
State Abstraction in MAXQ Hierarchical

Reinforcement Learning

Thomas G. Dietterich
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331-3202

tgd@cs.orst.edu

Abstract

Many researchers have explored methods for hierarchical reinforce­
ment learning (RL) with temporal abstractions, in which abstract
actions are defined that can perform many primitive actions before
terminating. However, little is known about learning with state ab­
stractions, in which aspects of the state space are ignored. In previ­
ous work, we developed the MAXQ method for hierarchical RL. In
this paper, we define five conditions under which state abstraction
can be combined with the MAXQ value function decomposition.
We prove that the MAXQ-Q learning algorithm converges under
these conditions and show experimentally that state abstraction is
important for the successful application of MAXQ-Q learning.

1 Introduction

Most work on hierarchical reinforcement learning has focused on temporal abstrac­
tion. For example, in the Options framework [1,2], the programmer defines a set of
macro actions ("options") and provides a policy for each. Learning algorithms (such
as semi-Markov Q learning) can then treat these temporally abstract actions as if
they were primitives and learn a policy for selecting among them. Closely related
is the HAM framework, in which the programmer constructs a hierarchy of finite­
state controllers [3]. Each controller can include non-deterministic states (where the
programmer was not sure what action to perform). The HAMQ learning algorithm
can then be applied to learn a policy for making choices in the non-deterministic
states. In both of these approaches-and in other studies of hierarchical RL (e.g.,
[4, 5, 6])-each option or finite state controller must have access to the entire state
space. The one exception to this-the Feudal-Q method of Dayan and Hinton [7]­
introduced state abstractions in an unsafe way, such that the resulting learning
problem was only partially observable. Hence, they could not provide any formal
results for the convergence or performance of their method.

Even a brief consideration of human-level intelligence shows that such methods can­
not scale. When deciding how to walk from the bedroom to the kitchen, we do not
need to think about the location of our car. Without state abstractions, any RL
method that learns value functions must learn a separate value for each state of the

State Abstraction in MAXQ Hierarchical Reinforcement Learning 995

world. Some argue that this can be solved by clever value function approximation
methods-and there is some merit in this view. In this paper, however, we explore
a different approach in which we identify aspects of the MDP that permit state ab­
stractions to be safely incorporated in a hierarchical reinforcement learning method
without introducing function approximations. This permits us to obtain the first
proof of the convergence of hierarchical RL to an optimal policy in the presence of
state abstraction.

We introduce these state abstractions within the MAXQ framework [8], but the
basic ideas are general. In our previous work with MAXQ, we briefly discussed state
abstractions, and we employed them in our experiments. However, we could not
prove that our algorithm (MAXQ-Q) converged with state abstractions, and we did
not have a usable characterization of the situations in which state abstraction could
be safely employed. This paper solves these problems and in addition compares the
effectiveness of MAXQ-Q learning with and without state abstractions. The results
show that state abstraction is very important, and in most cases essential, to the
effective application of MAXQ-Q learning.

2 The MAXQ Framework

Let M be a Markov decision problem with states S, actions A, reward function
R(s/ls, a) and probability transition function P(s/ls, a). Our results apply in both
the finite-horizon undiscounted case and the infinite-horizon discounted case. Let
{Mo, .. . ,Mn} be a set of subtasks of M, where each subtask Mi is defined by a
termination predicate Ti and a set of actions Ai (which may be other subtasks or
primitive actions from A). The "goal" of subtask Mi is to move the environment into
a state such that Ti is satisfied. (This can be refined using a local reward function
to express preferences among the different states satisfying Ti [8], but we omit this
refinement in this paper.) The subtasks of M must form a DAG with a single "root"
node-no subtask may invoke itself directly or indirectly. A hierarchical policy is
a set of policies 1r = {1ro, ... , 1r n}, one for each subtask. A hierarchical policy
is executed using standard procedure-call-and-return semantics, starting with the
root task Mo and unfolding recursively until primitive actions are executed. When
the policy for Mi is invoked in state s, let P(SI, Nls, i) be the probability that it
terminates in state Sl after executing N primitive actions. A hierarchical policy is
recursively optimal if each policy 1ri is optimal given the policies of its descendants
in the DAG.

