, as well as changes that accumulate

during tumorigenesis.

Normal luminal breast cells proliferate in response to estrogen

through activation of the TF estrogen receptor (ER)a and ER’s

downstream target genes. Breast cancers that express ER are most

often classified into the luminal subtype (2). These luminal ERþ

tumors are treated with hormone therapies that prevent ER from

activating its proproliferative transcriptional program. Even though

these tumors usually have wild-type ER, this is an extremely effective

targeted therapy because it inhibits the master regulator of gene

expression and proliferation in this cell type.

In contrast, 15% to 20% of patients with breast cancer are diagnosed

with triple-negative breast cancer (TNBC), which is defined by a lack of

expression of ER and progesterone receptor (PR), and normal expres-

sion of human epidermal growth factor receptor 2. There are no FDA-

approved targeted therapies to treat TNBC. Even after aggressive

treatment with surgery, radiotherapy, and cytotoxic chemotherapy,

patients with TNBC have a high rate of recurrence within 3 years (3)

and a high rate of death from disease (38%; ref. 4). There is a crucial

need for alternative therapeutic strategies for TNBC. TNBC is a

molecularly heterogeneous disease, and numerous previous studies

have found subsets of TNBC tumors with distinct molecular char-

acteristics. These subtypes include tumors with features that are

associated with the epithelial-to-mesenchymal transition, which is

often referred to as claudin-low ormesenchymal subtype (5–7), and an

apocrine/luminal signature driven by androgen receptor (AR) instead

of ER, now commonly known as the luminal androgen receptor

subtype (LAR), which responds to antiandrogen therapy (8). The

most broadly encompassing signature of TNBC that distinguishes it

from ER-driven luminal breast cancer is the basal-like subtype (9).

Approximately 70% to 80% of TNBC tumors are classified as basal-like

breast cancer using PAM50 subtyping (9). Thousands of genes are

differentially expressed between basal-like and luminal breast cancer,

and the genes upregulated in basal-like breast cancer reflect the rapid

growth and poor prognosis that are the hallmarks of TNBC (1, 5). It is

unclear which TFs are responsible for regulating the proproliferative

transcriptional program in the basal-like subtype. The goal of this

study is to identify TFs that regulate clinically relevant gene regulatory

programs in basal-like breast cancer, and determine if inhibiting these
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TFs could provide novel therapeutic strategies to improve clinical

outcomes for patients with basal-like breast cancer.

The roles of many TFs have been studied in basal-like breast

cancer (10, 11). Many of these TFs regulate important pathways in

basal-like breast cancer, and these TFs often regulate each other's

expression. Several of these TFs can be inhibited with small-molecule

drugs and represent promising therapeutic targets (12). What remains

unclear is which TFs are responsible for driving the gene expression

signature that defines the basal-like subtype and which are down-

stream of the master regulator.

This study utilized integrated analysis of DNA methylation, chro-

matin accessibility, TF binding, gene expression, and cell growth in

large collections of breast cancer cell lines and patient tumors to

identify TFs that drive the basal-like gene expression program. We

sought to identify regulatory regions that are specifically unmethylated

and have accessible chromatin in basal-like compared with luminal

breast cancers. We identified TFs whose motifs and binding sites are

most highly enriched at these basal-specific regulatory regions. We

then investigated whether these TFs were more highly expressed in

basal-like compared with luminal breast cancer, whether the TFs

regulated genes in the basal-like gene expression program, and wheth-

er the genes regulated by these TFs were associated with patient

outcomes. This genome-wide approach led to the discovery that

cooperation between two TFs [STAT3 and glucocorticoid receptor

(GR)], rather than a single “master regulator,” drives expression of

hundreds of genes in the basal-like gene expression program. This TF

cooperation provides basal-like cells with their resilient growth capac-

ity. Furthermore, inhibiting both TFs simultaneously led to synergistic

decreases in cell growth in basal-like cell lines and patient-derived

organoid models, which suggests a new treatment strategy for basal-

like breast cancer.

Materials and Methods
Cell lines

The following basal-like breast cancer cell lines were used for this

study: HCC1569, HCC1954, BT-20, HCC1143, HCC1187, HCC1599,

HCC1937, HCC70, MDA-MB-468, 2-LMP, BT-549, HCC38, MDA-

MB-157, MDA-MB-231, MDA-MB-436, SUM102, SUM149, and

SUM159.

The following luminal breast cancer cell lines were used for this

study: DY36T2, ZR-75–30, MDA-MB-453, SK-BR-3, BT-474, MDA-

MB-361, MCF-7, MDA-MB-134, T-47D, and ZR-75–1.

Cells were obtained and cultured as described previously (13). Cell

lines passaged for more than 3 months were authenticated every

6 months using short tandem repeat testing service offered through

the University of Utah DNA Sequencing Core Facility.

Reduced representation bisulfite sequencing

Reduced representation bisulfite sequencing (RRBS) and primary

analysis of CG methylation were performed on the panel of cell lines

using the method described previously (14). CG positions with at least

10x coverage in at least 80% of the cell lines were used for subsequent

analysis. To identify CGs that were differentially methylated between

basal-like and luminal cell lines, linear regression was performed in the

R software package version 3.5.0 using the lm function. P values were

adjusted for multiple hypothesis testing using the p.adjust function in

R and the Benjamini–Hochberg method. CGs with adjusted P values

less than 0.05 were visualized in R using the pheatmap package version

1.0.10. RRBS data are publicly available through NCBI Gene Expres-

sion Omnibus (GEO) accession number GSE152202.

Enrichment of ENCODE TF binding sites

A file named wgEncodeRegTfbsClusteredV2.bed.gz containing

TF-binding sites from chromatin immunoprecipitation sequencing

(ChIP-seq) experiments performed on 149 TFs by the ENCODE

Project (15) in a variety of cell lines was downloaded from the UCSC

Genome Browser (16). Bedtools intersect (17) was used to determine

which CG positions in the RRBS dataset overlapped binding site

positions for each TF in the file. The number of overlaps with

basal-like and luminal-specific CGs was normalized to the number

of overlaps to all CGs in RRBS to calculate a fold-enrichment.

Analysis of The Cancer Genome Atlas RNA sequencing and

ATAC-seq

RNA sequencing (RNA-seq) counts file for The Cancer Genome

Atlas (TCGA) Breast Cancer samples was downloaded from the

UCSC Xena browser (18, 19). These files contained log counts, so

they were transformed to counts in R version 3.5.0. DESeq2 version

1.20.0 (20) was used to identify genes that were differentially

expressed between basal-like and luminal tumors using the PAM50

Subtype classification provided by TCGA and available for down-

load through the UCSC Xena browser (18, 19). Basal-specific genes

were identified using an adjusted P value < 0.05 and coefficients less

than 0. Luminal-specific genes were identified using a P value < 0.05

and coefficients greater than 0.

