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Abstract: Since its discovery, the STAT3 transcription factor has been extensively studied 

for its function as a transcriptional regulator and its role as a mediator of development, 

normal physiology, and pathology of many diseases, including cancers. These efforts have 

uncovered an array of genes that can be positively and negatively regulated by STAT3, 

alone and in cooperation with other transcription factors. Through regulating gene 

expression, STAT3 has been demonstrated to play a pivotal role in many cellular processes 

including oncogenesis, tumor growth and progression, and stemness. Interestingly, recent 

studies suggest that STAT3 may behave as a tumor suppressor by activating expression of 

genes known to inhibit tumorigenesis. Additional evidence suggested that STAT3 may 

elicit opposing effects depending on cellular context and tumor types. These mixed results 

signify the need for a deeper understanding of STAT3, including its upstream regulators, 

parallel transcription co-regulators, and downstream target genes. To help facilitate 

fulfilling this unmet need, this review will be primarily focused on STAT3 downstream 

target genes that have been validated to associate with tumorigenesis and/or malignant 

biology of human cancers.  
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1. Introduction 

Signal transducer and activator of transcription-3 (STAT3), also known as acute phase response 

factor (APRF), is a DNA-binding transcription factor [1,2]. STAT3 belongs to the STAT family of 

transcription factors consisting of seven proteins, namely, STAT1, STAT2, STAT3, STAT4, 

STAT5a, STAT5b and STAT6. Activated STAT3 translocates into the cell nucleus and binds to the 

interferon-gamma activated sequence (GAS) within target gene promoters to regulate gene 

transcription [3]. When cells are exposed to cytokines and growth factors, cytoplasmic STAT3 becomes 

phosphorylated at tyrosine-705 (Y705) [4]. Classically, phosphorylated STAT3 can homodimerize, as 

well as heterodimerize with STAT1, and then undergo nuclear transport. However, it is now recognized 

that unphosphorylated STAT3 also undergoes nucleo-cytoplasmic shuttling and up regulates  

genes, a large portion of which overlap with those up regulated by phosphorylated STAT3 [5,6]. 

Phosphorylation of the STAT3 Y705 residue can be induced by cytokines (IL-6, IFN-α), growth 

factors (EGFR, EGFRvIII, HER2 and PDGFR) and non-receptor tyrosine kinases (Src and all the JAK 

family proteins) [7–9]. Inactive JAK proteins constitutively bind G-protein coupled receptors, IL-Rs, 

LIF-R, gp130, and undergo autophosphorylation and activation upon receptor activation. JAK2 

activation can be mediated by EGFR and EGFRvIII. STAT3 can also be phosphorylated at Ser727 by 

ERK, CDK1, ATM and ATR [10]. Evidence to date suggests that Ser727 phosphorylation may be 

essential for the maximal transcriptional activity of Y705-phosphorylated STAT3 although the true 

impact of S727 phosphorylation remains somewhat controversial. For example, a study [11] showed 

that STAT3 activation by a phosphomimetic S727 induced prostate cancer formation independent of 

Y705 phosphorylation. Dephosphorylation of Y705-phosphorylated STAT3 can occur through protein 

tyrosine phosphatases, SHP-1/2, Meg2 and protein tyrosine phosphatase delta (PTPRD). The STAT3 

pathway can be inhibited by suppressor of cytokine signaling 3 (SOCS3) and protein inhibitors of 

activated STATs (PIAS) [12–14]. 

STAT3 is frequently constitutively activated in many human cancers [15–19]. In cancerous cells, 

STAT3 constitutive activation is common, which is likely due to the aberrant activity of STAT3’s 

upstream signaling pathways, such as, EGFR, HER2, Src and JAK2. Tumorigenic STAT3 activation has 

been frequently linked to more malignant cancer behaviors, including growth, epithelial-mesenchymal 

transition, migration, invasion and metastasis. STAT3 activation is also associated with tumor survival 

and therapeutic resistance. In immune cells, STAT3 activation often leads to immune suppression and 

evasion. Together, STAT3 activation in both tumors and immune cells contributes to several malignant 

phenotypes of human cancers and to compromised anti-cancer immunity, together leading to poor 

clinical outcomes. 

Despite the findings of STAT3 hyperactivation in many cancers, the role of STAT3 in oncogenesis 

is still unclear and is likely dependent on tumor type and cellular context [20]. Given its ability to regulate 

both oncogenes and tumor suppressor genes, STAT3 has been reported to promote and inhibit oncogenesis. 

STAT3 has been shown to induce cancers of the breast [21,22], prostate [11] and skin [23,24]. STAT3 has 

been reported to transform bone marrow cells into T cell leukemia in a mouse model [20]. In contrast 

to its positive impact on oncogenesis, activated STAT3 has been shown to suppress c-Myc-mediated 

transformation of mouse embryonic fibroblasts [20]. STAT3 can promote EGFRvIII-induced glial 

transformation by forming a nuclear complex with EGFRvIII [25]. The oncogenic role of STAT3 in 
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gliomas is consistent with the observation that STAT3 activation is rarely detected in normal brain 

tissues [15,17]. In contrast, in PTEN-proficient mouse astrocytes, STAT3 appeared to behave as a 

tumor suppressor while simultaneous suppression of PTEN and STAT3 led to astrocyte malignant 

transformation [25].  

The broad influence STAT3 has on cellular function can be attributed to the numerous gene targets 

that have been identified for STAT3 (Table 1). STAT3 can indirectly regulate genes by mediating 

expression of other transcription factors or physical association with other transcription factors to 

enhance or suppress their function in gene regulation. This review will discuss direct STAT3 target 

genes, which are only considered direct if there is evidence of STAT3 binding either by chromatin 

immunoprecipitation (ChIP) or electrophoretic mobility shift assay (EMSA). Detection of STAT3 

binding by ChIP shows STAT3 binding in cells whereas evidence by EMSA is in vitro but results from 

either method will be considered as evidence for direct binding. We will discuss the regulation of 

STAT3 target genes that result in the tumor supporting functions of STAT3, including several 

transcription factors, apoptosis, tumor immune surveillance, metastasis, tumor angiogenesis, and 

oncogenic cell signaling. In addition, the direct STAT3 target genes where the outcome is the tumor 

suppressing functions of STAT3 will be detailed. Finally, STAT3 regulation of genes that may play 

dual roles in tumor growth will be examined.  

Table 1. Gene regulation by STAT3. 

STAT3-Regulated 

Genes 
Direct Binding 

STAT3 Binding 

Site(s) 
Cell/Tissue Type(s) Species Reference 

Tumor Supporting Functions of STAT3 

Transcription Factors 

↑ c-Fos EMSA/ChIP −348 to −339 bp HepG2, A431 Cells Human [19,26,27] 

↑ HIF-1α EMSA/ChIP −363 to −355 bp 
A2058, v-Src-3T3 Cells, 

B16 Tumors 

Human 

Murine 
[28] 

↑ c-Myc EMSA/ChIP +84 to +115 bp 
HepG2, BAF-G277, 

KT-3, CCE ES Cells 

Human 

Murine 
[29] 

↑ Sox2 ChIP 
−5.7 to −3.3 kb 

−528 to +238 bp 
CCE ES Cells Murine [30] 

↑ Nanog ChIP −871 to −585 bp Mouse Embryonic Cells Murine [31] 

↑ Twist ChIP 
−116 to −107 bp 

−103 to −96 bp 
A431 Cells Human [19] 

↑ Zeb1 ChIP −310 to −130 bp SW1116, LoVo Cells Human [32] 

↓ p53 EMSA/ChIP −128 bp NIH-3T3, MEF Cells Murine [33] 

↑ Oct-1 ChIP −3.5 to −2.5 kb Eca-109 Cells Human [34] 

Apoptosis and Proliferation 

↑ Bcl-2 ChIP −1022 to −1002 bp Hela Cells Human [35] 

↑ Mcl-1 EMSA −94 to −86 bp U266, v-Src-3T3 Cells 
Human 

Murine 
[36,37] 

↑ Bcl-xL ND −600 to 0 bp 
U266 Myeloma,  

NIH-3T3 Cells 

Human 

Murine 
[38] 

↑ Survivin EMSA/ChIP 
−1174 to −1166 bp 

−1095 to −1087 bp 

MDA-MB-453,  

NIH-3T3 Cells 

Human 

Murine 
[39] 
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Table 1. Cont. 