Let V(i, s) be the value function for subtask i in state s (Le., the value of following
some policy starting in s until we reach a state Sl satisfying Ti (S/)) • Similarly, let
Q(i, s,j) be the Q value for subtask i of executing child action j in state sand
then executing the current policy until termination. The MAXQ value function
decomposition is based on the observation that each subtask Mi can be viewed as a
Semi-Markov Decision problem in which the reward for performing action j in state
s is equal to V(j, s), the value function for subtask j in state s. To see this, consider
the sequence of rewards rt that will be received when we execute child action j and
then continue with subsequent actions according to hierarchical policy 1r:

Q(i, s,j) = E{rt + ,rt+l + ,2rt+2 + .. ' Ist = S,1r}

The macro action j will execute for some number of steps N and then return. Hence,
we can partition this sum into two terms:

996 T. G. Dietterich

The first term is the discounted sum ofrewards until subtask j terminates-V(j, s).
The second term is the cost of finishing subtask i after j is executed (discounted
to the time when j is initiated). We call this second term the completion function,

and denote it C(i,s,j). We can then write the Bellman equation as

Q(i,s,j) L P(s',Nls,j)· [V(j,s) +,N m.,?-xQ(i,s',j')]

s',N J

V(j, s) + C(i, s,j)

To terminate this recursion, define V (a, s) for a primitive action a to be the expected
reward of performing action a in state s.

The MAXQ-Q learning algorithm is a simple variation of Q learning in which at
subtask M i , state s, we choose a child action j and invoke its (current) policy. When
it returns, we observe the resulting state s' and the number of elapsed time steps
N and update C(i, s,j) according to

C(i, s, j) := (1 - Ut)C(i, s, j) + Ut .,N[max V(a', s') + C(i, s', a')].
a'

To prove convergence, we require that the exploration policy executed during learn­
ing be an ordered GLIE policy. An ordered policy is a policy that breaks Q-value
ties among actions by preferring the action that comes first in some fixed ordering.
A GLIE policy [9] is a policy that (a) executes each action infinitely often in every
state that is visited infinitely often and (b) converges with probability 1 to a greedy
policy. The ordering condition is required to ensure that the recursively optimal
policy is unique. Without this condition, there are potentially many different re­
cursively optimal policies with different values, depending on how ties are broken
within subtasks, subsubtasks, and so on.

Theorem 1 Let M = (S, A, P, R) be either an episodic MDP for which all de­

terministic policies are proper or a discounted infinite horizon MDP with discount

factor,. Let H be a DAG defined over subtasks {Mo, ... ,Mk}. Let Ut(i) > 0 be a
sequence of constants for each subtask Mi such that

T T

lim L Ut(i) = 00
T-too

and lim '" u;(i) < 00
T-too~

(1)
t=l t=l

Let 7rx (i, s) be an ordered GLIE policy at each subtask Mi and state s and assume

that IVt (i, s) I and ICt (i, s, a) I are bounded for all t, i, s, and a. Then with probability
1, algorithm MAXQ-Q converges to the unique recursively optimal policy for M
consistent with Hand 7r x .

Proof: (sketch) The proof is based on Proposition 4.5 from Bertsekas and Tsit­
siklis [10] and follows the standard stochastic approximation argument due to [11]
generalized to the case of non-stationary noise. There are two key points in the
proof. Define Pt(s',Nls,j) to be the probability transition function that describes
the behavior of executing the current policy for subtask j at time t. By an inductive
argument, we show that this probability transition function converges (w.p. 1) to
the probability transition function of the recursively optimal policy for j. Second,
we show how to convert the usual weighted max norm contraction for Q into a
weighted max norm contraction for C. This is straightforward, and completes the
proof.