Assay for transposase accessible chromatin with high-throughput

sequencing (ATAC-seq) data from TCGA breast tumors were down-

loaded as counts files and bigwig files from the Supplementary

Materials provided in the recent publication by Corces and collea-

gues (21). DESeq2 version 1.20.0 (20) was used to identify peaks

that were differentially accessible between basal-like and luminal

tumors using the PAM50 Subtype classification provided by TCGA

and available for download through the UCSC Xena browser (18, 19).

Pheatmap package version 1.0.10 was used to visualize basal-specific

peaks that were identified using an adjusted P value < 0.05 and coeffi-

cients less than 0. The ATAC-seq peaks specifically open in basal-like

tumors were analyzed for enrichment of motifs for JUN (MA0491.1),

STAT3 (MA0144.1), and GR(MA0113.2) downloaded from

JASPAR2018 (22). AME (23) was used to perform the analysis of

sequences in ATAC-seq peaks compared with a primary sequence

shuffled conserving 2-mer frequencies, and P values were calculated

using the Fisher exact test. MEME-ChIP (24) was used to perform

motif discovery on the 14,094most significant peaks (DESeq2 adjusted

P < 5 � 10�11) that were specifically accessible in basal-like tumors

using the human HOCOMOCOv11 database with default options.

To analyze ATAC-seq signal from TCGA breast tumors over the

basal-specific GR and STAT3 shared binding sites, the UCSC hgLift-

Over was used to convert the GR and STAT3 shared sites bed file to the

hg38 genome build to be compatible with TCGA ATAC-seq align-

ments. Deeptools version 3.1.0 (25) computeMatrix was used to

generate a matrix of counts over the GR and STAT3 shared sites for

each sample. The mean accessibility was computed across the regions

for each sample using R version 3.5.0. The Mann–Whitney test was

used to determine if the average normalized ATAC-seq read depth

across regions was significantly different between basal-like and

luminal tumors. The mean and SD of the average normalized depth

across basal-like and luminal samples were graphed using GraphPad

Prism 7.0c.

Violin plots for averaged bigwig read counts from basal-like and

luminal tumors at GR and STAT3 shared sites were created with

vioplot_0.3.2, using default parameters and areaEqual ¼ T, h ¼ 0.04,

wex ¼ 0.9.
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ChIP-seq

ChIP-seq forGR and STAT3was performed on 4 basal-like cell lines

(SUM159, MDA-MB-231, HCC1937, and HCC70) and 4 luminal cell

lines (MDA-MB-361, BT-474, MDA-MB-453, and MCF-7).

For ChIP experiments, protein–DNA complexes were covalently

cross-linked by incubating cells in 1% formaldehyde for 10 minutes at

room temperature. Cells were incubated with 0.125mol/L glycine for 5

minutes to quench cross-linking reaction. Cells were washed and

scraped with PBS (pH 7.4; Lonza). Cells were lysed with Farnham

Lysis Buffer (5mmol/L PIPES at pH8.0, 85mmol/LKCl, and 0.5%NP-

40) containing protease inhibitor (Roche). Cell lysate was centrifuged

at 2,000 rpm for 5minutes at 4�C. The crude nuclear extract contained

in the supernatant was stored at -80�C. ChIP-seq was performed using

antibodies for GR (sc-1003, Santa Cruz Biotechnology) and STAT3

(sc-482, Santa Cruz Biotechnology). A thorough version of the ChIP-

seq protocol used in this study is available on the ENCODE Project

website: https://www.encodeproject.org/documents/df9dd0ec-c1cf-

4391-a745-a933ab1af7a7/@@download/attachment/Myers_Lab_ChIP-

seq_Protocol_v042211.pdf

STAT3 and GR ChIP-seq datasets have been deposited in the

NCBI GEO accession numbers GSE85579 and GSE152203.

Fastq files from ChIP-seq were aligned to the hg19 build of the

human genome using Bowtie with the following parameters: -m 1 -t –

best -q -S -l 32 -e 80 -n 2. ChIP-seq peaks were identified by comparing

GR ChIP-seq in cells induced with dexamethasone with GR ChIP-seq

in cells treated with ethanol, and STAT3 ChIP-seq to input control

libraries. Peaks were called usingModel-Based Analysis of ChIP-seq-2

(MACS2; ref. 26) with a P value cutoff of 1e-10, and the mfold

parameter constrained between 15 and 100. Bedtools merge (17) was

used to merge bed files of MACS2 narrow peak calls from each of the

ChIP-seq experiments. Bedtools coverageBed (17) was used to extract

read counts under each merged peak in each ChIP-seq experiment in

each cell line. DESeq2 version 1.20.0 (20) was used to identify peaks

with significantly different read depth between basal-like and luminal

cell lines (adjusted P value < 0.05), and significantly different

read depth between GR and STAT3 ChIP-seq experiments (adjusted

P value < 0.05). A multivariate model was used to identify shared

GR and STAT3 peaks whose read depth was significantly different

between subtypes in both GR and STAT3 ChIP-seq experiments

(adjusted P value < 0.05), but not significantly different between GR

and STAT3 in the same subtype (adjusted P value > 0.05). Pheatmap

package version 1.0.10 and Deeptools version 3.1.0 (25) computeMa-

trix and plotHeatmap functions were used to create the heatmaps of

ChIP-seq data.

RNA-seq

RNA-seq of the panel of cell lines was described previously (27), and

the data are publicly available through NCBI GEO accession number

GSE58135.

RNA-seq was also performed on MDA-MB-231 and HCC70 cell

lines treated alone or in combination with dexamethasone, STAT3

siRNA, and SH4–54 as follows:

STAT3 siRNA knockdown utilized the ON-TARGETplus Human

STAT3 siRNA kit from GE Healthcare (L-003544–00–0005). This

SMARTpool siRNA contains four pooled siRNAs, each targeting a

separate region of the STAT3 RNA sequence. ON-TARGETplus Non-

targeting siRNA #1 (D-001810–01–05) is a nontargeting control.