STAT3-Regulated 

Genes 
Direct Binding 

STAT3 Binding 

Site(s) 
Cell/Tissue Type(s) Species Reference 

Tumor Supporting Functions of STAT3 

Apoptosis and Proliferation 

↓ Fas ChIP −460 to −240 bp Myeloma Cells Human [40] 

↑ Hsp70 EMSA/ChIP −122 to −90 bp VSM, HeLa Cells Human [41] 

↑ Hsp90α ChIP −1642 to −1485 bp Jurkat Cells Human [42] 

↑ Hsp90β EMSA −643 to −623 bp VSM Cells Human [41] 

↑ Cyclin-D1 EMSA/ChIP 
−984 bp, −568 bp, 

−475 bp, −239 bp 

293T, 3YI, NIH-3T3, 

2fTG Cells 

Human 

Murine 
[43–45] 

Immune Suppression and Inflammation 

↑ IL-10 EMSA/ChIP −120 to −111 bp RPMI-8226 B Cells Human [46] 

↑ IL-23 ChIP −1159 to +160 bp B16 Tumors Murine [47] 

↑ TGF-β ChIP −3155 to −2515 bp CD4+ T Cells Murine [48] 

↑ COX-2 ChIP −134 to −127 bp U87MG Cells Human [49] 

Metastasis 

↑ MMP-1 EMSA/ChIP −79 to −42 bp T24, HT-29 Cells Human [50] 

↑ MMP-2 EMSA 
−1657 to −1620 bp 

−625 to −601 bp 
C4 K1735 Cells Murine [51] 

↑ MMP-3 ChIP −410 to −110 bp HBVE Cells Human [52] 

↑ MMP-9 ChIP −942 to −934 bp MCF7 Cells Human [53] 

↑ Fascin ChIP 
−1095 to −1067 bp 

−975 to −948 bp 

4T1, MDA-MB-231 

Cells 

Human 

Murine 
[54] 

↑ Vimentin EMSA/ChIP −757 to −749 bp 
MDA-MB-231,  

C2C12 Cells 

Human 

Murine 
[55] 

↑ RhoU EMSA/ChIP −1067 to −324 bp MEF Cells Murine [56] 

↑ ICAM-1 EMSA/ChIP 
−76 to −66 bp 

−175 to −97 bp 
HepG2, BV2 Cells 

Human 

Murine 
[57] 

↑ NGAL ChIP −170 bp Primary Macrophages Human [58] 

↑ POMC EMSA −399 to −374 bp AtT20 Cells Murine [59] 

↑ SAA1 EMSA/ChIP −226 to +24 bp HepG2 Cells Human [60] 

Angiogenesis 

↑ VEGF-A EMSA/ChIP −848 bp v-Src-3T3 Cells Murine [61] 

↑ bFGF ChIP −997 to −989 bp HUVEC Human [62] 

↑ HGF EMSA/ChIP −149 bp, −110 bp SP1, RINm5F Cells Murine [63,64] 

Cell Signaling 

↑ AKT ChIP Proximal −2.2 kb 293 Cells Human [65] 

↑ PIM-1 ChIP −934 to −905 bp Microglial Cells Murine [66] 

↑ TNF-R2 ChIP −1578 bp, −364 bp SW480 Cells Human [67] 

↑ S1P-R1 EMSA/ChIP −588 bp 
MB49 Cells, B16 

Tumors 
Murine [68] 

↑ MUC-1 EMSA/ChIP −503 to −495 bp T74D, ZR-75-1 Cells Human [69,70] 
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Table 1. Cont. 

STAT3-Regulated 

Genes 
Direct Binding 

STAT3 Binding 

Site(s) 
Cell/Tissue Type(s) Species Reference 

Tumor Suppressing Functions of STAT3 

Transcription Factors 

↑ FOXO1 ChIP −515 bp CD4+ T Cells Murine [71] 

↑ FOXO3A ChIP +196 bp CD4+ T Cells Murine [71] 

↑ Foxp3 ND Intron 1 293 Cells Human [72] 

↓ Necdin EMSA/ChIP −588 bp v-Src-3T3 Murine [73] 

Survival and Metastasis 

↑ p21CIP1/WAF1 EMSA/ChIP 

−4183 bp  

−2540 bp  

−640 bp 

MG63, A431, HT-29, 

WiDr, HepG2 Cells 
Human [74–76] 

↑ PI3K p50α ChIP −276 bp Mammary Gland Murine [77] 

↑ PI3K p55α ChIP −624 bp Mammary Gland Murine [77] 

Tumor Immune Surveillance 

↑

↓ 
IL-6 ChIP −73 to −54 bp NIH-3T3, CT26 Murine [78–80] 

↑

↓ 
TNF-α ND −1452 bp Macrophages, SCK1 Murine [80,81] 

↑

↓ 
IFN-γ ChIP 105 to 542 bp T Cells 

Human 

Murine 
[78,80,82] 

↑

↓ 
RANTES EMSA/ChIP −120 to −1 bp PC3, NIH-3T3 Cells 

Human 

Murine 
[78,80,83] 

↑ CRP EMSA −112 to −105 bp Hep3B Cells Human [84] 

↑ STAT1 ChIP 

−604 to −596 bp 

−444 to −435 bp 

−363 to −356 bp 

−246 to −239 bp 

MDA-MB-468 Cells Human [85] 

↑ RORγt ChIP 1st Intron TH17 Cells Murine [86] 

↑ RORα ChIP 1st Intron TH17 Cells Murine [86] 

↑ BATF ChIP 2nd Intron TH17 Cells Murine [86] 

↑ IRF4 ChIP Proximal Promoter TH17 Cells Murine [86] 

↑ IL-6Rα ChIP 1st Intron TH17 Cells Murine [86] 

↑ IL-23R ChIP UD TH17 Cells Murine [86] 

↑ IL-17A ChIP −144 bp TH17 Cells Murine [86,87] 

↑ IL-17F ChIP 
−309 bp  

−326 bp 
TH17 Cells Murine [86,87] 

Other 

↑ TIMP-1 EMSA/ChIP −49 to −41 bp 
HepG2, WI38,  

CD4+ T Cells 

Human 

Murine 
[88,89] 

↑ JunB EMSA −196 to −91 bp HepG2 Cells Human [26,90] 

↑ iNOS EMSA/ChIP 
−142 to −130 bp 

−84 to −60 bp 
A431 Cells Human [18] 

↑

↓ 
CDC25A ChIP −222 to +58 bp HepG2, Saos Cells Human [91] 

* Direct binding required evidence by ChIP or EMSA; ND = Not determined; UD = Undescribed. 
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2. Tumor Supporting Functions of STAT3 

STAT3 can promote tumor growth by mechanisms within the tumor cell as well as in the tumor 

microenvironment. As will become clear, STAT3 can directly regulate genes leading to multiple tumor 

promoting processes from cell survival, invasion, angiogenesis, and immune escape. In addition, 

STAT3 can regulate other transcription factors that also support tumor growth, thus STAT3 can also 

indirectly support tumor growth by promoting survival, angiogenesis, metastasis, and even pluripotency.  

