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Abstract

Triple negative breast cancer (TNBC), which is typically lack of expression of estrogen receptor (ER), progesterone

receptor (PR), and human epidermal growth factor receptor 2 (HER2), represents the most aggressive and mortal

subtype of breast cancer. Currently, only a few treatment options are available for TNBC due to the absence of

molecular targets, which underscores the need for developing novel therapeutic and preventive approaches for this

disease. Recent evidence from clinical trials and preclinical studies has demonstrated a pivotal role of signal

transducer and activator of transcription 3 (STAT3) in the initiation, progression, metastasis, and immune evasion of

TNBC. STAT3 is overexpressed and constitutively activated in TNBC cells and contributes to cell survival,

proliferation, cell cycle progression, anti-apoptosis, migration, invasion, angiogenesis, chemoresistance,

immunosuppression, and stem cells self-renewal and differentiation by regulating the expression of its downstream

target genes. STAT3 small molecule inhibitors have been developed and shown excellent anticancer activities in in

vitro and in vivo models of TNBC. This review discusses the recent advances in the understanding of STAT3, with a

focus on STAT3’s oncogenic role in TNBC. The current targeting strategies and representative small molecule

inhibitors of STAT3 are highlighted. We also propose potential strategies that can be further examined for

developing more specific and effective inhibitors for TNBC prevention and therapy.
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Background
Triple negative breast cancer (TNBC) is the most ag-

gressive form of breast cancer and accounts for much

higher recurrence and metastasis rates [1]. Due to the

absence of the expression of estrogen receptor (ER), pro-

gesterone receptor (PR), and human epidermal growth

factor receptor 2 (HER2), TNBC is unresponsive to

endocrine and HER2-targeted therapies, which results in

the high mortality of patients with this disease [1]. When

patients are diagnosed with TNBC at the early stage,

combination chemotherapy (anthracyclines, taxanes,

platinum salts, etc.) with or without radiotherapy is used

as standard non-surgical therapy and has shown some

efficacy in patients with both primary and metastatic

diseases [2]. Because of the inter- and the intratumoral

heterogeneities of TNBC, the intrinsic chemoresistance

as well as severe side effects are often observed and lead

to limited success in the clinic [3, 4]. Targeted therapies

(e.g., poly (ADP-ribose) polymerase (PARP) inhibitors

and epidermal growth factor receptor (EGFR) inhibitors)

and immunotherapies have also shown some promise in

preliminary clinical studies, but further investigations

are critically needed [5–7]. More recently, many efforts

have been made to identify targetable molecules for

treating TNBC via genomic profiling and several critical

alternations have been discovered, including the overex-

pression and aberrant activation of signal transducer and

activator of transcription 3 (STAT3) [8, 9]. The emerging

data suggest that STAT3 may be a potential molecular

target and biomarker for TNBC.

The STAT family of transcription factors is comprised

of seven members with high structural and functional
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similarity, including STAT1, STAT2, STAT3, STAT4,

STAT5a, STAT5b, and STAT6 [10, 11]. All STAT pro-

teins consist of an amino acid domain (NH2), a

coiled-coil domain (CCD) for binding with interactive

proteins, a DNA binding domain (DBD), a linker do-

main, a SRC homology 2 (SH2) domain for phosphoryl-

ation and dimerization, and a C-terminal transactivation

domain (TAD) [11]. Most of these domains are highly

conserved among STAT proteins and only TAD is diver-

gent and mainly contributes to their structure diversity

[12]. STAT3 was initially discovered to bind to DNA in

response to interleukin-6 (IL-6) and epidermal growth

factor (EGF) in 1994 [13, 14]. Over the past decades,

STAT3 has become one of the most investigated onco-

genic transcription factors and is highly associated with

cancer initiation, progression, metastasis, chemoresis-

tance, and immune evasion [15, 16]. The recent evidence

from both preclinical and clinical studies have demon-

strated that STAT3 plays a critical role in TNBC and

STAT3 inhibitors have shown efficacy in inhibiting

TNBC tumor growth and metastasis.

Considering that there is an unmet medical need for

TNBC treatment and innovative therapeutic agents are

urgently required, an in-depth understanding of the

roles of STAT3 in TNBC will facilitate the development

of STAT3-targeted therapeutics and pave the way for a

novel TNBC treatment approach. In this review, we

focus on the recent findings related to STAT3’s role in

TNBC as well as STAT3 inhibitors and current targeting

strategies. We also discuss other potential strategies for

developing new STAT3 inhibitors for TNBC treatment.

The STAT3 signaling pathway
The classical STAT3 signaling pathway that is activated

through the binding of cytokines or growth factors to

their corresponding cell surface receptors has been ex-

tensively reviewed [16–18]. Here, we present a brief

overview of the STAT3 signaling pathway, nonreceptor

tyrosine kinases of STAT3, and its intrinsic inhibitors

and coactivators, which are depicted in Fig. 1. Briefly,

the overexpressed cytokine receptors, e.g., interleukin-6

receptor (IL-6R) and interleukin-10 receptor (IL-10R)

and the hyperactive growth factor receptors, e.g., epider-

mal growth factor receptor (EGFR), fibroblast growth

factor receptor (FGFR) and insulin-like growth factor re-

ceptor (IGFR) always trigger the tyrosine phosphoryl-

ation cascade through the binding of ligands to these

receptors, leading to the aberrant activation of STAT3

and the transcription of its downstream target genes

[17]. Once the ligands bind to their receptors on the cell

surface, these receptors further form dimers and succes-

sively recruit glycoprotein 130 (gp130) and Janus kinases

(JAKs), thus phosphorylating and activating JAKs [19].