The siRNA SMARTpool and Nontargeting siRNA target sequences

are below:

ON-TARGETplus SMARTpool siRNA J-003544–07, STAT3:

GAGAUUGACCAGCAGUAUA

ON-TARGETplus SMARTpool siRNA J-003544–08, STAT3:

CAACAUGUCAUUUGCUGAA

ON-TARGETplus SMARTpool siRNA J-003544–09, STAT3:

CCAACAAUCCCAAGAAUGU

ON-TARGETplus SMARTpool siRNA J-003544–10, STAT3:

CAACAGAUUGCCUGCAUUG

ON-TARGETplus Non-targeting siRNA #1: UGGUUUACAUG-

UCGACUAA

The siRNA transfection experiments were performed in 6-well

plates in triplicate. Lipofectamine RNAiMAX Transfection Reagent

(Thermo Fisher Scientific) was used per the manufacturer’s instruc-

tions. To eachwell containing cells, 250mL siRNA-transfection reagent

mix was added to each well, for a final concentration of 25 pmol siRNA

in 7.5 mL Lipofectamine RNAiMAX reagent per well.

The dexamethasone treatments were performed in 6-well plates in

triplicate. Cell were treated with 100 nmol/L dexamethasone (D4902,

Sigma Aldrich) or an equal volume of 100% molecular biology grade

ethanol vehicle control (E7023, Sigma Aldrich) for 4 hours. Cells were

lysed with Buffer RL (Norgen Biotek) containing 10% beta-mercap-

toethanol. Total RNA was extracted using the Animal Tissue RNA

Purification Kit (Norgen Biotek).

RNA-seq libraries for the STAT3 siRNA and Dexamethasone

treatment were prepared from 250 ng total RNA via polyA-

selection (Dynabead mRNA Purification Kit, Invitrogen) followed by

transposase-mediated nonstranded library construction (28). Librar-

ies were pooled and sequenced on an Illumina HiSeq 2000 or HiSeq

2500 sequencer using paired-end 50 bp reads with a 6 bp index read.

TopHat v1.4.1 was used to align RNA-seq paired reads to GENCODE

version 9. Cufflinks v1.3.0 and BEDTools were used to calculate raw

counts for each GENCODE transcript.

DESeq2 version 1.20.0 (20) was used to identify genes with

significantly different expression between treatment and control

conditions in each cell line separately. To visualize differential

expression of genes across cell lines with different base-line expres-

sion, gene expression was divided by the mean in the control

sample, and normalized values were displayed in a heatmap using

Pheatmap package version 1.0.10 in R.

For the GR and STAT3 interaction studies, MDA-MB-231 cells

were plated in 6-well plates at an approximately 300,000 cells in 4mLof

media per well and grown for 24 hours. Three replicates wells were

treated for 24 hours with 1 mmol/L of Dexamethasone (DEX), 8 mmol/

L SH4–54, no treatment, or combination of DEX and SH4–54. The

cells were lysed using 350 mL of Qiagen RLT buffer and 1% BME. RNA

was extracted using Norgen Animal Tissue RNA Purification Kit

according to the manufacturer's instructions. RNA-seq libraries were

prepared using Illumina TruSeq Stranded RNA Kit with Ribo-Zero

Gold and sequenced on the Illumina HiSeq 2500 as 50 cycle single-end

reads. Reads were mapped using HISAT2 (29) version 2.1.0 with

parameters –dta -p 28 -t -q -U and sorted with samtools (30). A counts

file was generated from the bam files using featureCounts version

1.5.1 (31).

To identify genes that were additively and synergistically regulated

by both GR and STAT3, the linear model (lm) function in R was used.

DESeq2-normalized counts were fit to a multivariate model that

included a term for GR activity, a term for STAT3 activity, and an

interaction term (GR:STAT3). Coefficients and P values for each gene

were used to identify those with additive and synergistic positive and

negative regulation by GR and STAT3. Synergy was defined as a

significant P value (<0.05) for the interaction term, and nonsignificant

P values (>0.05) for the individual GR and STAT3 terms. Additivity

was defined as a nonsignificant P value for the interaction term and
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significant P values for both of the individual GR and STAT3 terms

with coefficients in the same direction. Coefficients from the linear

model were used to determine whether the interactions between GR

and STAT3 led to increased or decreased gene expression.

RNA-seq data from STAT3 siRNA treatments are publicly available

through NCBI GEO accession number: GSE85579.

RNA-seq data from dexamethasone and SH4-54 treatments are

publicly available through NCBI GEO accession numbers: GSE152201

and GSE137535.

Kaplan–Meier analysis

The Kaplan–Meier plotter tool (http://kmplot.com; ref. 32)

was used to analyze the association between gene expression

and relapse-free survival. A Kaplan–Meier survival plot was gen-

erated using public gene expression microarray data from patient

tumors for whom relapse-free survival data were available. The

intrinsic subtype classification provided by the Kaplan–Meier plot-

ter tool was used to select basal-like and luminal cases for analysis.

The analysis was performed for GR, STAT3, and 438 basal-like

genes that are upregulated by GR and STAT3. The following

selections were applied to all analyses: only one JetSet best probe

for each gene was used, multigene signatures used the mean

expression of the selected probes, relapse-free survival was selected

for the analysis, patients were censored at the follow-up threshold

(60 or 120 months), biased arrays were excluded, and redundant

samples were removed. The most significant cutpoint was used to

split patients into two groups (“autoselect best cutoff” option).

Live imaging of cell growth

Assays were performed using the IncuCyte ZOOM live cell imaging

system (Essen BioSciences). MDA-MB-231 and MDA-MB-436 cells

were plated at 20,000 cells per well in 96-well plates. For titration

experiments, cells were treated at a range of doses of SH4–54 between

0 mmol/L and 11 mmol/L of SH4–54, or at a range of doses of

dexamethasone between 0 mmol/L and 2 mmol/L. For combination

treatments, cells were treated with 8 mmol/L SH4–54 and 1 mmol/L

dexamethasone, alone and in combination. Plates were imaged every

2 hours for 72 hours, and cell confluence was calculated by the

IncuCyte ZOOM software. Relative percent confluence was calculated

by subtracting the percent confluence at each timepoint by the starting

percent confluence at the first timepoint.

Patient-derived organoid growth assay

Two patient-derived organoid cultures previously derived from

primary basal-like TNBC tumors (HCI-001 andHCI-002) were utilized

for this experiment (33). The organoids were cultured in media com-

posed of Advanced DMEM/F12, (Thermo Fisher 12634028), 5% FBS

Thermo Fisher 26140079), 1x Hepes (Thermo Fisher 15630080), 1�

GlutaMAXSupplement (Thermo Fisher 35050061), 1mg/mLhydrocor-

tisone (Sigma Aldrich H0888), 10 ng/mL hEGF (Sigma Aldrich E9644),

50 mg/mL gentamicin (Genesee 25–533), and 10 mmol/L Y-27632

(Selleckchem S1049). Organoids were seeded as 50–100 organoids in

5%Matrigel (Corning 354230) per well of a 384-well plate, as described

previously (33). MDA-MB-231 cell lines were included as a positive

control in this experiment and plated at 500 cells per well in a 384-well

plate. Cells were treated with all possible combinations of titrated doses

of SH4–54 (0, 1, 2.1, 3.2, 4.3, 5.4, 6.5, 7.6, 8.8, 9.9, and 11 mmol/L) and

mifepristone (0, 0.1, 1.42, 2.73, 4.05, 5.37, 6.68, and 8 mmol/L) in

combination. Cell viability wasmeasured relative to untreated cells after

72 hours using the CellTiter Glo 3D (Promega) that measures ATP.