2.1. Transcription Factors  

There is a broad range of transcription factors that are regulated by STAT3 and none likely have as 

many broad functions as c-Fos and HIF-1α. Cellular Fos (c-Fos) is a member of the activating  

protein-1 (AP-1) transcription factor complex composed of dimers from the Jun (c-Jun, JunB, and JunD) 

and Fos (c-Fos, FosB, Fra1, and Fra2) families. AP-1 is frequently up regulated in several cancer types 

and also has broad influences supporting tumor inflammation, angiogenesis, and suppression of 

apoptosis among others [92]. STAT3 has been shown to up regulate c-Fos expression in both 

hepatocellular and epidermoid carcinoma cells and results indicated this was a result of direct interaction 

of STAT3 with the c-Fos gene promoter [19,26,27]. Hypoxia inducible factor 1 alpha (HIF-1α) 

combines with HIF-1β, which is constitutively expressed, to form a dimer that can regulate a multitude 

of genes that result in tumor growth and progression. The HIF-1 complex is up regulated in multiple 

cancer types and promotes tumor growth by inducing genes that promote angiogenesis, invasion, and 

alters cell metabolism to be more characteristic of cancer cells [93]. HIF-1α can be regulated 

transcriptionally but also by post-translational mechanisms. STAT3 has been shown to increase HIF-1α 

levels by extension of protein half-life but also induction of HIF-1α transcription in human and mouse 

melanoma cells [28,94]. The HIF1A gene was found to contain STAT3 binding sites and STAT3 was 

confirmed to directly bind the HIF1A gene promoter [28]. While STAT3 can directly regulate several 

genes that support tumor growth, these effects are compounded by the upregulation of c-Fos and HIF-1α 

expression. STAT3, c-Fos, and HIF-1 alone can support a multitude of processes that promote 

initiation and progression of tumors. 

STAT3 has been shown to be dysregulated in cancer stem cells [95]. Thus, it is not surprising that 

STAT3 targets several transcription factors that can promote or support stemness. The genes for c-Myc, 

Sox2, and NANOG have been shown to be intimately involved in the pluripotency of cells [96]. 

Expression of STAT3 has been shown to up regulate all three of these transcriptions factors [29–31]. 

ChIP assays have confirmed that STAT3 can directly associate with the promoter of all three of these 

genes in embryonic stem cells [29–31]. In addition, HIF-1 has also been shown to support cancer stem 

cell renewal [97]. Thus, STAT3 can directly up regulate multiple transcription factors that can 

reprogram cells to induce and sustain pluripotency supporting a cancer stem cell phenotype. 

A key step in the metastasis of carcinomas is the conversion of epithelial cancer cells to mesenchymal 

cancer cells called epithelial-to-mesenchymal transition (EMT). A vital point in EMT is the down 

regulation of E-cadherin expression, which ultimately promotes intercellular dissociation allowing cell 

migration, resistance to anoikis, and resistance to chemotherapy among others [98]. This advancement 

of the EMT program is achieved by expression of transcriptional repressors. Our lab has shown that 
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STAT3 mediates EGF-induced expression of the repressor Twist in epidermoid and mammary 

carcinoma cells [19]. We found STAT3 binding sites within the TWIST1 promoter and showed direct 

binding of STAT3 via ChIP [19]. In addition to TWIST, STAT3 has also been shown to up regulate 

expression of ZEB1, another E-cadherin repressor [32]. They observed STAT3 could also directly 

associate with the ZEB1 promoter in colorectal carcinoma cells [32]. These studies implicate STAT3 

as an inducer of EMT and ultimately tumor progression toward metastasis. 

STAT3 also has an indirect effect on cell proliferation by regulating Oct-1 and p53. Octamer 

transcription factor-1 (Oct-1) is a widely-expressed transcription factor that can induce expression of 

genes promoting anaerobic metabolism but also promotes cell proliferation [99,100]. Knockdown of 

STAT3 suppressed Oct-1 expression in esophageal squamous cancer cells [34]. STAT3 was also 

shown to directly bind the gene promoter for Oct-1 to regulate its expression [101]. Upregulation or 

activation of p53 occurs in response to many cell stressors from genetic abnormalities to oxidative 

stress and can potently induce apoptosis and cell cycle arrest [102]. Induction of STAT3 by expression 

of v-Src has been shown to suppress p53 levels and this was reversed with expression of a STAT3 

dominant negative [33]. The gene promoter for p53 contained multiple STAT3 predicted binding sites 

but STAT3 could only directly associate with one of these sites (−128 bp) to suppress p53 gene 

expression [33]. The expression of Oct-1 coupled with down regulation of p53 levels, mediated by 

direct STAT3 regulation, results in a higher potential for progression through the cell cycle and 

uncontrolled proliferation characteristic of cancer cells. 

2.2. Apoptosis and Proliferation  

Apoptosis is regulated by two primary pathways: the extrinsic and intrinsic pathways. The extrinsic 

pathway is initiated by ligands binding to death receptors (e.g., Fas ligand and Fas), which directly 

activate caspases to initiate the apoptosis program. The intrinsic pathway is regulated at the mitochondria 

whereby the balance of pro-apoptotic (e.g., Bim, Bad, Bik, PUMA, and NOXA) and anti-apoptotic  

(e.g., Bcl-2, Bcl-xL, Mcl-1, A1, and Bcl-w) proteins from the Bcl-2 protein family determine the 

integrity of the mitochondrial membrane. Upon accumulation of pro-apoptotic proteins, mitochondrial 

outer membrane permeabilization (MOMP) occurs resulting in release of cytochrome c from the 

mitochondria forming the apoptosome to activate caspases and initiate apoptosis. Several of these 

proteins have been discovered to be STAT3 target genes. 

Anti-apoptotic Bcl-2 proteins, such as Bcl-2 and Mcl-1, interact with the pore-forming proteins Bax 

and Bak preventing their induction of MOMP and ultimately apoptosis. After induction of both Bcl-2 

and STAT3 with phospholipase D in HeLa cells, the Bcl-2 gene was found to contain STAT3 binding 

sites [35]. STAT3 was found to directly associate with the Bcl-2 gene promoter and up regulate Bcl-2 

expression thereby suppressing apoptosis in these cells [35]. Binding sites for STAT3 were also found 

in the gene promoter for Mcl-1 and inhibition of STAT3 resulted in decreased Mcl-1 levels in peripheral 

leukocytes [8,103,104]. EMSA experiments later showed that STAT3 can directly bind these STAT3 

elements within the MCL1 promoter and drive gene activation in LGL leukemia cells [37]. Another  

anti-apoptotic protein, Bcl-xL, was also seen to be up regulated with STAT3 expression [38]. Serial 

truncation of the Bcl-xL gene promoter revealed the proximal region of the promoter was required for 

STAT3-induced activation of the Bcl-xL gene but direct binding was not assessed [38]. 
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Caspases are the terminal effectors of the apoptosis program and can be directly activated as well as 

directly inhibited. Aside from the indirect regulation of caspases by the Bcl-2 protein family, caspases 

can be directly activated by death receptors. One such receptor is the Fas receptor, which binds the Fas 

ligand and uses the intracellular death domain to directly activate caspases to initiate apoptosis. 