Conversely, the cytoplasmic tyrosine residues of these

receptors are phosphorylated by the activated JAKs and

Fig. 1 The STAT3 signaling pathway in cancer cells. Under normal physiological conditions, STAT3 activation is strictly controlled by the

endogenous inhibitors, including the protein inhibitor of activated STAT (PIAS), the suppressor of cytokine signaling (SOCS), and several protein

tyrosine phosphatases (PTPs). Once the upstream cytokines (e.g., IL-6) or growth factors (e.g., EGF, FGF, and VEGF) bind to cell surface receptors,

STAT3 is phosphorylated and activated by JAK or Src. The nonreceptor tyrosine kinases (e.g., Src and Abl) also phosphorylate STAT3. The

phosphorylated STAT3 undergoes dimerization and translocates from cytoplasm into the nucleus. The activated STAT3 further binds to DNA and

its coactivators (e.g., NCOA, APE, and CBP) and induces the transcription of its downstream target genes
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then interact with the SH2 domain of STAT3, resulting

in STAT3 phosphorylation at Tyr705 by JAKs [16]. In

addition, STAT3 can be phosphorylated and activated by

several nonreceptor tyrosine kinases, e.g., Src and Abl

[20]. The phosphorylated STAT3 (pSTAT3) further

forms a homodimer through interaction between their

phosphorylated Tyr705 site and SH2 domain, triggering

the dissociation of STAT3 dimers from the cell surface

receptors and its translocation from cytoplasm to the

nucleus [21, 22]. With the help of a variety of coactivator

proteins, including NCOA/SRC1a, apurinic/apyrimidinic

endonuclease-1/redox factor-1 (APE/Ref-1), and CREB-

binding protein (CBP)/p300, the nuclear STAT3 binds to

specific DNA sequences and activates the transcription

of genes that regulate various phenotypes of cancer

cells [17, 18].

STAT3 is also highly expressed in some normal tissues

and organs, including the bone marrow, peripheral ner-

vous system, and digestive tract and plays a physiological

role [23–25]. In the normal physiological conditions,

STAT3 phosphorylation and activation are tightly con-

trolled by several intrinsic inhibitors, including protein

tyrosine phosphatases (PTPs), the suppressors of cyto-

kine signaling (SOCS), and the protein inhibitor of

activated STAT (PIAS) [26]. The Src homology

domain-containing tyrosine phosphatases 1/2 (SHP-1/2)

directly interact and dephosphorylate JAK and STAT3,

resulting in their inactivation [27, 28]. The nuclear PTPs,

including TC45 and T-cell protein-tyrosine phosphatase

(TC-PTP) induce the inactivation of STAT3 through its

dephosphorylation and translocation from nucleus to

the cytoplasm [29, 30]. Other PTPs, such as PTP1B and

PTPeC have also been reported to regulate STAT3 de-

phosphorylation and inactivation [31]. Moreover, SOCS

directly interacts with JAK and STAT3 and inhibits their

phosphorylation and activation via forming a negative

feedback loop with JAK-STAT3 signaling pathway [32].

PIAS inhibits the binding of nuclear STAT3 to DNA and

induces STAT3 dephosphorylation via protein tyrosine

phosphatase receptor T (PTPRT), leading to the reduced

expression of its downstream target genes [33]. In

addition, the stability of STAT3 protein is also regulated

by the ubiquitin-proteasome system via the ubiquitin lig-

ase TRAF6 (tumor necrosis factor receptor-associated

factor 6) [34]. Recent studies have also reported that

miR-544 directly targets the 3′-untranslated region

(UTR) on STAT3 mRNA, thus down-regulating STAT3

expression in TNBC cells [35]. Due to the presence of

these endogenous inhibitors, STAT3 is strictly governed

to exert its physiological functions in normal cells [36].

Herein, both direct inhibition of STAT3 and activation

of the endogenous inhibitors may be considered as

potential STAT3-inhibiting strategies for developing

novel cancer therapeutics.

The STAT3 signaling pathway in triple negative
breast cancer
The oncogenic potential of STAT3 has been widely rec-

ognized through its involvement in regulating the

expression of genes related to cancer cell proliferation,

anti-apoptosis, migration, invasion, angiogenesis, che-

moresistance, immune suppression, stem cell self-re-

newal and maintenance, and autophagy (as shown in

Fig. 2) [17, 18]. Importantly, STAT3 is overexpressed

and constitutively activated in TNBC, which is highly re-

lated to TNBC initiation, progression, metastasis, resist-

ance to chemotherapy, and the poor survival outcomes

[8]. STAT3 is not only capable of eliciting the expression

of cancer-related genes, but also physically interacts and

functionally cooperates with other oncogenic transcrip-

tion factors, e.g., GLI1, promoting the aggressiveness of

TNBC [8]. A recent study has also found a reduction of

the gene associated with retinoic-interferon-induced

mortality 19 (GRIM-19), an intrinsic inhibitor of STAT3

transcription accompanied by STAT3 overexpression in

TNBC [37]. In addition, TCPTP, including two splice

variants TC45 and TC48 are down-regulated in TNBC

cells in vitro and in vivo, which also contributes to the

activation of STAT3 signaling [38]. Indeed, STAT3 has

also been found to localize in the mitochondria, where it

is termed mitoSTAT3 and regulates the mitochondrial

functions, including electron transport chain, ATP syn-

thesis, calcium homeostasis, and reactive oxygen species

(ROS) accumulation [39, 40]. Moreover, mitoSTAT3 has

been shown to promote breast cancer cell growth, in

which the phosphorylation of Serine 727 plays a critical

role [41].

A recent study has shown that acetylated STAT3 is

highly elevated in TNBC, causing the methylation and

inactivation of tumor-suppressor gene promoters [42].

Importantly, mutation of STAT3 at Lys685 or reducing

STAT3 acetylation by resveratrol could induce demethyl-

ation and activation of the estrogen receptor-α gene and

sensitize TNBC cells to antiestrogens. Considering the

emerging data that demonstrate the critical role of

STAT3 in TNBC, we herein present a comprehensive

overview of its oncogenic functions in this section.

Role of STAT3 in TNBC cell proliferation and anti-

apoptosis

Several studies have demonstrated that STAT3 promotes

cell proliferation and inhibits apoptosis in TNBC by in-

creasing the expression of target genes, including survi-

vin, c-Myc, cyclin D1, B-cell lymphoma-2 (Bcl-2), and

B-cell lymphoma-extra large (Bcl-xL) [21]. In TNBC,

STAT3 directly binds to the survivin promoter and pro-

motes its transcription [43, 44], which can be blocked by

inhibiting the nuclear export factor, exportin 1 (XPO1)

and CBP-mediated STAT3 acetylation [45]. In addition,
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Galectin-1, a β-galactoside binding protein has also been

shown to contribute to TNBC progression through

binding to integrin β1 and activating the integrin β1/

FAK/c-Src/ERK/STAT3/survivin pathway [46]. Con-

versely, WW domain-containing oxidoreductase (Wwox)

inhibits TNBC cell proliferation by interacting with

JAK2 and suppressing JAK2 and STAT3 phosphorylation

[47]. Wwox also represses the binding of STAT3 to the

IL-6 promoter, therefore decreasing the expression of

IL-6 cytokine. A tumor suppressor gene, gametogenetin-

binding protein 2 (GGNBP2) has been found to inhibit

breast cancer cell proliferation and induce apoptosis,

independent of ER expression [48]. A further study has

indicated that the inhibition of IL-6/STAT3 signaling by

GGNBP2 is mainly responsible for its inhibitory effects

on TNBC growth and metastasis [48].