Loewe additivity analysis was used to compute synergy scores (34).

Results
Identification of regulatory regions and candidate TFs specific

to basal-like breast cancer

We hypothesized that genomic regulatory regions that are specif-

ically unmethylated in basal-like breast cancer compared with luminal

breast cancer will be enriched for TF-binding sites involved in con-

trolling basal-specific gene expression. To identify regulatory regions

specific to basal-like breast cancer, RRBS was performed on 28 breast

cancer cell lines in order to measure DNA methylation across the

genome. The cell lines include 18 cell lines that were previously

classified as basal-like, and 10 cell lines that were previously classified

as luminal by PAM50 subtyping (19, 35, 36). These 28 basal-like and

luminal cell lines represent the heterogeneity found within TNBC,

including cell lines previously classified as the mesenchymal and LAR

subtypes (6), and cell lines with BRCA1 and BRCA2 mutations

(Fig. 1A; refs. 6, 37). Of the 479,746 CG positions in the genome

with at least 10x coverage in each cell line, 3,748 CGs were significantly

differentially methylated (Linear Regression Benjamini–Hochberg

adjusted P < 0.05) between basal-like and luminal cell lines. To focus

our analysis on differentialmethylation in potential regulatory regions,

rather than gene bodies, we identified 3,093 of these CG positions that

were in promoter or intergenic regions of the genome (Fig. 1A). The

DNA methylation differences were consistent across the luminal

and basal-like cell lines, despite the molecular heterogeneity within

these groups.

There were 1,300 CGs in intergenic or promoter regions of the

genome that were significantly unmethylated in luminal breast cancer.

These CG positions were intersected with the locations of TF-binding

sites from ChIP-seq experiments performed on 149 TFs by the

ENCODE Project in a variety of cell lines (15). To determine which

TFs were enriched at regions that are specifically unmethylated in

luminal breast cancer cells, the fraction of binding sites for eachTF that

intersect these CGswas divided by the fraction of binding sites for each

TF in the ENCODE dataset (Supplementary Table S1). The most

highly enriched sequence-specific TF-binding sites were ER (6.9-fold),

FOXA1 (8.1-fold), and GATA3 (10.3-fold). This confirms that this

approach is sound because ER, FOXA1, and GATA3 are known to

be the master regulators of the luminal gene expression program

(Fig. 1A; ref. 38).

There were 1,793 CGs that were in intergenic or promoter

regions of the genome and were specifically unmethylated in

basal-like breast cancer. These CG positions were intersected with

the TF-binding sites locations from ChIP-seq experiments per-

formed on 149 TFs by the ENCODE Project (15). The most highly

enriched sequence-specific TFs in these regions were JUN and FOS

TFs that heterodimerize to form the AP-1 complex (6.2-fold),

STAT3 (4.8-fold), and GR (4.2-fold; Fig. 1A). This result led us

to hypothesize that JUN, STAT3, and GR are involved in regulating

basal-like breast cancer gene expression.

To further investigate this hypothesis, we sought to use primary

human tumors rather than cell lines, to directly investigate chromatin

accessibility with ATAC-seq rather than inferring it from a lack of

DNA methylation, and use TF motif enrichment rather than the

ENCODE Project ChIP-seq experiments, which did not include any

basal-like breast cancer cell lines. We analyzed ATAC-seq data (21)

from 59 primary breast tumors including 15 basal-like and 44 luminal

that were previously classified by PAM50 subtyping (39). There were

110,156 regions of the genome that exhibit open chromatin specifically

in basal-like tumors comparedwith luminal tumors (DESeq2Adjusted

P < 0.05; Fig. 1B). The chromatin accessibility differences were

consistent across the basal-like and luminal tumors, despite the

Conway et al.

Cancer Res; 80(20) October 15, 2020 CANCER RESEARCH4358

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/8

0
/2

0
/4

3
5
5
/2

8
7
4
4
1
1
/4

3
5
5
.p

d
f b

y
 g

u
e
s
t o

n
 2

8
 A

u
g
u
s
t 2

0
2
2

http://kmplot.com


heterogeneity within these groups that included tumors previously

classified as mesenchymal and LAR subtypes (40), varying clinical ER,

PR, and HER2 status (39), varying AR expression, and germline

BRCA1 and BRCA2 mutations (Fig. 1B; ref. 39). Motif enrichment

analysis found significant enrichment for the canonical motifs for

JUN/AP-1 (E-value ¼ 1.59 � 10�1116), STAT3 (E-value ¼ 7.13 �

10�373), and GR/PR/AR (E-value ¼ 4.12 � 10�6) in the 110,156

chromatin regions that were specifically open in basal-like tumors

Figure 1.

Identification of candidate TFs enriched at regions that are unmethylated and have open chromatin in basal-like comparedwith luminal breast cancer. A,Heatmap of

CG positions that are significantly differentially methylated between basal-like and luminal breast cancer cell lines (linear regression Benjamini–Hochberg adjusted P

<0.05). Enrichment of TF binding sites from ChIP-seq experiments in a variety of cell lines that overlap CG positions that are specifically unmethylated in luminal and

basal-like cell lines is shown.B,Heatmap of ATAC-seq peaks that have significantlymore open chromatin in basal-like patient tumors compared with luminal tumors

(DESeq2 adjusted P < 0.05). Enrichment for JUN, STAT3, and GR motifs in the basal-specific ATAC-seq peaks is shown.
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and closed in luminal tumors (Fig. 1B). In addition, motif discovery

was performed on the top 14,094 most significant (DESeq2 adjusted

P < 5 � 10�11) chromatin regions specifically accessible in basal-like

tumors, andmotifs recognized by these TFswere significantly enriched

(Supplementary Table S2). Although the enrichment for the GRmotif

is significant, it is lower than that of STAT3 and JUN/AP1, which is

consistent with previous studies that suggest GR can be tethered to

some enhancers through protein:protein interactions, rather than

direct DNA binding (41).