Expression of a dominant-negative STAT3 mutant induced expression of Fas and, in addition, cells 

lacking c-Jun were responsive to Fas ligand indicating presence of the receptor [40]. The Fas gene 

promoter was found to contain binding sites for both STAT3 and AP-1 and mutation of both of these 

sites increased Fas gene activation greater than mutation of either site alone indicating these two sites 

likely work together to repress Fas expression [40]. Both EMSA and ChIP assays confirmed that 

STAT3 and c-Jun bind the Fas gene (TNFRSF6) in a complex in order to repress Fas expression [40]. 

Caspases can also be directly inhibited by inhibitor of caspases (IAPs), such as survivin, which interact 

with and suppress activation of caspases to block apoptosis. STAT3 expression has been shown to 

induce expression of survivin and suppress apoptosis [39]. Both EMSA and ChIP assays confirmed 

that STAT3 could directly associate with the survivin promoter to induce expression [39]. 

Heat shock proteins (Hsps) are typically expressed in response to acute cell stress to ensure proteins 

are folded correctly and to maintain integrity of existing proteins. Hsp proteins are commonly 

overexpressed in multiple malignant cell types and support tumor growth by protecting oncogenic 

proteins from degradation [105]. It was observed that thrombin could induce expression of Hsp70 and 

Hsp90β in vascular smooth muscle cells (VSMCs), which was inhibited by suppression of STAT3 

signaling [41]. Experiments using EMSA identified that both STAT3 and STAT1 could bind to a 

sequence in the Hsp70 gene promoter as well as to a sequence in the Hsp90β gene promoter [41]. In 

addition, the Hsp90α gene promoter was found to contain the GAS binding sequence [42]. 

Investigators found that in quiescent Jurkat cells, STAT1 was constitutively bound to this GAS 

sequence in the Hsp90α gene promoter but heat shock induced binding of STAT3 and HSF1, in 

addition to STAT1, leading to increased Hsp90α mRNA levels [42]. IFN-γ treatment prevented 

additional binding of STAT3 and HSF1 to the Hsp90α GAS sequence inhibiting induction of Hsp90α 

expression with heat shock [42]. 

In addition to suppressing apoptosis, STAT3 also functions to up regulate proliferation by 

promoting entry to the cell cycle. The cell cycle is regulated by waves of expression of proteins that drive 

the cell cycle forward during each phase. In particular, the cyclin D proteins regulate the G1/S-phase 

transition as the cyclin D proteins (D1, D2, and D3) increase expression leading to interaction with and 

activation of cyclin dependent kinases 4 and 6 (CDK4/6), which phosphorylates the retinoblastoma 

(Rb) protein to initiate S-phase [106]. Thus, induction of cyclin D proteins, including cyclin D1, 

promotes entry into the S-phase and cell proliferation. Early studies showed that an active form of 

STAT3 could induce cyclin D1 whereas a STAT3 dominant negative could suppress Src-induced 

cyclin D1 expression [45]. A later study identified STAT3 binding sites within the cyclin D1 gene and 

observed direct association of STAT3 with the promoter and induction of proliferation [44]. Tumor 

growth is the result of uncontrolled cell proliferation due to flux through the cell cycle combined with 

suppression of normal cellular death signals. Thus far, STAT3 has been shown to directly affect both 

of these mechanisms by upregulating anti-apoptosis proteins as well as cyclin D1 giving substantial 

reason to those targeting STAT3 for suppressing tumor growth. 
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2.3. Immune Suppression and Inflammation  

STAT3 has been elegantly shown to promote tumor evasion of the immune system [80,107]. 

STAT3 achieves promoting tumor immune evasion by directly upregulating expression of multiple 

cytokines that suppress immune function. In addition, STAT3 also up regulates the pro-inflammatory 

intracellular enzyme COX-2. STAT3 has been shown to indirectly affect several genes related to 

antigen presentation that cause immune suppression [107,108] but this discussion will focus primarily 

on genes that STAT3 regulates directly. 

Interleukin-10 (IL-10) is an immunosuppressive cytokine that suppresses the production of  

pro-inflammatory cytokines such as TNF-α and IL-1 and reducing cell surface expression of  

antigen-presenting proteins. IL-10 is induced by STAT3 in human RPMI 8226.1 B cells [46,109,110]. 

It was later confirmed that STAT3 could directly associate with the IL10 promoter in these cells [46]. 

IL-23 is another immune suppressing cytokine that has been shown to reduce tumor infiltration by 

CD8
+
 T cells and promote tumor angiogenesis [111]. IL-23 levels were seen to be reduced with 

knockdown of STAT3 and further examination revealed a STAT3 binding site on the IL-23 gene 

promoter [47]. A ChIP assay confirmed direct association of STAT3 with this promoter [47]. TGF-β is 

a cytokine that can suppress Th1 and Th2 cells in addition to its promotion of EMT on epithelial tumor 

cells. Introduction of an active STAT3 increased expression of TGF-β1 [48]. A search of the TGF-β1 

gene found STAT3 binding sites within the promoter and ChIP assay confirmed direct association of 

STAT3 to the TGF-β1 gene promoter [48]. Thus, STAT3 has a very direct role in suppressing tumor 

immune surveillance and function by regulation of these cytokines. 

Cyclooxygenase-2 (COX-2) is an inducible prostaglandin synthase that is involved in several 

pathological processes related to inflammation and is up regulated in several types of cancers [112]. 

Our lab observed increased COX-2 levels with the presence of nuclear EGFR in U87MG human 

glioblastoma cells [49]. COX-2 expression was further enhanced in these cells with co-expression of 

an active form of STAT3 [49]. We found a STAT3 target sequence in the COX-2 gene promoter and 

the STAT3-EGFR complex was found to associate directly with this promoter sequence to induce 

activation of the gene for COX-2 [49]. These results indicate a significant function of STAT3 is to 

suppress immune function and promote tumor survival. However, these do not entirely encompass the 

effect of STAT3 on immune function. Other roles are discussed in the section below on the dual roles 

of STAT3 in tumor growth. 

2.4. Metastasis  

Tumor metastasis indicates the spread and implantation of tumor cells from the primary tumor site 

to distant tissues. Tumor metastasis is generally associated with disease progression, decreased 

survival, and decreased response to therapy. There are many steps and requirements for tumor cell 

metastasis including detachment of tumor cells from primary tumors, invasion of these cells out of the 

primary tumor, entry to a transportation system (i.e., lymphatic system), and implantation into the new 

tissue site. STAT3 has been shown to up regulate several genes that support multiple functions 

required for metastasis. 
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A key step in metastasis is invasion of cells out of the primary tumor site into neighboring tissues. 