STAT3 also promotes TNBC cell proliferation and in-

hibits apoptosis through the crosstalk with SET and

MYND domain 2 (SMYD2) and nuclear factor-kappa B

(NF-κB) [49]. SMYD2 is highly expressed in TNBC cell

lines and tissues, which is correlated with increased

TNBC cell proliferation and survival. Mechanistically,

SMYD2 physically interacts with STAT3 and NF-κB p65

and increases their methylation and phosphorylation,

promoting tumor growth and metastasis [49]. STAT3

recruits the acetyltransferase p300 to enhance NF-κB

acetylation and prolong its nuclear retention [50]. In

addition, STAT3 and NF-κB also contribute to each

other’s activation via SMYD2 [49]. Interestingly, a recent

study has reported an opposite role of STAT3 in TNBC

cells [51]. It was observed that STAT3 knockdown did

not inhibit but promoted the growth of MDA-MB-231

cells-derived xenograft tumors, implying that the onco-

genic role of STAT3 in TNBC might be context-spe-

cific [51].

Role of STAT3 in TNBC cell migration and invasion

The role of STAT3 in promoting cell migration and in-

vasion has been linked to the upregulated expression of

matrix metalloproteinase 2 (MMP2), MMP9, TWIST,

and Vimentin [52]. As discussed earlier, the STAT3 sig-

naling is frequently activated through the binding of cy-

tokines and growth factors to their corresponding

receptors in cancer cells. A newly discovered cytokine

termed interleukin-22 (IL-22) was recently reported to

promote the migration of TNBC cells and induce their

chemoresistance by activating the JAK/STAT3/MAPKs/

AKT signaling pathway. The increased levels of the

IL-22 producing (Th22) cells were also observed in nor-

mal, paratumor, and tumor tissues from patients with

TNBC, which confirmed the importance of IL-22/JAK/

STAT3/MAPKs/AKT in metastasis of this disease [53].

Recent studies reported that several upstream regulators

of STAT3 signaling are involved in TNBC metastasis.

Wwox blocks JAK2-STAT3 interaction and inhibits STAT3

phosphorylation, therefore repressing STAT3-driven TNBC

Fig. 2 Activation of STAT3 signaling promotes growth, metastasis, chemoresistance, immune escape, and stemness in TNBC. One the upstream

regulators are activated, STAT3 is phosphorylated, dimerized, and translocated into the nucleus, where it activates the transcription of the target

genes that regulate cell proliferation, anti-apoptosis, migration, invasion, angiogenesis, chemoresistance, immune escape, stem cell phenotypes,

and autophagy
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metastasis [47]. G protein-coupled estrogen receptor

(GPER) has been demonstrated as a TNBC metastasis sup-

pressor. Mechanistically, activation of GPER can inhibit the

NF-κB/IL-6/STAT3 signals, cause STAT3 dephosphoryla-

tion and inactivation, and then suppress migration and

angiogenesis of TNBC [54]. GPER also triggers Y397 phos-

phorylation of focal adhesion kinase (FAK) in TNBC while

the activation of both GPER and FAK promotes the migra-

tion of TNBC cells by increasing STAT3 nuclear accumula-

tion and gene expression [55].

Role of STAT3 in angiogenesis of TNBC

The pro-angiogenic role of STAT3 has been partially at-

tributed to the upregulation of vascular endothelial

growth factor (VEGF), hypoxia-inducible factor 1-alpha

(HIF-1α), hepatocyte growth factor (HGF), and basic

fibroblast growth factor (bFGF) via STAT3 transactiva-

tion [52]. A recent study demonstrated that lymphatic

endothelial cells (LECs) promote angiogenesis and me-

tastasis through pSTAT3-mediated CCL5 expression in

TNBC [56]. LECs are an important component of

lymphatic vessels (LVs), which are prevailingly consid-

ered as the routes for cancer metastasis. Lee et al. have

found that IL-6 secretion from TNBC cells causes

STAT3 phosphorylation and activation, therefore indu-

cing HIF-1α and VEGF expression. pSTAT3 also forms a

ternary complex with phosphorylated c-Jun (pc-Jun) and

phosphorylated activating transcription factor 2

(pATF2), which induces CCL5 expression in LECs and

accelerates metastasis [56]. It was also observed that es-

trogen activates G protein-coupled estrogen receptor-1

(GPER-1), inhibits the expression VEGF at both protein

and mRNA levels, and suppresses the tumor growth and

angiogenesis in TNBC xenograft tumor models, in which

STAT3 is involved [57].

Role of STAT3 in chemoresistance of TNBC

It has frequently been observed that blocking STAT3

signaling enhances the anticancer activity of chemother-

apies in TNBC cells in vitro and in vivo, which endorses

a critical role of STAT3 in chemosensitivity of TNBC

[58–61]. Several recent studies revealed the mechanisms

underlying STAT3-mediated chemoresistance in differ-

ent subsets of TNBC cell lines [62]. NF-κB is highly

associated with resistance to cancer therapies, while the

overexpression and constitutive activation STAT3-NF-

κB signaling pathway have been shown to confer che-

moresistance in TNBC cells [63]. Mechanistically,

STAT3 upregulates the expression of a target gene

TNFRSF1A (tumor necrosis factor receptor superfamily

member 1A), which recruits TNFα to the cell surface

and triggers the activation of NF-κB signaling pathway

[64]. The aberrant activation of STAT3 also increases

the expression levels of pluripotency transcription fac-

tors octamer-binding transcription factor-4 (Oct-4) and

c-Myc, which regulate stemness-mediated doxorubicin

resistance in TNBC [65]. The restoration of doxorubicin

sensitivity of TNBC cells by a STAT3 inhibitor WP1066

further confirms a pivotal role of this oncogene in

chemoresistance.

STAT3-mediated microRNA (miRNA) expression is

emerging as a mechanism for regulating chemoresis-

tance in TNBC. Niu et al. found that miR-181a expres-

sion is increased in TNBC due to doxorubicin treatment

and contributes to acquired resistance and metastasis of

this disease through repressing the expression of its tar-

get gene Bax (Bcl-2-associated x protein) [66]. Further

studies have indicated that pSTAT3 at S727 not only dir-

ectly binds to MIR181A1 promoter but also recruits

MSK1 (mitogen- and stress-activated protein kinase-1)

and stabilizes its binding to MIR181A1 promoter, facilitat-

ing the transactivation [67]. The effectiveness of targeting

STAT3-mediated MIR181A1 transactivation for sensitiz-

ing cells to chemotherapy and preventing metastasis has

also been validated in a TNBC orthotopic model.