Expression of GR and STAT3 is higher in basal-like breast cancer

and is associated with a worse prognosis

If JUN, GR, and STAT3 regulate the basal-like breast cancer gene

expression program, then one would expect these TFs to have higher

expression in basal-like breast cancer compared with luminal breast

cancer. RNA-seq was performed on the same 28 breast cancer cell lines

used for DNAmethylation analysis. BothGR (gene name:NR3C1) and

STAT3 have significantly higher expression in basal-like cell lines

compared with luminal cell lines, whereas JUN does not (Fig. 2A). An

independent gene expression dataset containing 19 basal-like breast

cancer cell lines and 21 luminal breast cancer cell lines (42) confirmed

that both GR and STAT3 have higher expression in basal-like breast

cancer (Fig. 2B). GR and STAT3 are equally highly expressed across

basal-like tumors that were previously classified into TNBC subtypes

(Supplementary Fig. S1A; ref. 40), and across tumors with and without

BRCA1 and BRCA2 mutations (Supplementary Fig. S1B; ref. 39).

These results confirm that GR and STAT3 have higher expression

in basal-like breast cancer than luminal breast cancer.

Some luminal breast cancers do express low levels of GR and

STAT3, so we investigated the association between prognosis and GR

or STAT3 expression. Analysis of a dataset containing breast tumor

gene expression and long-term survival data (32) revealed that higher

expression of bothGR and STAT3was associated with shorter relapse-

free survival in basal-like breast cancer (Fig. 2C). In contrast, luminal

breast cancer patients with higher GR and STAT3 expression were

more likely to have longer relapse-free survival (Fig. 2D). These

results confirm that GR and STAT3 expression has a unique role in

basal-like breast cancer and suggest that these TFs are associated with

aggressive features of the disease.

GR and STAT3 bind to the same basal-specific regulatory

regions across the genome

To directly test the hypothesis that GR and STAT3 bind to the

genome and regulate the basal-like gene expression program, ChIP-

seq was performed for GR and STAT3 in 8 breast cancer cell lines

(4 basal-like, 4 luminal). GR is a steroid hormone nuclear receptor

that is chaperoned in the cytoplasm until it binds glucocorticoid

ligands, which allow it to homodimerize and translocate to the

nucleus and regulate gene expression. To assess the binding of GR,

cell lines were treated with 100 nmol/L dexamethasone for 1 hour

prior to performing ChIP-seq. STAT3 is a TF whose dimerization

and translocation to the nucleus are controlled through phosphor-

ylation by Janus kinases (JAK). Normally, JAK phosphorylates

STAT3 when cytokine receptors bind ligands such as interferons,

epidermal growth factor, and IL5 and 6. STAT3 is constitutively

phosphorylated and active in the majority of basal-like cell lines and

patient tumors (43, 44). Thus, STAT3 ChIP-seq was performed on

cells in standard media.

The genome-wideGR and STAT3 binding sites fromChIP-seqwere

used to perform unsupervised hierarchical clustering of the cell lines

based on Spearman correlations. This analysis revealed that the basal-

like and luminal subtypes have distinct genome-wide GR and STAT3

binding profiles (Fig. 3A). The basal-like cell lines form two distinct

subclusters within the basal-like group, which corresponds to previous

classifications as Basal A or Basal-like 1 and Basal-like 2 (HCC70 and

HCC1937) and Basal B or mesenchymal stem-like (SUM159 and

MDA-MB-231) subtypes (6, 45). Despite these differences, the four

basal-like cell lines are still more similar to each other than they are to

luminal cell lines when considering genome-wide GR and STAT3

binding. DESeq2 was used to identify regions of the genome that

exhibited subtype-specific binding of GR. There were 2,002 regions

of the genome that were bound by GR specifically in basal-like

breast cancer (DESeq2 adjusted P < 0.05; Fig. 3B). The same

analysis was repeated for STAT3 and 3,667 regions of the genome

that were bound by STAT3 specifically in basal-like breast cancer

(DESeq2 adjusted P < 0.05; Fig. 3C). This result demonstrates that

both GR and STAT3 bind thousands of regions of the genome in

basal-like breast cancer that they do not bind in luminal breast

cancer, which supports the hypothesis that these TFs regulate the

basal-like gene expression program.

The correlation heatmap revealed that genome-wide GR binding

sites and STAT3 binding sites were highly correlated within each of the

four basal-like cell lines. To investigate this further, DESeq2 was used

to perform amultivariate analysis that combined both GR and STAT3

ChIP-seq datasets to identify sites where these TFs bound alone or

together in a basal-like–specific manner. This analysis revealed 1,773

sites were bound by GR alone, 188 sites were bound by STAT3 alone,

and 12,712 ChIP-seq peaks with both GR and STAT3 binding spe-

cifically in basal-like cell lines (Fig. 3D). This result indicates that GR

and STAT3 bind the same basal-specific regulatory regionsmore often

than they bind alone.

The majority of shared GR and STAT3 basal-like–specific binding

sites are 50–500 kb from the nearest gene transcription start site,

indicating that they are likely binding distal regulatory elements such

as enhancers (Fig. 4A). Motif analysis was performed on the shared

GR and STAT3 basal-like–specific binding sites. The canonical STAT3

motif was found in 5,044 of these peaks, resulting in an E-value of

4.97 � 10�425 compared with shuffled control sequences. The canon-

ical GRmotif was found in 1,309 of the peaks, resulting in an E-value of

8.00 � 10�37 compared with shuffled control sequences. This result

indicates that GR and STAT3 shared binding sites are significantly

enriched for motifs recognized by both TFs.

To test the hypothesis that shared GR and STAT3 basal-specific

binding sites are near genes that are specifically expressed in basal-like

breast cancer, RNA-seq data from 57 primary breast tumors (15 basal-

like and 42 luminal) were analyzed (39). There were 7,121 genes that

had significantly higher expression in basal-like breast tumors, and

3,464 genes that had significantly higher expression in luminal breast

tumors (DESEQ adjusted P value 0.05). The distance between the

transcription start site of each gene and the nearest shared GR

and STAT3 binding site was calculated. Genes that had significantly

higher expression in basal-like breast tumors were closer to shared

GR and STAT3 basal-specific binding sites than genes that were higher

in luminal tumors or genes that were not differentially expressed

(Fig. 4B).