In order for invasion to occur, there is often release of proteases from the tumor cell that degrade 

extracellular matrix allowing passage of the migrating cell. Proteases also play a role in angiogenesis 

as pro-angiogenic growth factors are often released from matrix degraded by proteases and they also 

degrade basement membrane for endothelial cell migration. The matrix metalloproteinase (MMP) 

family of proteases are zinc-dependent and are capable of degrading many types of extracellular matrix 

proteins and several family members are confirmed STAT3 target genes. MMP-1 was observed to be 

up regulated in a STAT3-dependent manner in human colorectal adenocarcinoma and urinary bladder 

transitional cell carcinoma cells [50,113]. The MMP1 gene was found to contain a STAT3 and an  

AP-1 binding site and mutation of either the STAT3 or AP-1 site ablated STAT3-mediated gene 

activation [50,113]. Further investigation revealed both STAT3 and c-Jun were directly bound to the 

MMP1 promoter in a manner dependent on c-Jun binding [50]. In addition to MMP-1, expression of an 

active STAT3 was also found to induce transcriptional activation of the gene promoter for MMP-2 in 

mouse melanoma cells [51]. The MMP-2 gene promoter contained several potential STAT3 binding 

sites and EMSA showed that STAT3 could directly bind the promoter [51]. STAT3 has been observed 

to induce activation of MMP-3 in human brain vascular endothelial cells [52]. Analysis of the MMP3 

gene revealed several STAT3 binding sites and a subsequent ChIP assay confirmed direct binding to 

the gene promoter by STAT3 [52]. Lastly, STAT3 can regulate the gene for MMP-9. In MCF7 human 

breast cancer cells, stable expression of an active STAT3 increased MMP-9 mRNA levels as well as 

transcriptional activation of the MMP-9 gene [114]. This study found STAT3 binding to the MMP9 

gene via EMSA and a later study confirmed this result using a ChIP assay [53,114]. 

Once extracellular matrix is cleared to allow cell migration, the cell requires upregulation of 

proteins to control the cytoskeleton to allow for cell migration. Fascin is one such protein as it is an 

actin-bundling protein that promotes tumor cell migration, invasion, and metastasis [115]. The human 

and mouse fascin gene promoter was found to contain a motif similar to the canonical STAT3 binding 

site [54]. Activation of STAT3 in murine 4T1 cells or human MDA-MB-231 cells induced expression 

of fascin [54]. Further analysis with a ChIP assay confirmed that STAT3 could directly associate with 

the gene promoter for fascin in both breast cancer cell types [54]. Vimentin is a type III intermediate 

filament and supports the structural integrity of the cell while providing flexibility to the cell to allow 

cell movement. Vimentin is often used as a marker for the mesenchymal phenotype and expression in 

epithelial tumor cells often indicates EMT and capabilities for cell migration. The vimentin gene 

promoter was found to contain a STAT3 binding site within the antisilencer element (ASE) and 

deletion of this region significantly reduced STAT3-induced transcriptional activation of the vimentin 

gene in MDA-MB-231 and mouse C2C12 cells [55]. Further analysis showed that STAT3 could 

directly bind these target sequences from the VIM promoter [55]. Lastly, STAT3 has been shown to 

regulate the GTPase RhoU, which acts on the actin cytoskeleton to stimulate filopodia formation and 

loss of RhoU inhibits cell migration [116,117]. Gene expression profiling of STAT3-null cells led to 

the identification of RhoU as a possible STAT3 target gene [56]. Treatment of mouse embryonic 

fibroblasts (MEFs) with gp130 cytokines induced RhoU mRNA levels whereas STAT3-null cells 

showed significantly lower RhoU expression [56]. EMSA experiments suggested STAT3 could bind 

multiple sequences in the RhoU gene promoter and two of these sites (−1,067 bp and −324 bp) were 

also confirmed binding sites by ChIP analysis [56]. 
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Another protein that supports metastasis is intercellular adhesion molecular-1 (ICAM-1), a 

membrane adhesion molecule up regulated in inflammatory conditions [118]. ICAM-1 has been shown 

to have higher levels in tumor tissues and antibody targeting of ICAM-1 induces potent  

macrophage-dependent antimyeloma activity [118,119]. ICAM-1 supports metastasis by making it easier 

for ICAM-1-expressing tumor cells to separate from each other and invade surrounding tissue [120].  

The ICAM-1 gene was identified as having an IL-6 response element [57]. It was seen that STAT3 

forms a complex with c-Fos and c-Jun to bind and up regulate the ICAM1 gene in HepG2 human 

hepatocellular carcinoma cells [57]. 

STAT3 can also regulate genes for secreted proteins that play a role in metastasis. Neutrophil 

gelatinase associated lipocalin (NGAL), or lipocalin 2, is a secreted glycoprotein that has an immune 

function to protect against bacterial infection [121]. In addition, it also has several tumor promoting 

functions including stabilization of MMP-9 and, therefore, promotion of cell invasion [121]. IL-10 has 

been shown to induce NGAL expression and gene activation in human primary macrophages, which 

was suppressed with inhibition of JAK/STAT signaling [58]. Analysis of the NGAL gene promoter 

showed a STAT3 binding site and mutation of this site (-170 bp) reduced NGAL gene activation by 

IL-10 [58]. A ChIP assay then confirmed STAT3 could directly associate with the NGAL gene 

promoter [58]. Another secreted protein, proopiomelanocortin (POMC), is a precursor peptide that 

gives rise to multiple derivative peptides such as α-MSH, a known promoter of the growth and 

metastasis of melanoma [122]. Leukocyte inhibitory factor (LIF) was observed to induce activation of 

the gene for POMC and murine pituitary tumor cells [59]. Knowing that LIF activates STAT3 

signaling, further search of the gene for POMC showed a STAT3 binding site [59]. Deletion of this 

region reduced gene activation by LIF and EMSA experiments showed that STAT3 could directly bind 

this sequence [59]. 

Lastly, STAT3 has also been found to regulate the gene for serum amyloid A (SAA), which can 

interact with and alter the composition of the extracellular matrix to promote tumor initiation and 

progression [123]. The SAA proteins are also a family of acute-phase proteins that are at high levels in 

serum of cancer patients and may be a cancer biomarker [123]. Expression of STAT3 induced 

transcriptional activation of the SAA1 and SAA2 genes in HepG2 hepatocellular carcinoma cells 

whereas a STAT3 dominant negative suppressed their activation [60]. EMSA showed that STAT3 

could bind sequences within the SAA1 promoter and did so in a complex with the p65 subunit of  

NF-κB and the acetyltransferase p300 [60]. Subsequent analysis by ChIP assay confirmed that STAT3 

was bound to the SAA1 promoter in a complex with p300 [60]. 

Taken together, it appears that STAT3 up regulates many genes that support tumor metastasis 

through a variety of mechanisms. This facet of STAT3 biology likely contributes to the association of 

STAT3 with metastasis and a poor prognosis in multiple cancer types [16,124–126]. 

2.5. Angiogenesis  

Tumors have high proliferation rates and metabolism. These large amounts of activity require a 

high demand for oxygen and nutrients. Once tumors reach approximately 2 mm in diameter, the center 

of the tumor becomes hypoxic, which leads to activation of tumor angiogenesis. Tumor angiogenesis is 

thought to be regulated by the balance of pro-angiogenic (e.g., VEGF-A and basic fibroblast growth factor) 
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and anti-angiogenic (e.g., angiostatin and endostatin) factors present in the tumor microenvironment [127]. 

STAT3 has been shown to up regulate tumor angiogenesis by directly targeting multiple  

pro-angiogenic factors. 

Vascular endothelial growth factor A (VEGF-A) is the most studied and most potent pro-angiogenic 

growth factor known. STAT3 expression induces VEGF-A protein levels in NIH-3T3 cells and 

promotes angiogenesis [61]. The gene for VEGF-A was found to have STAT3 binding sites and this 

study provided evidence that STAT3 can directly bind one of these sites to promote VEGF-A 

expression [61]. Basic fibroblast growth factor (bFGF) is another well-studied pro-angiogenic growth 

factor that activates fibroblast growth factor receptors (FGFRs) to promote endothelial cell 

proliferation and angiogenesis. STAT3 can up regulate bFGF expression in HUVEC cells in response to 

VEGF stimulation and evidence shows STAT3 can associate directly with the bFGF gene promoter [62]. 