STAT3 is also involved in hypoxia-induced chemore-

sistance in TNBC [67]. Under hypoxia, the intracellular

uptake of chemotherapy, especially cisplatin is dramatic-

ally reduced due to the upregulated expression of

ATP-binding cassette (ABC) drug transporters. Although

the expression level and activity of HIF-1α was increased

by hypoxia in TNBC, no significant improvement in

chemoresistance was observed in TNBC cells that were

treated by HIF-1α siRNA. Intriguingly, STAT3 was

found to increase the expression levels of ABC trans-

porters, especially ABCC2 (also known as multidrug

resistance protein 2, MRP2) and ABCC6 (also known as

MRP6) in hypoxia-treated TNBC cells, therefore confer-

ring chemoresistance to cisplatin [67, 68]. However,

another study reported that IL-6-mediated STAT3 acti-

vation induces HIF-1α expression in TNBC cells, which

consequently attenuates chemotherapy-induced cytotox-

icity and cell apoptosis through regulating the expression

of apoptosis-related proteins (Bax and Bcl-2) and drug

transporters (P-glycoprotein and MRP1) [68]. The trans-

fer RNA-derived fragments (tDRs), particularly tDR-

0009 and tDR-7336 are upregulated in TNBC under

hypoxia and facilitate the doxorubicin resistance through

phosphorylating and activating STAT3 [69]. In addition,

the combination treatment with HIF-1α and STAT3 in-

hibitors significantly enhances the cytotoxicity of cis-

platin against TNBC cells and overcomes hypoxia-

induced chemoresistance [70]. However, the role of

STAT3-induced HIF-1α expression in hypoxia-induced

chemoresistance is not clear so far, and further investiga-

tion is critically needed.
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Role of STAT3 in immune suppression

Recent findings have established STAT3 as a powerful

regulator of tumor-mediated immune suppression

[21, 71]. STAT3 is not only overexpressed and acti-

vated in cancer cells but also in tumor-associated

immune cells, inducing the expression of immune-

suppression related genes, including IL-6, IL-10,

TGF-β and VEGF and driving the escape of cancer

cells from immune-mediated elimination [71]. In

TNBC, STAT3 and its homolog STAT1 are also in-

volved in regulating the expression of programmed

death ligand 1 (PD-L1), a critical immune checkpoint

that modulates the magnitude and the functional pro-

file of T cell responses [72]. PD-L1 and PD-L2 are

actually also amplified and overexpressed in TNBC

cell lines due to JAK-mediated STAT3 phosphoryl-

ation and activation [73]. The mechanism studies

have shown that pSTAT1 and pSTAT3 form heterodi-

mers in the cytoplasm and translocate into the

nucleus, where the pSTAT1-pSTAT3 dimers bind to

the PD-L1 promoter and activate its transcription

[72]. Another study has shown that syntenin1 is

highly expressed in TNBC tissues and increases the

expression level of PD-L1 by activating STAT3, con-

sequently attenuates the response of TNBC to

anti-PD-L1 treatment [74]. Moreover, direct inhib-

ition of STAT3 overcomes the resistance of TNBC to

immunotherapies, which confirms its immunosup-

pressive activity [72, 74].

Role of STAT3 in TNBC stem cell phenotypes

Early studies on STAT3 signaling disclosed an important

role in stem cells self-renewal and differentiation [75].

The increasing evidence has also demonstrated that the

constitutive activation of IL-6/STAT3 signaling pathway

contributes to the stemness of TNBC stem cells under

both normal and hypoxia conditions [76, 77]. In

addition, the VEGF-VEGFR-2 binding-induced STAT3

phosphorylation and activation was found to promote

the self-renewal of breast cancer cells, especially TNBC

cells by upregulating the expression of Myc and Sox2

(SRY-related HMG-box 2) [78]. The crosstalk of STAT3

with NF-κB and Wnt signaling pathways was also ob-

served in TNBC cells and serves as a feed-forward loop

for regulating the TNBC stem cell function [79]. More-

over, Syndecan-1 (CD138) is highly expressed in TNBC,

especially inflammatory TNBC and contributes to the

poor prognosis of this disease [80]. Syndecan-1 was re-

cently reported to promote TNBC stem cells through

modulating the STAT3, NF-κB, and Wnt signaling path-

ways together [76]. Another study by Ibrahim et al. has

demonstrated the importance of IL-6/STAT3 signaling

pathway in Syndecan-1-modulated cancer stem cell

phenotype [81]. Furthermore, Notch and EGFR signaling

pathways are also implicated in the modulatory effects

of Syndecan-1 on TNBC stem cells [81].

Except for cytokines and growth factors, adipokines,

e.g., Leptin are also involved in the constitutive activa-

tion of the STAT3 signaling pathway. Leptin and its long

form of leptin receptor (LEPRb) are enriched in breast

cancer tissues and promote cell proliferation, migration,

and angiogenesis [82]. Recently studies have shown that

the binding of Leptin to LEPRb initiates the activation of

JAK2/STAT3 signaling pathway, which further induces

self-renewal and maintains the stem-cell state in TNBC

stem cells [83]. Moreover, a new upstream regulator of

the LEPR-STAT3 signaling pathway termed hematological

and neurological expressed 1-like (HN1L) was also discov-

ered to promote TNBC stem cell properties [84]. HN1L is

overexpressed in TNBC tissues and correlates with the

shorter survival of patients with this disease. The HN1L

silencing experiments further confirmed its regulatory

effects on LEPR-STAT3 signaling pathway and on TNBC

stem cell population and lung metastasis [84].

Role of STAT3 in autophagy of TNBC cells

Autophagy is capable of regulating STAT3 phosphoryl-

ation status in TNBC cells [85]. Maycotte et al. discov-

ered that the autophagy-dependent survival under

unstressed conditions is enriched in TNBC, which re-

duces the response of cancer cells to therapy. Further

studies have indicated that autophagy promotes TNBC

cell survival by regulating STAT3 phosphorylation and

activation [85]. Therefore, pharmacological inhibition of

STAT3 may be a promising strategy for treating

autophagy-dependent TNBC.