To further investigate whether the shared GR and STAT3 basal-

specific binding sites discovered in cell lines are open and accessible in

patient tumors, analysis of ATAC-seq data from 59 primary breast

tumors (15 basal-like and 44 luminal) was performed (21). The shared

GR and STAT3 basal-specific binding sites are significantly more open

in basal-like patient tumors compared with luminal patient tumors

(Mann–Whitney P ¼ 7.375 � 10�231; Fig. 4C and D).
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Together, these results indicate that GR and STAT3 bind together at

thousands of regulatory regions that are specifically open in basal-like

tumors and closed in luminal tumors, and these binding sites are near

genes that have significantly higher expression in basal-like tumors.

These data further support the hypothesis that GR and STAT3 regulate

the basal-like gene expression program.

GR and STAT3 cooperatively regulate gene expression

To determine which genes are regulated by GR and STAT3,

RNA-seq was performed on two basal-like cell lines (HCC70 and

MDA-MB-231) treated with 100 nmol/L dexamethasone or an

equal volume of 100% ethanol vehicle control for 4 hours, and

STAT3 siRNA SMARTpool or Nontargeting siRNA for 96 hours.

Figure 2.

ExpressionofGRandSTAT3 is higher in basal-like breast cancer and is associatedwith shorter relapse-free survival.A,RNA-seqdata showGRandSTAT3havehigher

expression in basal-like (N ¼ 18) compared with luminal (N ¼ 10) cell lines, whereas JUN does not. Mann–Whitney P values are displayed. B, An independent

microarray gene expression dataset shows GR and STAT3 have higher expression in basal-like (N ¼ 19) compared to luminal (N ¼ 21) cell lines. C, In patients with

basal-like breast cancer, higher expression of GR and STAT3 is associated with shorter relapse-free survival. D. In contrast, patients with luminal breast cancer have

better prognosis when GR and STAT3 are highly expressed.
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Dexamethasone induction of GR resulted in significant changes in

the expression of 546 genes in both cell lines (DESeq2 adjusted P <

0.05; Fig. 5A). STAT3 siRNA knockdown resulted in significant

changes in the expression of 1,967 genes in both cell lines (DESeq2

adjusted P < 0.05; Fig. 5B).

To test the hypothesis that genes that change expression are near the

shared GR and STAT3 basal-like–specific binding sites, the distance

between the transcription start site of each gene and the nearest shared

GR and STAT3 binding site was calculated. Previous studies have

reported these TFs are more likely to activate gene expression directly,

and that associated repression is more likely a downstream indirect

effect (46). Therefore, the genes that are activated and repressed by

each TF were analyzed separately. This analysis revealed that a larger

fraction of genes that are activated by GR or STAT3 are close to a

shared site when compared with repressed genes, or genes that did not

change expression when these TFs were modulated (Fig. 5C and D).

Notably, 80%of genes thatwere activated by dexamethasone induction

of GR and 60% of genes that are activated by STAT3 are within

100,000 bp of a shared GR and STAT3 binding site.

To further elucidate how GR and STAT3 cooperate to regulate gene

expression, the MDA-MB-231 cell line was treated with dexametha-

sone (1 mmol/L for 24 hours) and the STAT3 inhibitor SH4–54

(8 mmol/L for 24 hours; ref. 47) alone and in combination. A

multivariate linear model with a GR:STAT3 interaction term was

used to identify genes that are differentially expressed when both TFs

are fully active in the nucleus. There were 970 genes that had

significantly higher expression when both GR and STAT3 were active

in the nucleus (BH adjusted P value < 0.05; Fig. 6A). Strikingly, the

majority of these genes (769) fit a synergistic model of activation,

where the presence of both GR and STAT3 in the nucleus resulted in

higher expression than the sum of the expression fromGR and STAT3

alone. In addition, 201 genes fit an additive model, where GR

and STAT3 each contribute additively to the expression. There were

also 628 genes that had significantly lower expression when both GR

Figure 3.

ChIP-seq of GR and STAT3 in basal-like (N¼ 4) and luminal (N¼ 4) cell lines.A, Pairwise correlations of genome-wide binding across basal-like and luminal cell lines

show that GR and STAT3 exhibit global subtype-specific binding. B, GR exhibited subtype-specific binding at 2,002 peaks (DESeq2 adjusted P < 0.05). C, STAT3

exhibited subtype-specificbinding at 3,667peaks (DESeq2adjustedP<0.05).D,There are 12,712 sites boundbybothGRandSTAT3 specifically in basal-like cell lines.
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and STAT3 were active in the nucleus (BH adjusted P value <

0.05; Fig. 6A). Again, the majority (515 genes) fit a synergistic model,

where the presence of both GR and STAT3 in the nucleus resulted in

greater repression than the sum of the repression from GR and

STAT3 alone.

To determine if the genes that are cooperatively regulated by both

GR and STAT3 are near shared GR and STAT3 basal-like–specific

binding sites, the distance between the transcription start site of

each gene and the nearest shared GR and STAT3 binding site was

calculated. Consistent with previous observations, a larger fraction

of genes that are cooperatively activated by GR and STAT3 are

close to a shared site, when compared with repressed genes, or

genes that did not change expression when these TFs were mod-

ulated (Fig. 6B).

Together, these results indicate that GR and STAT3 cooperate to

synergistically regulate the expression of hundreds of genes.

GR and STAT3 regulate the basal-like gene expression program

To test the hypothesis that GR and STAT3 are key regulators of

the basal-like gene expression program, RNA-seq data from 28

breast cancer cell lines (18 basal-like and 10 luminal) were analyzed

to identify genes that exhibit subtype-specific expression. Of the

2,485 genes that had significantly higher expression in basal-like

breast cancer, 438 were significantly upregulated in HCC70 and

Figure 4.

A, Basal-specific shared GR and STAT3 binding sites are most often 50–500 kb from transcription start sites (TSS) of genes. B, Basal-specific shared GR and STAT3

sites are closer to genes that are expressed specifically in basal-like breast cancer compared with genes expressed in luminal breast cancer and genes that are not

differentially expressed between subtypes. C, Basal-specific shared GR and STAT3 sites have more accessible chromatin in ATAC-seq data from basal-like patient

tumors (N¼ 15) compared with luminal patient tumors (N¼ 44) when averaged across sites. Mean (dark points) and SD (lighter band) of averaged normalized read

counts across patients are depicted. D, Violin plot of ATAC-seq data for 12,712 basal-specific shared GR and STAT3 shows sites have more accessible chromatin in

basal-like patient tumors (N¼ 15) compared with luminal patient tumors (N¼ 44). Mann–Whitney P value, median (horizontal line), interquartile range (black box),

and range (vertical line) are depicted.
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MDA-MB-231 when comparing dexamethasone induction with base-

line media, and standard media with STAT3 siRNA or SH4–54

inhibition of STAT3 in the experiments described above. These 438

basal-like genes that are upregulated by GR and STAT3 are listed in

Supplementary Table S3. These genes have a significant overlap with

genes that were previously characterized as more highly expressed in

basal-like breast cancer compared with luminal (Hypergeometric FDR

adjusted q value ¼ 2.6 � 10�95; ref. 48). This result confirms that the

GR and STAT3 regulated genes identified in this analysis have been

associated with basal-like breast cancer in previous studies.