What is notable about MAXQ-Q is that it can learn the value functions of all
subtasks simultaneously-it does not need to wait for the value function for subtask
j to converge before beginning to learn the value function for its parent task i. This
gives a completely online learning algorithm with wide applicability.

State Abstraction in MAXQ Hierarchical Reinforcement Learning

4

3

2

1

o

R G

0

y B

o 1 234

Figure 1: Left: The Taxi Domain (taxi at row 3 column 0) . Right: Task Graph.

3 Conditions for Safe State Abstraction

997

To motivate state abstraction, consider the simple Taxi Task shown in Figure 1.

There are four special locations in this world, marked as R(ed), B(lue), G(reen),
and Y(ellow). In each episode, the taxi starts in a randomly-chosen square. There
is a passenger at one of the four locations (chosen randomly), and that passenger
wishes to be transported to one of the four locations (also chosen randomly). The
taxi must go to the passenger's location (the "source"), pick up the passenger, go
to the destination location (the "destination"), and put down the passenger there.
The episode ends when the passenger is deposited at the destination location.

There are six primitive actions in this domain: (a) four navigation actions that
move the taxi one square North, South, East, or West, (b) a Pickup action, and (c)
a Putdown action. Each action is deterministic. There is a reward of -1 for each
action and an additional reward of +20 for successfully delivering the passenger.
There is a reward of -10 if the taxi attempts to execute the Putdown or Pickup
actions illegally. If a navigation action would cause the taxi to hit a wall, the action
is a no-op, and there is only the usual reward of -1.

This task has a hierarchical structure (see Fig. 1) in which there are two main
sub-tasks: Get the passenger (Get) and Deliver the passenger (Put). Each of these
subtasks in turn involves the subtask of navigating to one of the four locations
(Navigate(t); where t is bound to the desired target location) and then performing
a Pickup or Putdown action. This task illustrates the need to support both tem­
poral abstraction and state abstraction. The temporal abstraction is obvious-for
example, Get is a temporally extended action that can take different numbers of
steps to complete depending on the distance to the target. The top level policy (get
passenger; deliver passenger) can be expressed very simply with these abstractions.

The need for state abstraction is perhaps less obvious. Consider the Get subtask.
While this subtask is being solved, the destination of the passenger is completely
irrelevant- it cannot affect any of the nagivation or pickup decisions. Perhaps more
importantly, when navigating to a target location (either the source or destination
location of the passenger), only the taxi's location and identity ofthe target location
are important . The fact that in some cases the taxi is carrying the passenger and
in other cases it is not is irrelevant.

We now introduce the five conditions for state abstraction. We will assume that the
state s of the MDP is represented as a vector of state variables. A state abstraction
can be defined for each combination of subtask Mi and child action j by identifying
a subset X of the state variables that are relevant and defining the value function
and the policy using only these relevant variables. Such value functions and policies

998 T. G. Dietterich

are said to be abstract.

The first two conditions involve eliminating irrelevant variables within a subtask of
the MAXQ decomposition.

Condition 1: Subtask Irrelevance. Let Mi be a subtask of MDP M. A set
of state variables Y is irrelevant to sub task i if the state variables of M can be
partitioned into two sets X and Y such that for any stationary abstract hierarchical
policy 7r executed by the descendants of M i , the following two properties hold: (a)
the state transition probability distribution P7r(5',NI5,j) for each child action j of
Mi can be factored into the product of two distributions:

P7r(x',y',Nlx,y,j) = P7r(x',Nlx,j)' P7r(y'lx,y,j), (2)

where x and x' give values for the variables in X, and y and y' give values for the
variables in Y; and (b) for any pair of states 51 = (x, yr) and 52 = (x, Y2) and any
child action j, V 7r (j, 51) = V7r(j, 52)'

In the Taxi problem, the source and destination of the passenger are irrelevant to
the Navigate(t) subtask-only the target t and the current taxi position are relevant.