Targeting STAT3 for TNBC prevention and
therapy
Abundant evidence has suggested that STAT3 may be a

promising molecular target for TNBC therapy [86]. Vari-

ous STAT3 inhibitors have been developed and shown

some efficacy in TNBC models in vitro and in vivo,

which have been summarized in Table 1. In this section,

we discuss the current STAT3-targeting strategies (as

shown in Fig. 3) for treating and preventing TNBC, as

well as the challenges in developing more specific and

effective STAT3 inhibitors.

Target upstream regulators of STAT3

The majority of STAT3 inhibitors have been identified

to target the upstream regulators of STAT3 signaling.

STAT3 activation is often initiated through the binding

of cytokines and growth factors to their corresponding

cell surface receptors. Therefore, small molecules and

natural products that are able to inhibit IL-6 secretion

and production, e.g., carfilzomib [87], manuka honey

[88], bazedoxifene [89, 90], and Ganoderma lucidum
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Table 1 Summary of STAT3 inhibitors and their mechanisms of action for TNBC therapy

Inhibitors Mechanisms of action In vitro activity In vivo activity Reference

Strategy 1: Target upstream regulators of STAT3

Carfilzomib Inhibits IL-6/STAT3 signaling
pathway

Inhibits mitosis and proliferation and
induces apoptosis

Reduces serum IL-6 levels
in tumor-bearing mice

[87]

Manuka honey Inhibits IL-6/STAT3 signaling
pathway

Inhibits cell viability and colony formation,
induces apoptosis, impairs cell migration
and invasion, and inhibits angiogenesis

NR [88]

Bazedoxifene Inhibits IL6/gp130/STAT3
signaling pathway

Inhibits cell viability, colony formation and
cell migration and synergistically enhances
the activity of paclitaxel

Suppresses tumor growth [89, 90]

Ganoderma
lucidum extract

Inhibits IL-6/JAK/STAT3
signaling pathway

Inhibits cell viability and induces apoptosis Suppresses tumor growth [91]

Arsenic trioxide Inhibits EZH2/NF-κB/IL-6/STAT3/
VEGF signaling pathway

Inhibits angiogenesis NR [96]

Deguelin Inhibits EGFR/STAT3 signaling
pathway

Inhibits cell viability Suppresses tumor growth [92]

Picrasidine G Inhibits EGFR/STAT3 signaling
pathway

Inhibits cell viability and induces apoptosis NR [93]

Cantharidin Inhibits EGFR/STAT3 signaling
pathway

Inhibits cell viability and induces apoptosis NR [94]

Silibinin Inhibits JAK2/STAT3/MMP2 signaling
pathway

Inhibits cell viability, migration and invasion NR [97]

Inhibits EGFR/STAT3/Fibronectin
signaling pathway

NR NR [95]

Ganoderic acid
A

Inhibits JAK2/STAT3 signaling
pathway

Inhibits cell viability and invasive capacity
and induces apoptosis

NR [98]

Nintedanib Modulates SHP-1/p-STAT3 signaling
pathway

Inhibits cell viability and induces apoptosis Suppresses tumor growth [99]

SC-78 Modulates SHP-1/p-STAT3/VEGF-A
signaling pathway

Inhibits cell migration and tube formation Suppresses tumor growth
and metastasis

[100]

1,2,3,4,6-penta-
O-galloyl-beta-
D-glucose

Modulates SHP-1/p-STAT3 signaling
pathway

NR Suppresses tumor growth
and metastasis

[101]

SC-2001 Modulates RFX-1/SHP-1/p-STAT3
signaling pathway

Inhibits cell growth and induces apoptosis Suppresses tumor growth [95, 102]

Isolinderalactone
Enhances SOCS3-mediated STAT3
dephosphorylation

Inhibits cell viability and colony formation
and induces apoptosis

Suppresses tumor growth [103]

Compound 57 Binds to HSP90 and inhibits the
expression and phosphorylation of
STAT3

Inhibits cell viability NR [104]

L80 Binds to HSP90 and inhibits the
expression and phosphorylation of
STAT3

Inhibits cell viability induces apoptosis, and
suppresses BCSC-like properties

Suppresses the growth of
BCSC-enriched TNBC
tumors and distant metastasis

[105]

Nor-wogonin Inhibits TAK1-mediated STAT3
activation

Inhibits cell viability and proliferation and
induces G1 and G2/M phases arrest and
apoptosis

NR [106]

Thioridazine Inhibits DRD2-mediated STAT3
activation

Inhibits cell self-renewal, proliferation, and
viability and induces G1 arrest

NR [107]

Strategy 2: Directly bind to STAT3 and inhibit its activation

Bt354 Directly binds to SH2 domain of
STAT3 and inhibits its
phosphorylation

Inhibits cell viability, induces G2/M phase
arrest and apoptosis, and impairs cell
migration

Suppresses tumor growth [108]

Osthole Directly binds to STAT3 and inhibits
its phosphorylation

Inhibits cell viability and induces G2/M
phase arrest and apoptosis

Suppresses tumor growth [109]

Arctigenin Directly binds to SH2 domain of
STAT3 and inhibits its phosphorylation

Inhibits cell viability, induces apoptosis,
impairs cell migration and invasion, and

Suppresses tumor growth [110]
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extract [91] or suppress EGFR expression and phosphor-

ylation, e.g., deguelin [92], picrasidine G [93], canthari-

din [94], and silibinin [95] have shown significant

inhibitory effects on STAT3 signaling as well as the

expression of its downstream target genes in TNBC cell

lines. In addition, arsenic trioxide (ATO) was reported

to inhibit IL-6-mediated STAT3 activation, consequently

reducing the expression of VEGF and suppressing

angiogenesis [96]. Further studies have demonstrated

that ATO blocks the interaction between enhancer of

zeste homolog 2 (EZH2) and NF-κB p65, herein sup-

pressing the activity of NF-κB and reducing the ex-

pression of IL-6. All these indirect STAT3 inhibitors

have exhibited potent in vitro and in vivo anti-TNBC

Table 1 Summary of STAT3 inhibitors and their mechanisms of action for TNBC therapy (Continued)

Inhibitors Mechanisms of action In vitro activity In vivo activity Reference

and DNA binding ability sensitizes cells to chemotherapy

Alantolactone Directly binds to SH2 domain of
STAT3 and inhibits its phosphorylation

Inhibits cell viability and colony formation
and impairs cell migration and invasion

Suppresses tumor growth [111]

KYZ3 Directly binds to SH2 domain of
STAT3 and inhibits its phosphorylation

Inhibits cell viability, induces apoptosis,
and impairs cell migration

Suppresses tumor growth [113]

Strategy 3: Inhibit STAT3 phosphorylation or acetylation

Sesquiterpene
lactones fraction
of Inula
helenium L.