STAT3 has also been shown to be activated by bFGF suggesting initiation of an autocrine signaling 

loop that promotes STAT3 activation, bFGF expression, and angiogenesis [128]. Hepatocyte growth 

factor (HGF) was discovered as a neuronal survival factor but also induces proliferation, migration, 

and tumor angiogenesis. Introduction of an active Src was seen to induce HGF expression with 

concomitant STAT3 activation in murine mammary adenocarcinoma cells [63]. The gene for HGF was 

found to contain STAT3 binding sites and direct association of these sites by STAT3 was observed by 

EMSA [63]. A later study confirmed binding of STAT3 to the HGF gene promoter via ChIP in 

response to IL-6 in a rat pancreatic β-cell line [64]. Induction of tumor angiogenesis supports tumor 

metastasis by delivering nutrients to allow for cell survival but also the new vasculature provides an 

opportunity for migratory cells to enter the circulation and travel to other tissues for implantation. 

STAT3 induction of angiogenesis and proteases that support angiogenesis and cell invasion together 

make a lethal combination in tumor biology. 

2.6. Cell Signaling  

While JAK-STAT3 signaling could be described as proliferation or survival promoting signaling 

due to some of the already discussed STAT3 target genes, STAT3 can also directly up regulate genes 

to promote activation of other signaling pathways to induce proliferation and survival. AKT is a 

serine/threonine kinase commonly activated by the PI3K signaling pathway and participates in many 

functions of the cell including proliferation, cell growth, and glucose metabolism among many  

others [129]. AKT protein levels were seen to be increased with treatment of IL-6 and introduction of 

an active STAT3 induced transcriptional activation of the AKT1 gene in 293 cells [65]. Several 

predicted STAT3 binding sites were found in the proximal portion of the AKT1 promoter and multiple 

ChIP assays confirmed STAT3 was bound to the AKT1 promoter [65]. STAT3 has also been shown to 

directly regulate the serine/threonine kinase PIM-1, which is a proto-oncogene that regulates several 

cellular functions including proliferation [130]. One study found that expression of a dominant 

negative STAT3 resulted in Pim-1 downregulation in murine hematopoietic cells and human CD4
+
 T 

lymphoma cells [131]. Another study confirmed that Pim-1 is a direct STAT3 target as STAT3 was 

able to the bind the GAS sequence in the Pim-1 gene promoter in T lymphocytes [7]. A more recent 

study confirmed these results with ChIP assays in rat microglia cells [66]. 
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Both AKT and PIM-1 are intracellular kinases but STAT3 can also regulate membrane receptors 

that initiate cell signaling pathways. Tumor necrosis factor alpha (TNF-α) acts on TNF-R1 and  

TNF-R2 to exert actions on cells. TNF-R1 mediates the pro-apoptotic effects of TNF-α by activation 

of the intracellular death domain inherent in TNF-R1 whereas TNF-R2 lacks this death domain and 

promotes cell proliferation in cancer cells [132]. IL-6 was seen to induce expression of TNF-R2 in 

human colorectal adenocarcinoma cells and further analysis revealed two STAT3 binding sites in the 

gene promoter [67]. Further assays showed STAT3 could directly associate with the TNF-R2 gene 

promoter to regulate its activation [67]. Sphingosine-1-phosphate (S1P) interacts with the S1P receptor 1 

(S1P-R1), a G-protein coupled receptor, to regulate many cellular functions relevant to cancer including 

proliferation, migration, invasion, and angiogenesis among others [133]. The S1P-R1 protein was 

observed to be increased in murine B cell tumors with active STAT3 whereas S1P-R1 was down 

regulated in tumors lacking STAT3 [68]. STAT3 expression was shown to drive transcriptional 

activation of the S1P-R1 gene and mutation of predicted STAT3 binding sites in the promoter ablated 

this activation [68]. STAT3 was ultimately shown to directly bind and regulate the gene promoter for  

S1P-R1 [68]. Interestingly, this study also observed that activation of S1P-R1 was shown to  

activate STAT3 forming an autoregulatory loop to further induce expression of the receptor and 

downstream signaling. 

Lastly, STAT3 has been shown to regulate the gene for mucin-1 (MUC-1). MUC-1 is a member of 

the mucin family of glycoproteins and is a transmembrane protein with the extracellular portion of the 

protein affording a layer of protection of epithelial linings [134]. MUC-1 is frequently overexpressed 

in breast cancer and interacts with receptor tyrosine kinases, such as EGFR, to promote their activation 

and upregulation of proliferative signaling [134]. Upon search of the MUC1 gene to identify regulatory 

proteins, a STAT3 binding site was identified [70]. IL-6 induced transcriptional activation of the 

MUC-1 gene in human mammary ductal carcinoma cells but this induction did not occur when the 

STAT3 site was mutated [70]. This study also found that STAT3 could directly associate with a 

STAT3 binding site within the MUC1 promoter in response to IL-6 but that STAT1 bound to the 

MUC-1 promoter in response to IFN-γ [70]. These data suggest an even further variety of ways in 

which STAT3 can support tumor growth. STAT3 appears to support tumor growth on multiple fronts 

of cell biology and in multiple stages of tumor development and progression. However, despite the 

overwhelming amount of information that supports STAT3 as an oncogene, there is some evidence 

that STAT3 can also suppress tumor growth. 

3. Tumor Suppressing Functions of STAT3 

As described above, STAT3 can directly regulate a host of genes that ultimately support tumor 

growth and progression such as genes involved in cell signaling, tumor angiogenesis, and metastasis. 

However, as this article series is making clear, STAT3 also has several tumor suppressive functions as 

a transcription factor including regulating genes for other tumor suppressing transcription factors and 

genes that suppress cell proliferation and survival as well as tumor metastasis. 
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3.1. Transcription Factors  

The FOX family of transcription factors is characterized as containing the forkhead box domain 

allowing DNA binding and this large family has ability for gene induction and repression. The FOXO 

class of FOX transcription factors are a family of tumor suppressors as they block entry to the cell 

cycle and are inactivated by phosphorylation by several kinases including AKT and CDK1 [135]. 

STAT3 has been shown to up regulate both FOXO1 and FOXO3A in CD4
+
 T cells [71]. The genes for 

FOXO1 and FOXO3A were found to have STAT3 binding sites and ChIP assays confirmed direct 

association of STAT3 with both gene promoters [71]. Within another FOX class, the FOXP3 

transcription factor was originally discovered as the master regulator in regulatory T cells [136]. 

However, further evidence indicates FOXP3 is also a tumor suppressor that is down regulated in 

several types of carcinomas and has the ability to repress several oncogenes including HER2 and  

c-MYC and up regulate the tumor suppressor p21
WAF1/CIP1

 [136]. FOXP3 expression was found to be 

increased by IL-2-induced activation of STAT3 in 293 cells [72]. While they did not confirm STAT3 

directly bound the FOXP3 gene, mutation of predicted STAT3 binding sites within the first intron of 

the FOXP3 gene significantly reduced STAT3-induced transcriptional activation of FOXP3 [72].  