Further characterization of the 438 basal-like genes upregulated

by GR and STAT3 revealed enrichment for cellular processes

and pathways associated with the aggressive nature of basal-like

breast cancer. These genes were significantly enriched for the Gene

Ontology Biological Process “Positive Regulation of Cell Prolifer-

ation” (Hypergeometric FDR adjusted q value 2.04 � 10�17),

“hallmarks that define the epithelial-mesenchymal transition”

(Hypergeometric FDR adjusted q value 7.22 � 10�15; ref. 49),

“mammary stem cells” (Hypergeometric FDR adjusted q value ¼

1.04� 10�22; ref. 50), and “adult tissue stem cells” (Hypergeometric

FDR adjusted q value ¼ 2.13 � 10�20; ref. 51).

Notably, of the 438 basal-like genes upregulated by GR and STAT3,

34 are TFs themselves, including those that are known to be upregu-

lated by major signaling pathways involved in basal-like breast cancer

growth including EGFR signaling (ELK3, ETS2, CEBPD, NFIL3,

MBNL2,HIVEP2), andTGFB signaling (ELK3, ETS2, SNAI1,MAFB).

In addition, the genes regulated by GR and/or STAT3 include 5 TFs

(ETV6, NFIL3, HIF1A, DR1, and TFCP2L1) that were previously

Figure 5.

A, Treatment with dexamethasone to induce GR activity causes 546 genes to significantly change expression in two basal-like breast cancer cell lines (HCC70 and

MDA-MB-231; DESeq2 adjusted P < 0.05). B, Knockdown of STAT3 with siRNA causes 1,967 genes to change expression in two basal-like breast cancer cell lines

(DESeq2 adjusted P < 0.05). C and D, The genes that change expression when GR or STAT3 is modulated are closer to basal-specific shared GR and STAT3 binding

sites than genes that do not change expression.

Conway et al.
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Figure 6.

GR and STAT3 cooperate to regulate the expression of 1,598 genes. MDA-MB-231 cells were treated with dexamethasone to induce GR and SH4–54 to inhibit STAT3.

A,Aheatmapof genes that are regulated bybothGRandSTAT3 in amanner thatfits additive or synergisticmodels for activationor repression (BHadjustedP<0.05).

Theþ symbol indicates the TF is active in the nucleus in the experiment. The – symbol indicates the TF is not active in the nucleus or is inhibited.B,Genes regulated by

both GR and STAT3 are closer to shared GR and STAT3 binding sites than genes that are not regulated by these TFs. C, Higher mean expression of genes that are

upregulated by GR and STAT3 is associated with shorter relapse-free survival in patients with basal-like breast cancer.
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identified as “embryonic stem cell” TFs that are preferentially and

coordinately overexpressed in the high-grade, ER-negative breast

cancer tumors (52). These results suggest GR and STAT3 are upstream

of the key TFs that control growth and stemness features in basal-like

breast cancer.

These 438 basal-like genes are upregulated by GR and STAT3 in

both HCC70 and MDA-MB-231 cell lines. To determine if they are

associated with prognosis in patients with basal-like breast cancer,

Kaplan–Meier survival plots were generated using public gene expres-

sion microarray data from 360 basal-like patient tumors for whom

5-year relapse-free survival data were available. Patients who had

highermean expression of these genes in their tumors had significantly

shorter relapse-free survival than patients with lower expression of

these genes (HR ¼ 1.76, logrank P ¼ 0.0068; Fig. 6C). This result

indicates that even among patientswith basal-like breast cancer, higher

expression of genes that are upregulated by GR and STAT3 is

associated with a worse prognosis.

Inhibiting both GR and STAT3 reduces cell growth

synergistically

The observation that GR and STAT3 cooperate to regulate a large

number of genes in the basal-like gene expression signature that are

associated with cell proliferation and poor prognosis led us to inves-

tigate whether drugs that modulate GR and STAT3 would affect cell

growth. To first evaluate the independent roles of GR and STAT3 in

cell growth, the MDA-MB-231 cell line was treated with a range of

doses of dexamethasone or the STAT3 inhibitor SH4–54 separately

andwasmonitored for 72 hours on the Incucyte Zoom live cell imaging

instrument. Reducing STAT3 activity with increasing doses of the

STAT3 inhibitor SH4–54 resulted in decreased growth in a dose-

dependent manner (Fig. 7A). Reducing GR activity by decreasing

amounts of dexamethasone resulted in decreased cell growth in a dose-

dependent manner (Fig. 7B). These results are consistent with pre-

vious publications that report that inhibiting GR or STAT3 separately

decreases basal-like breast cancer proliferation (53–55).

To evaluate whether modulating both TFs simultaneously leads to

differences in growth, the MDA-MB-231 and MDA-MB-468 cell

lines were treated with different combinations of dexamethasone and

SH4–54. The combination of inhibiting GR by withholding dexa-

methasone, and inhibiting STAT3 with 8 mmol/L SH4–54 resulted in

the slowest cell growth (Fig. 7C and D). Conversely, the activation of

GR with 1 mmol/L dexamethasone combined with the endogenous

activity of STAT3 resulted in the fastest cell growth (Fig. 7C and D).

Notably, when either GR or STAT3 was active alone, this led to

intermediate growth rates. This result supports the hypothesis that

GR and STAT3 cooperate to increase cell growth, and dual inhibition

of both GR and STAT3 results in slower cell growth than inhibiting

either TF alone.