Inhibits STAT3 phosphorylation and
nuclear translocation

Inhibits cell viability and induces apoptosis Suppresses tumor growth [114]

Rhus coriaria Inhibits STAT3 phosphorylation Inhibits angiogenesis and impairs cell
migration and invasion

Suppresses tumor growth
and metastasis

[115]

Schisandrin B Inhibits STAT3 phosphorylation
and nuclear translocation

Inhibits cell viability and colony formation,
induces cell cycle arrest and apoptosis,
and impairs cell migration

Suppresses tumor growth [116]

Eupalinolide J Inhibits STAT3 phosphorylation
and activation

Inhibits cell viability NR [117]

Galiellalactone
analogues 16
and 17

Inhibits STAT3 phosphorylation
and activation

Inhibits cell viability NR [118]

FZU-03,010 Inhibits STAT3 phosphorylation
and activation

Inhibits cell viability and induces G1 phase
arrest and apoptosis

NR [119]

Niclosamide Inhibits STAT3 phosphorylation
and nuclear translocation

Reverses acquired radioresistance Sensitizes tumors to
irradiation

[120]

Flubendazole Inhibits STAT3 phosphorylation Inhibits cell viability, induces G2/M phase
arrest and apoptosis, and suppresses BCSC-
like phenotype

Suppresses tumor growth,
angiogenesis and metastasis

[121]

Disulfiram Inhibits STAT3 expression
and phosphorylation

Inhibits cell viability, induces apoptosis, and
impairs cancer stem cell-like properties

Suppresses tumor growth
and BCSC-like properties

[122]

Salinomycin Inhibits STAT3 phosphorylation
and activation

Inhibits cell viability, promotes anoikis,
impairs cell migration and invasion, and
decreases CD44+/CD24− stem-like
population

NR [123]

Metformin Inhibits STAT3 phosphorylation Inhibits cell viability NR [124]

SH-I-14 Inhibits STAT3 acetylation and
disrupts DNMT1-STAT3 interaction

Inhibits cell viability Suppresses tumor growth [126]

Strategy 4: Block STAT3-DNA binding

Methylsulfonyl-
methane

Inhibits the bindings of STAT3 to
VEGF promoter and STAT5 to IGF-1R
promoter

Inhibits cell viability and induces apoptosis Suppresses tumor growth [127]

Isoharringtonine Inhibits STAT3-mediated Nanog
expression

Inhibits cell viability, impairs cell migration,
and decreases proportion of BCSC
population

NR [128]

Salidroside Inhibits the bindings of STAT3 to
MMP2 promoter

Inhibits cell migration, invasion and
angiogenesis

NR [129]

NR, not reported
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activities (Table 1). However, most of them have also

been found to inhibit other signaling pathways that

are triggered by ligand-cell surface receptor binding

in cancer cells, indicating a low level of specificity in

targeting the STAT3 signaling pathway.

As discussed earlier, several protein tyrosine kinases, such

as JAK2 contribute to STAT3 phosphorylation and activa-

tion in both receptor-dependent and/or receptor-independ-

ent manners. JAK2 inhibitors, including silibinin [97] and

ganoderic acid A [98] were found to inhibit TNBC cell via-

bility, migration, and invasion and induce apoptosis in vitro

through inhibiting the JAK2/STAT3 signaling pathway.

However, their in vivo efficacy still needs further investiga-

tion. Targeting the intrinsic STAT3 inhibitors, such as PTPs

and SOCS have been considered as a potential strategy for

repressing STAT3 signaling pathway. Several natural and

synthetic compounds were identified to activate one of the

STAT3 PTPs, SHP-1. Among them, nintedanib and SC-78

significantly increase SHP-1 activity without affecting its ex-

pression [99, 100], while 1,2,3,4,6-penta-O-galloyl-beta-D--

glucose (PGG) and SC-2001 largely induce the expression

of SHP-1 [101, 102]. All these SHP-1 activators were also

shown to inhibit STAT3 phosphorylation and the

expression of its downstream target genes, thus suppressing

TNBC cell growth and migration and inducing apoptosis in

vitro and in vivo [99–102]. In addition, isolinderalactone

was reported to increase SOCS3 expression and then

enhance SOCS3-mediated STAT3 dephosphorylation and

inactivation [103].

As one of the major client proteins of heat shock pro-

tein 90 (HSP90), STAT3 can be degraded through inhi-

biting HSP90. Two deguelin-derived HSP90 inhibitors,

termed compound 57 and L80 have been observed to in-

hibit STAT3 expression and phosphorylation by interact-

ing with the C-terminal ATP-binding pocket of HSP90

and blocking its function [104, 105]. Both compounds

have also exerted their anticancer activities in TNBC

models in vitro and in vivo [104, 105]. Moreover,

nor-wogonin was found to inhibit the expression of

transforming growth factor β-activated kinase 1 (TAK1),

therefore dephosphorylating STAT3 without affecting its

total expression level [106]. The dopamine receptor D2

(DRD2)-targeting drug thioridazine inhibits TNBC cell

self-renewal through reducing DRD2-mediated STAT3

activation [107]. Due to the highly conserved structures

among STAT family members, targeting the upstream

regulators always results in the wide-spectrum inhibition

of all STAT proteins, causing off-target effects. There-

fore, directly targeting STAT3 and/or inhibiting its func-

tions may be more promising strategies for developing

safe and effective anticancer therapeutics.

Directly bind to STAT3 and inhibit its activation

Due to advances in the understanding of the structural

biology of STAT3, small molecule inhibitors have been

developed to directly bind to STAT3 and inhibit its

activity. Currently, many small molecule inhibitors have

been designed to target the SH2 domain and block its

Fig. 3 Inhibiting STAT3 signaling at multiple levels for cancer therapy. Currently, the majority of STAT3 inhibitors have been developed through

(1) targeting the upstream regulators of STAT3, (2) binding to the SH2 domain of STAT3 and inhibiting its activation, (3) inhibiting STAT3

phosphorylation or acetylation, or (4) blocking STAT3-DNA binding. Other potential strategies, such as (5) inhibiting the binding of STAT3 with its

co-activators, (6) modulating the binding of STAT3 with other interactive proteins, and (7) promoting STAT3 ubiquitination and proteasomal

degradation may also be evaluated for developing novel STAT3 inhibitors
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phosphorylation, dimerization, and nuclear transloca-

tion. Several STAT3-binding small molecule inhibitors

that are under preclinical and clinical investigations have

shown excellent efficacy in TNBC cells in vitro and in

vivo.