Necdin, a member of the melanoma antigen gene (MAGE) family, is a transcriptional repressor that 

facilitates entry into the cell cycle [137]. Aside from its transcriptional role, Necdin also has the ability 

to physically associate with p53 to suppress p53-dependent apoptosis promoting survival of  

post-mitotic neurons [138]. Necdin was identified as a potential STAT3 target via microarray 

experiments and further investigation revealed that STAT3 could directly bind the gene promoter for 

Necdin leading to downregulation of Necdin levels in v-Src-expressing NIH-3T3 cells [73]. Together, 

these studies point to the potentially opposing role STAT3 can have on tumor growth by regulating 

these tumor suppressing transcription factors. 

3.2. Survival and Metastasis  

Uncontrolled proliferation and cell survival are key factors in tumorigenesis of primary tumors and 

metastasis of cells from this primary tumor worsens patient prognosis and treatment options. STAT3 

can regulate several tumor suppressing genes in these areas. 

The cyclin-dependent kinases (CDKs) have endogenous inhibitors and CDK4/6 is specifically 

inhibited by the protein p21
WAF1/CIP1

. STAT3 has been shown to directly bind the gene promoter for 

p21
WAF1/CIP1

 inducing its expression in multiple cell types including epidermoid carcinoma, colorectal 

carcinoma, and bone osteosarcoma cells [74–76]. One of these studies identified NcoA/SRC1a as  

co-factors that bind to the p21
WAF1/CIP1

 gene promoter with STAT3 [76].  

The regulation of p21
WAF1/CIP1

 is a more direct effect of STAT3 on regulating the cell cycle and 

proliferation. STAT3 can also regulate expression of subunits of the PI3K complex to suppress cell 

survival. The class IA PI3K complex is made up of a catalytic subunit (p110α, p110β, or p110δ) and a 

regulatory subunit (p85α, p85β, p55α, p55γ, or p50α) that combines to respond to receptor tyrosine 

kinases. These PI3Ks phosphorylate phosphoinositols allowing recruitment of other kinases, such as 

AKT, leading to their activation and downstream signaling that typically results in cell survival among 

other tumor supporting functions. During mammary gland involution, STAT3 has previously been 
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shown to promote apoptosis leading to post-lactation gland regression [139]. One study found that STAT3 

was activated whereas AKT was inactivated in mouse mammary glands undergoing involution [77]. 

Targeted deletion of STAT3 in these mammary glands resulted in decreased expression of the p55α 

and p50α PI3K subunits [77]. Similarly, STAT3 activation induced expression of p55α and p50α and 

this correlated with increased apoptosis during involution [77]. STAT3 binding sites were found in the 

gene promoters for both p55α and p50α and a ChIP assay confirmed association of STAT3 with these 

sites [77]. Ultimately, STAT3 was found to promote apoptosis in these cells due to upregulation of 

p55α and p50α, which inhibited PI3K signaling and AKT activation reducing cell signaling for 

survival [77]. However, this relationship did not extend to embryonic stem cells suggesting this 

mechanism may be specific to the mammary tissue or during the involution stage and gland 

regression [77]. 

STAT3 can, therefore, have effects that both promote and suppress tumor growth. STAT3 

seemingly has many more functions that support tumor growth than to suppress tumor growth. However, 

there are also a great number of genes that STAT3 regulates that have dual roles in tumor growth. 

4. Dual Functions by STAT3 in Tumor Growth 

To this point, STAT3 has been discussed purely as supporting tumor growth or purely as 

suppressing tumor growth. However, STAT3 has also been shown to (1) upregulate and downregulate 

specific genes involved in tumor growth or (2) regulate genes that may themselves support or suppress 

tumor growth depending on the context. 

4.1. Tumor Immune Function  

STAT3 can directly regulate the genes for multiple cytokines, which can lead to enhanced or 

suppressed tumor immune function. In studies identifying STAT3 as a tumor immune suppressor, one 

of the observations was decreased levels of IL-6 with increased STAT3 expression in NIH-3T3 cells 

and murine macrophages [78,80]. However, it was later observed that STAT3 can bind to the gene 

promoter and up regulate IL-6 in response to IL-32α in a manner dependent on PKCε [79].  

These different results may be a result of cellular context as PKCε was a co-factor required for STAT3 

binding and upregulation of the IL-6 gene. Similarly, expression of a STAT3 dominant negative has 

been shown to increase TNF-α levels in murine macrophages [80] whereas another study observed that 

mutation of the STAT3 binding sites in the gene promoter for TNF-α reduced activation of the TNF-α 

gene [81]. Although an AP-1 binding site was also found in the gene promoter for TNF-α, AP-1 did 

not appear to play a role in STAT3-mediated gene activation from the data presented [81]. 

Similar to these genes, STAT3 also has dual regulation of IFN-γ and RANTES. IFN-γ is a cytokine 

that promotes immune function by activating NK cells and promoting Th1 cell differentiation among 

other functions. Studies that found STAT3 suppressed tumor immune surveillance found that STAT3 

presence resulted in decreased levels of IFN-γ in murine macrophages [78,80]. However, another study 

found that IL-12 could activate mTOR and STAT3 phosphorylation and ultimately promote IFN-γ 

production dependent on mTOR activity [82]. This study also identified STAT3 binding sites within 

the gene for IFN-γ and confirmed direct binding of STAT3, along with STAT4 and c-Jun, to the gene 

promoter for IFN-γ in response to IL-12 in human T cells [82]. RANTES is another chemokine that 



Cancers 2014, 6 912 

 

 

supports immune function by attraction of T cells and monocytes and inducing T cell proliferation. 

Similar to IFN-γ, RANTES was observed to be negatively regulated by STAT3 expression in murine 

macrophages [78,80]. However a later study showed that an unphosphorylated form of STAT3, 

lacking ability for phosphorylation on Y705, could induce RANTES expression by directly interacting 

with the gene promoter for RANTES in a complex with the p65 subunit of NF-κB [83]. Together these 

data show that STAT3 can both up regulate and down regulate the genes for cytokines that support 

immune function to suppress tumor growth. The differential regulation of these genes by STAT3 

appears to be related to what STAT3 co-factors are present and even what form of STAT3 is 

predominantly present (i.e., phosphorylated vs. unphosphorylated). 

STAT3 also regulates several other genes that have immune functions that are not as consistent.  

C-reactive protein (CRP) is an acute-phase protein that has a rapidly increased expression following 

acute inflammation and CRP activates the complement system. Circulating CRP levels are associated 

with an increased cancer risk although it has been concluded this link is not causal [140]. However 

there are more questions regarding the role the complement system plays in cancer as it has long been 

thought to promote immune surveillance of developing tumors but it has also been shown to promote 

tumor growth [141]. Treatment of human hepatocellular carcinoma cells was shown to induce CRP 

expression, which was dependent on STAT3 binding sites within the CRP promoter [84]. Furthermore, 

direct association of STAT3 with the CRP promoter was also shown under these conditions [84]. 

STAT1 is another protein shown to be regulated by STAT3 but may support or suppress tumor 

growth. STAT1, another member of the STAT family, is activated by IFN-γ and has multiple tumor 

suppressor functions such as enhancement of immune surveillance and promotion of apoptosis [142]. 

However, STAT1 has also been shown to support inflammation-associated gastric tumorigenesis [143]. 

Our lab observed increased STAT1 expression in human mammary adenocarcinoma in the presence of 

nuclear EGFR, which synergized with co-expression of STAT3 to further enhance STAT1 levels [85]. 

The STAT1 promoter was found to have several STAT3 binding sites and mutation of these sites 

suppressed STAT1 gene activation by STAT3 and EGFR co-expression [85]. We further showed that 

regulation by STAT3 and EGFR was the result of a direct association of STAT3 and EGFR with the 

STAT1 promoter in a STAT3-dependent manner [85]. Whether STAT3-mediated upregulation of 

STAT1 and CRP actually supports or suppresses tumor growth is not clear to this point despite both 

STAT1 and CRP potentially having both pro- and anti-tumor activity. 