To expand this analysis beyond cell lines, growth of patient-derived

organoid cultures was analyzed in the context of GR and STAT3

inhibition. Two patient-derived organoid cultures previously derived

from primary basal-like TNBC tumors (HCI-001 and HCI-002) were

utilized for this experiment (33, 56). The standard media for the

patient-derived organoid cultures include 1 mg/mL hydrocortisone,

which is a glucocorticoid that induces GR activity. Therefore, esca-

lating doses of mifepristone were used to inhibit GR activity. Mifep-

ristone also inhibits PR and weakly inhibits AR activity (57), but these

basal-like TNBC organoids do not express PR or AR, and thus this is

not a confounding factor in these experiments (Supplementary

Fig. S2). The STAT3 inhibitor SH4–54 was used in escalating doses

to inhibit STAT3 activity. The cell line MDA-MB-231 was included in

this experiment as a positive control and was grown in the samemedia

as the organoids. The growth rate of the organoids is much slower than

the cell line, which resulted in a narrower dynamic range for observing

changes in growth. Despite this technical limitation, inhibition of GR

and STAT3 for 72 hours resulted in significant dose-dependent

decreases in cell growth,measured byATP levels (Fig. 7E). An analysis

of the relative decrease in cell growth across drug doses indicates that

inhibiting both GR and STAT3 provides synergistic, rather than

additive, decreases in cell growth in the MDA-MB-231 cell line, as

well as both patient-derived organoid cultures (Fig. 7E). This result

confirms that inhibiting the activity of bothGRand STAT3 reduces cell

growth in basal-like breast cancer patient–derived organoids. The

synergy observed between GR and STAT3 inhibitors indicates there

could be a window for therapeutic dose reduction, i.e., lower doses of

each drug can be used in combination to achieve the same reduction in

cell growth as higher doses of each drug alone (Fig. 7E). Additional

experiments and analyses are needed to determine the synergistic

potency and synergistic efficacy of the GR and STAT3 inhibitors (58).

Discussion
The goal of this study was to determine which TFs drive the basal-

like gene expression program. Genome-wide analysis of DNA meth-

ylation, chromatin accessibility, TF binding, and gene expression

indicate that GR and STAT3 binding is enriched at genomic regulatory

regions that are specifically open in basal-like breast cancer. These TFs

bind to the same regulatory regions and cooperate to regulate hun-

dreds of genes in the basal-like expression signature, including many

other TFs. The genes that are cooperatively upregulated by GR and

STAT3 are transducers of major signaling pathways implicated in

basal-like breast cancer growth (EGFR and TGFB), are associated with

aggressive features of basal-like breast cancer (proliferation, stemness,

and epithelial-to-mesenchymal transition), and are associated with

shorter relapse-free survival in patients. Furthermore, inhibiting both

GR and STAT3 leads to synergistic reductions in cell growth in

multiple cell lines and patient-derived organoid cultures. Together,

these data suggest that inhibiting both GR and STAT3 simultaneously

can reduce expression of the basal-like gene expression signature and

create a synthetic lethality that could be exploited therapeutically.

Although GR and STAT3 have been separately implicated in

regulating gene expression in basal-like breast cancer previous-

ly (54, 55, 59), their cooperative role has not been previously described.

This study makes it apparent that understanding this cooperation is

crucial to investigating their roles in driving basal-like gene expression

and phenotypes, as well as arriving at more effective therapeutic

strategies. Inhibiting GR alone is not effective; basal-like cell lines

proliferate and express some components of the basal-like gene

signature without glucocorticoids in their media. Inhibiting STAT3

alone is not completely effective; previous studies have shown that

SH4–54 killed basal-like cell lines in culture, but was insufficient to

completely stop tumor growth in vivo where glucocorticoids are

naturally present (47). These results indicate that inhibiting either of

these TFs alone is not sufficient to abrogate the proproliferative gene

expression program of basal-like breast cancer in vivo, but this study

suggests that inhibiting both GR and STAT3 could be a novel and

effective therapeutic strategy.

There is a large body of previous literature supporting our conclu-

sion that STAT3 is a critical factor for the growth, invasion, and

survival of breast cancer cells (55, 60–63), including our own previous

study that showed that STAT3 binding regulates genes that promote

invasion (64). Due to its known oncogenic role, there are a number of
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Figure 7.

Inhibiting GR and STAT3 leads to decreased growth in basal-like cell lines and patient-derived organoids. A,MDA-MB-231 cells treated with increasing doses of the

STAT3 inhibitor SH4–54 have decreased growth rate in a dose-dependent manner. B, MDA-MB-231 cells treated with decreasing doses of dexamethasone

have decreased growth rate in a dose-dependent manner. C and D, Inhibiting both GR and STAT3 in MDA-MB-231 (C) and MDA-MB-468 (D) cell lines leads to

decreased growth compared with inhibiting either TF alone. E, Synergistic decreases in cell growth (blue) were observed after 72 hours when patient-derived

organoid cultures (HCI-001 and HCI-002) and theMDA-MB-231 cell lineswere treatedwith increasing doses of both the STAT3 inhibitor SH4–54 and the GR inhibitor

mifepristone.
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clinical trials testing a variety of JAK/STAT3 pathway inhibitors in

breast as well as other solid tumors that are summarized in Supple-

mentary Fig. S3. These trials, along with the continual development of

additional drugs that directly target STAT3 (65, 66), offer promising

opportunities for future studies to determine if combination treatment

with GR inhibitors improves efficacy, or if combination treatment can

provide similar efficacy with lower, better tolerated, doses of each drug.

The study of GR's role in basal-like breast cancer has important

clinical implications. GR's role in cancer is disease and subtype

specific (67, 68). GR expression is associated with good prognosis in

luminal breast cancer (Fig. 2D; ref. 69), and glucocorticoids are

commonly used to treat hematologicmalignancies because they induce

apoptosis in lymphoid cells (68). In addition, potent synthetic gluco-

corticoids are often prescribed to patients with breast cancer under-

going chemotherapy to prevent side-effects such as nausea, loss of

appetite, and rare severe immune reactions. Our preliminary data

support a handful of other studies that report that induction ofGRwith

glucocorticoids could promote tumor growth and therapy resistance in

TNBC (54, 59, 70). In our study specifically, it is clear that glucocor-

ticoid induction of GR leads to increased cell growth in basal-like

breast cancer cell lines and patient-derived organoids. It also leads to

increased expression of genes that are cooperatively regulated by

STAT3, a known promoter of cancer growth and invasion (60).

Recently, clinical trials have been initiated to test whether inhibiting

GR directly with mifepristone or by inhibiting its chaperone, HSP90,

will enhance the efficacy of chemotherapy in ER-negative breast

cancer (71, 72). Although the administration of glucocorticoids is

thought to be necessary to improve the tolerability of chemotherapy,

the first trial of GR inhibition with mifepristone combined with nab-

paclitaxel demonstrated that the primary toxicity, neutropenia, could

be managed with filgrastim growth factor administration (71). This

study found that the standard dose of nab-paclitaxel can be safely, and

tolerably, combined with an effective dose ofmifepristone, and a phase

II trial of this regimen has been initiated (71). A list of current trials of

GR and Hsp90 inhibitors is provided in Supplementary Fig. S4. Our

results support this line of investigation and suggest that combination

therapy that inhibits both GR and STAT3 could be evenmore effective

in treating basal-like TNBC.
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