Recently, a dual-luciferase assay-based screening of

1563 compounds for STAT3 inhibitors was performed,

leading to the identification of Bt354 [108]. Further stud-

ies have shown that Bt354 inhibits STAT3 phosphoryl-

ation and nuclear translocation, which may be attributed

to the binding of this compound to the SH2 domain of

STAT3. Bt354 did not cause significant changes in the

expression of STAT3 upstream regulators JAK2 and Src,

indicating a specific targeting effect on STAT3 [108].

Moreover, this small molecule inhibitor also suppresses

the viability of TNBC cells with constitutively activated

STAT3, induces the G2/M phase arrest and late apop-

tosis, and impairs cell migration in vitro and represses

the growth of TNBC xenograft tumors in vivo [108].

Additionally, several natural products, including osthole

[109], arctigenin [110], and alantolactone [111] have also

been shown to directly bind to the SH2 domain of

STAT3, inhibit its phosphorylation and activation, and

suppress the growth and metastasis of TNBC in vitro

and in vivo. Cryptotanshinone is a well-documented nat-

ural product inhibitor of STAT3, which also binds to the

SH2 domain and inhibits the phosphorylation and

dimerization of STAT3 [112]. KYZ3, a synthetic deriva-

tive of cryptotanshinone has recently been developed

and shown to exert anticancer activity in TNBC cells in

vitro and in vivo through binding to and inhibiting

STAT3 activation [113]. However, none of these com-

pounds have been evaluated for their binding affinity to

STAT3. Their selectivity among STAT3 and other STAT

family members is yet to be determined.

Inhibit STAT3 phosphorylation or acetylation

Except for the STAT3-binding small molecule inhibitors

that we discussed above, a number of natural products

and their derivatives were found to inhibit STAT3 phos-

phorylation and/or nuclear translocation without affect-

ing the upstream regulators. Sesquiterpene lactones,

which are enriched in the hexane fraction from Inula

helenium L. have been shown to suppress tumor growth

in vitro and in vivo by inhibiting STAT3 phosphorylation

and decreasing the expression of the downstream target

genes, including cyclin D1, c-Myc, and Bcl-2 [114]. An-

other crude extract from the fruits of Rhus coriaria was

also discovered to inhibit angiogenesis, tumor growth

and metastasis in TNBC models in vitro and in vivo by

repressing STAT3 phosphorylation and STAT3-mediated

VEGF expression [115]. Moreover, several natural com-

pounds and derivatives, including schisandrin B [116],

eupalinolide J [117], galiellalactone analogs 16 and 17

[118], and ursolic acid derivative FZU-03,010 [119] have

shown in vitro and in vivo efficacy in TNBC models

through inhibition of STAT3 phosphorylation and/or

nuclear translocation. None of them have been investi-

gated for the binding ability with STAT3. Considering

that these compounds did not show any significant

effects on STAT3 regulators and interactive proteins,

further studies for examining the potential binding

between STAT3 and these compounds would provide

important information regarding their underlying mo-

lecular mechanisms.

Of note, several approved drugs have shown potent in-

hibitory effects on pSTAT3 and may be repositioned as

anticancer drugs. Niclosamide, an FDA-approved anthel-

mintic drug was identified as a potent STAT3 inhibitor.

A recent study demonstrated that niclosamide not only

inhibits TNBC cell viability but also sensitizes TNBC

cells to ionizing irradiation (IR) by blocking IR-induced

STAT3 phosphorylation and activation [120]. Flubenda-

zole, another wildly used anthelmintic agent and

disulfiram, a clinical drug for treating chronic alcoholism

were found to eradicate TNBC stem cells-like cells that

express high levels of pSTAT3 [121, 122]. Further stud-

ies showed that both drugs were able to cause TNBC cell

growth arrest and apoptosis in vitro and suppress TNBC

tumor growth, angiogenesis, and metastasis in vivo by

inhibiting STAT3 [121, 122]. Moreover, salinomycin, an

antibacterial and coccidiostat ionophore therapeutic

drug and metformin, an antidiabetic drug have exhibited

potent inhibitory effects on STAT3 phosphorylation and

TNBC cell growth in vitro [123, 124]. However, further

evaluation of their anti-TNBC efficacy in in vivo models

is critically needed.

Recent studies have disclosed that targeting STAT3

acetylation may be a potential therapeutic approach for

treating cancer. SH-I-14, a newly synthesized carbazole

was shown to inhibit STAT3 phosphorylation through

increasing SHP-1 expression [125]. A follow-up study

reported that SH-I-14 also inhibited STAT3 acetylation

and disrupted DNMT1-STAT3 interaction, resulting in

DNA demethylation and re-expression of tumor

suppressor genes [126]. Its in vitro and in vivo activity

has also been demonstrated in TNBC model, suggesting

the effectiveness of inhibiting STAT3 acetylation in

TNBC therapy.

Block STAT3-DNA binding

STAT3 induces the expression of its downstream targets

through binding to DNA and activating the transcrip-

tion. Therefore, inhibition of STAT3-DNA binding has

been considered as a promising strategy to develop

targeted cancer therapies. Several STAT3-DNA binding

inhibitors have been developed and shown potent anti-

cancer efficacy in TNBC cells. Methylsulfonyl-methane
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(MSM), a dietary supplement was found to inhibit

TNBC cell viability and induce apoptosis by blocking the

DNA binding abilities of STAT3 to VEGF promoter and

STAT5 to IGF-1R (IGF-1 receptor) promoter and repres-

sing the expression of VEGF and IGF-1R [127]. Consid-

ering the extremely low toxicity of MSM, it could be

developed as a preventive agent for cancers harboring

overexpressed and aberrantly activated STAT3. Two nat-

ural compounds, isoharringtonine and salidroside have

also been demonstrated to exert their anti-TNBC activ-

ities by blocking the binding of STAT3 to Nanog and

MMP2 promoters, respectively [128, 129]. However,

their binding affinity to STAT3 and in vivo efficacy are

yet to be studied.