Lastly, STAT3 has a significant impact on tumor immune function through its role in the 

development of Th17 T helper cells. Th17 cells were identified by their large production of IL-17, 

which is unique from Th1 and Th2 cells [144,145]. The function of Th17 cells in tumor immunity is 

not completely understood as some results suggest pro-tumor activity while others suggest anti-tumor 

activity [146,147]. Six transcription factors have been identified as critical for Th17 differentiation: 

STAT3, RORγt, RORα, IRF4, BATF, and HIF-1α [147]. Deletion of STAT3 in mouse CD4
+
 naïve T 

cells prevents their differentiation into Th17 cells whereas expression of an active STAT3 promotes 

Th17 differentiation [83,86]. Using ChIP coupled with massive parallel sequencing (ChIP-Seq), STAT3 

was identified to bind to the gene promoters for RORγt, RORα, BATF, and IRF4 [86]. RORγt is 

considered the master regulator of Th17 cell differentiation and STAT3 was found to bind within the first 

intron of the mouse gene leading to increased expression and promotion of Th17 differentiation [86].  

It was mentioned above that STAT3 could also directly up regulate HIF-1α gene expression and 
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protein half-life [28] possibly indicating, although STAT3 regulation of HIF-1α was observed in 

melanoma cells, that STAT3 can directly regulate all six transcription factors involved in Th17 cell 

differentiation. This study also identified STAT3 binding to the genes for IL-23R and IL-6Rα, which 

supports Th17 development as both IL-6 and IL-23 promote Th17 differentiation [83,86]. In addition, 

STAT3 was also found to bind the genes for IL-17A and IL-17F suggesting STAT3 also participates in 

the production of IL-17 that led to the identification of Th17 cells [86]. Although STAT3 promotes 

Th17 development, Th17 cells themselves may support or suppress tumors. Therefore the regulation of 

Th17 development by STAT3 is an example of a family of genes regulated by STAT3 that drive cell 

development and affect tumor immune function. 

4.2. Other  

STAT3 has also been shown to have differing effects on tumor growth through regulation of 

TIMPs. The MMP family has natural inhibitors termed the tissue inhibitor of metalloproteinases 

(TIMPs) that suppress the protease function of MMPs. STAT3 has been shown to directly target the 

TIMP-1 gene as IL-6 has been observed to up regulate TIMP-1 levels in a STAT3-dependent manner 

in human hepatocellular carcinoma cells as well as human fibroblasts [89]. A STAT3 binding site was 

found in the gene for TIMP-1 and deletion of the STAT3 binding sites completely ablates TIMP-1 

activation by IL-6 [89]. This site was also confirmed to bind STAT3 using EMSA but further analysis 

of gene activation showed that binding of AP-1 was required for full activation by STAT3 [89]. A later 

study confirmed the TIMP-1 gene as a STAT3 target using ChIP-Seq in CD4
+
 T cells [88]. 

Considering MMPs promote cancer cell invasion, metastasis, and angiogenesis, it would seem that 

STAT3 upregulation of an endogenous inhibitor to MMPs is another example of STAT3 showing both 

oncogenic and tumor suppressor functions. However, TIMP-1 has been shown to have functions 

outside of MMP inhibition related to growth stimulation, apoptosis suppression, and induction of 

angiogenesis [148]. Furthermore, TIMP-1 is frequently overexpressed in breast cancer and this is 

associated with a poor prognosis [148]. STAT3 upregulation of TIMP-1 provides a clear illustration of 

a gene up regulated by STAT3 but may support or suppress tumor growth depending on the context in 

which it is expressed. 

Another example of a gene that is primarily up regulated by STAT3 but may support or suppress 

tumor growth is JunB. As mentioned above, JunB is in the family of Jun proteins that make up the  

AP-1 transcription factor. STAT3 was found to bind to predicted STAT binding sequences within the 

JUNB promoter in response to IL-6 treatment in HepG2 hepatocellular carcinoma cells [26,90]. While 

there is a great deal of evidence suggesting AP-1 supports tumor growth, there are also indications that 

JunB can act as a tumor suppressor in certain contexts [92]. The role of STAT3 in tumor suppression 

by regulation of JunB has not been made clear but this is an example of a STAT3-regulated gene that 

may support or suppress tumor growth. 

Nitric oxide (NO) is produced in cells by nitric oxide synthases (NOS), in which there are three 

isoforms: endothelial (eNOS), neuronal (nNOS), and inducible (iNOS) [149]. The expression of eNOS 

and nNOS are relatively limited to a small number of tissues and are calcium-dependent whereas iNOS 

is calcium-independent and can be expressed in a large variety of tissues [149]. The expression of 

iNOS is associated with several types of cancer and the produced NO has many pro-tumorigenic 
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functions such as activation of signaling pathways and inhibition of DNA repair [149]. However, there 

are instances in which NO suppresses tumor growth such as enhanced activity of Fas and inhibition of 

NF-κB [149]. The iNOS gene was identified as a potential target gene for the nuclear EGFR-STAT3 

complex [18]. Further analysis of the gene for iNOS found multiple STAT3 binding sites and mutation 

of these sites reduced transcriptional activation by the STAT3-EGFR complex [18]. Both EMSA and 

ChIP assays confirmed that STAT3 and EGFR bind to and regulate the gene promoter for iNOS in 

epidermoid carcinoma cells [18]. This study suggested STAT3 regulation of iNOS supported growth 

of malignant tumor cells. However, iNOS and NO also have potential tumor suppressing functions and 

the role of STAT3 in these have not been clearly addressed. 

STAT3 can also regulate the dual specificity phosphatase CDC25A, which can remove phosphate 

from serine, threonine, or tyrosine residues. CDC25A is required for cell cycle progression from the 

G1 to the S phase [150]. IL-6 induced expression of CDC25A in a STAT3-dependent manner in 

human hepatocellular carcinoma cells [91]. A ChIP assay found that STAT3 was directly bound to 

CDC25A promoter in a manner dependent on c-Myc binding [91]. In addition to this mechanism of 

STAT3-mediated upregulation of CDC25A, this study also observed a mechanism whereby STAT3 

suppresses CDC25A. Hydrogen peroxide was seen to induce interaction between STAT3 and 

retinoblastoma (Rb) protein and this complex occupied the CDC25A promoter in the same proximal 

region as the STAT3-c-Myc complex to repress expression [91]. This is further evidence suggesting 

the cellular context may play a significant role in whether STAT3 up regulates or down regulates 

genes in which STAT3 has dual regulation and, consequently, whether STAT3 supports or suppresses 

tumor growth. 

5. Conclusions 

Extensive efforts have been and are being actively invested in developing and testing  

STAT3-targeted therapy against a variety of human cancers. To date, the clinical testing of the 

STAT3-targeted therapy is still in the early stage with promising results being reported. To maximize 

these clinical efforts, a deeper understanding of the STAT3 pathway is urgently needed. To meet this 

need, additional investigations are required to decipher the full spectrum of STAT3 target genes in the 

context of different cellular environment and various types of human cancers, gain mechanistic 

insights into how STAT3 is regulated, deepen our understanding of the existing and novel signaling 

pathways that crosstalk with STAT3, and to identify novel cellular processes that can be regulated by 

STAT3 but may have been overlooked. 
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