As discussed above, several strategies (as shown in

Fig. 3) have been developed to inhibit STAT3 signaling,

i.e. 1) targeting the upstream regulators, 2) directly

binding to STAT3 SH2 domain and inhibiting its acti-

vation, 3) inhibiting STAT3 phosphorylation or acetyl-

ation, and 4) blocking STAT3-DNA binding. Many

small molecules have been developed and shown effi-

cacy in preventing and treating TNBC in preclinical

studies (Table 1). Several STAT3 inhibitors also enter

clinical trials [130–148], which have been summarized

Table 2 Summary of STAT3 inhibitors in clinical trials

Inhibitors Target ClinicalTrials ID Condition or disease Phase References

STAT3 DECOY STAT3 NCT00696176 Head and neck cancer Early phase 1 [130]

AZD9150
(IONIS-STAT3Rx
or ISIS-STAT3Rx)

STAT3 NCT01563302 Advanced cancers, DLBCL Phases 1 & 2 [131, 132]

NCT02417753 Ovarian cancer, GIC Phase 2

NCT01839604 HCC Phase 1

NCT02983578 GIC, lung cancer, etc. Phase 2

NCT03527147 NHL, DLBCL, NHL, DLBCL Phase 1

NCT02549651 DLBCL Phase 1

NCT03421353 Advanced solid tumors Phases 1 & 2

TTI-101
(C188–9)

STAT3 NCT03195699 Breast cancer, HNSCC, NSCLC, etc. Phase 1 [133]

OPB-51602 STAT3 NCT02058017 Nasopharyngeal carcinoma Phase 1 [134]

NCT01867073 Advanced solid tumors Phase 1

NCT01423903 Advanced cancer Phase 1

OPB-31121 STAT3 NCT00955812 Advanced cancer, solid tumor Phase 1 [136]

OPB-111077 STAT3 NCT01711034 Solid tumors Phase 1 [137]

Napabucasin
(BBI608 or GB201)

STAT3 NCT03647839 MCC Phase 2 [135]

NCT03522649 Previously treated MCC Phase 3

NCT02826161 NSCLC Phase 3

NCT02993731 Pancreatic ductal carcinoma Phase 3

Pyrimethamine STAT3 NCT01066663 CLL, SLL Phases 1 & 2 [138]

NCT03057990 Myelodysplastic syndromes Phase 1

Simvastatin STAT3 NCT02390843 Retinoblastoma, clear cell sarcoma,
renal cell carcinoma, rhabdoid tumor, etc.

Phase 1 [139]

DSP-0337 STAT3 NCT03416816 Neoplasms Phase 1 [140]

Cetuximab EGFR NCT01445405 Squamous carcinoma, head and neck cancer, etc. Phase 1 [141]

Lapatinib EGFR NCT00105950 Breast neoplasms Phase 2 [142]

Dasatinib c-Src NCT02680951 AML Phase 1 [143]

SC-43 SHP-1 NCT03443622 Refractory solid tumor Phase 1 [144]

ASN002 JAK NCT02440685 Lymphoma, leukemia Phases 1 & 2 [145]

SAR302503 JAK2 NCT01420783 Hematopoietic neoplasm Phase 2 [146]

AZD1480 JAK2 NCT01112397 Solid malignancies Phase 1 [147]

WP1066 JAK2 NCT01904123 Metastatic melanoma, recurrent glioblastoma, etc. Phase 1 [148]

AML Acute myeloid leukemia, CLL Chronic lymphocytic leukemia, DLBCL Diffuse large B-cell lymphoma, GIC Gastrointestinal cancer, HCC Hepatocellular carcinoma,

HNSCC Head and neck squamous cell carcinoma, MCC Metastatic colorectal cancer, NHL Non-Hodgkin lymphoma, NSCLC Non-small cell lung cancer, SLL Small

lymphocytic leukemia
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in Table 2. There are other STAT3-targeting strategies

(as shown in Fig. 3) that have not been examined,

including 1) inhibiting the binding of STAT3 with its

co-activators (e.g., NCOA/SRC1a, APE/Ref-1, and CBP/

p300) and repressing its transcriptional activity, 2)

modulating the binding of STAT3 with other interactive

proteins (e.g., SMYD2 and TRAF6) that regulate its ac-

tivity and stability, and 3) developing STAT3-targeting

PROTACs (proteolysis targeting chimeras) for promot-

ing STAT3 ubiquitination and proteasomal degradation.

Because most of the small molecule STAT3 inhibitors

have been developed to inhibit its phosphorylation and

activation but not affect the protein stability, long-term

treatment of these inhibitors may result in the compen-

satory activation of other signaling pathways, finally

causing drug resistance. Therefore, small molecules,

such as PROTACs that can induce STAT3 protein deg-

radation may be used more efficiently in combination

with current inhibitors for cancer therapy.

Conclusions
TNBC is still a treatable but incurable disease with com-

plex genetic heterogeneity. The STAT3 oncogene is

overexpressed and constitutively activated in TNBC and

is associated with the high metastatic risk and poor sur-

vival outcomes. Moreover, STAT3 not only acts as a

transcription factor to activate the expression of its

downstream target genes but also localizes to mitochon-

dria and regulates its functions, then regulating the vari-

ous aspects of TNBC cells. Many STAT3-targeted

therapies have been successfully developed and shown

efficacy in preclinical models of TNBC in vitro and in

vivo; several STAT3 inhibitors even enter clinical trials

and are currently under investigation in various human

cancers, including TNBC. In addition to its role in can-

cer cells, STAT3 also plays a pivotal role in the immune

system. Indeed, STAT3 inhibitors have been found to

suppress tumor cells but also boost immune cell

responses. Therefore, the STAT3 oncogene is a promis-

ing target for TNBC prevention and therapy.

Of note, targeting STAT3 alone has shown excellent

anti-TNBC activities in preclinical settings. However,

TNBC has been reported to harbor multiple genetic

alterations, including STAT3 overexpression and consti-

tutive activation which contribute to the initiation, pro-

gression, metastasis, and drug resistance of this disease.

Therefore, STAT3 inhibition combined with other tar-

geted therapies may be more effective in treating TNBC.

Considering that STAT3 plays a crucial role in chemore-

sistance, the combination of STAT3 inhibitors with

other chemotherapies may exert synergistic effects in

treating TNBC. Therefore, further studies are warranted

to demonstrate the preventive and therapeutic efficacy

of STAT3 inhibitors alone or in combination with

chemotherapy and/or other targeted therapies in clinical

studies. Moreover, new targeting strategies, i.e. inducing

the degradation of STAT3 protein through PROTAC or

inhibiting the binding of STAT3 to its co-activators and

other interactive proteins can be examined, which may

lead to more specific and effective inhibitors for TNBC

prevention and therapy.
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