The advantages of this form of abstraction are similar to those obtained by Boutilier,
Dearden and Goldszmidt [12] in which belief network models of actions are exploited
to simplify value iteration in stochastic planning.

Condition 2: Leaf Irrelevance. A set of state variables Y is irrelevant for a
primitive action a if for any pair of states 51 and 52 that differ only in their values
for the variables in Y,

L P(5~151' a)R(5~151' a) = L P(5~152' a)R(s~152' a).
s'

1 s' 2

This condition is satisfied by the primitive actions North, South, East, and West in
the taxi task, where all state variables are irrelevant because R is constant.

The next two conditions involve "funnel" actions- macro actions that move the
environment from some large number of possible states to a small number of re­
sulting states. The completion function of such subtasks can be represented using
a number of values proportional to the number of resulting states.

Condition 3: Result Distribution Irrelevance (Undiscounted case.) A set
of state variables }j is irrelevant for the result distribution of action j if, for all
abstract policies 7r executed by M j and its descendants in the MAXQ hierarchy, the
following holds: for all pairs of states 51 and 52 that differ only in their values for
the state variables in }j,

V 5' P7r(5'151,j) = P7r(5'152,j).

Consider, for example, the Get subroutine under an optimal policy for the taxi
task. Regardless of the taxi's position in state 5, the taxi will be at the passenger's
starting location when Get finishes executing (Le., because the taxi will have just
completed picking up the passenger). Hence, the taxi's initial position is irrelevant
to its resulting position. (Note that this is only true in the undiscounted setting­
with discounting, the result distributions are not the same because the number of
steps N required for Get to finish depends very much on the starting location of the
taxi. Hence this form of state abstraction is rarely useful for cumulative discounted
reward.)

Condition 4: Termination. Let Mj be a child task of Mi with the property
that whenever Mj terminates, it causes Mi to terminate too. Then the completion

State Abstraction in MAXQ Hierarchical Reinforcement Learning 999

cost C (i, s, j) = 0 and does not need to be represented. This is a particular kind of
funnel action- it funnels all states into terminal states for Mi'

For example, in the Taxi task, in all states where the taxi is holding the passenger,
the Put subroutine will succeed and result in a terminal state for Root. This is
because the termination predicate for Put (i.e., that the passenger is at his or her
destination location) implies the termination condition for Root (which is the same).
This means that C(Root, s, Put) is uniformly zero, for all states s where Put is not
terminated.

Condition 5: Shielding. Consider subtask Mi and let s be a state such that
for all paths from the root of the DAG down to M i , there exists a subtask that is
terminated. Then no C values need to be represented for subtask Mi in state s,
because it can never be executed in s.

In the Taxi task, a simple example of this arises in the Put task, which is terminated
in all states where the passenger is not in the taxi. This means that we do not need
to represent C(Root, s, Put) in these states. The result is that, when combined
with the Termination condition above, we do not need to explicitly represent the
completion function for Put at all!

By applying these abstraction conditions to the Taxi task, the value function can
be represented using 632 values, which is much less than the 3,000 values required
by flat Q learning. Without state abstractions, MAXQ requires 14,000 values!

Theorem 2 (Convergence with State Abstraction) Let H be a MAXQ task
graph that incorporates the five kinds of state abstractions defined above. Let 7r x be
an ordered GLIE exploration policy that is abstract. Then under the same condi­

tions as Theorem 1, MAXQ-Q converges with probability 1 to the unique recursively
optimal policy 7r; defined by 7r x and H .

Proof: (sketch) Consider a subtask Mi with relevant variables X and two ar­
bitrary states (x, Yl) and (x, Y2). We first show that under the five abstraction
conditions, the value function of 7r; can be represented using C(i,x,j) (Le., ignor­
ing the Y values). To learn the values of C(i,x,j) = L:xl,NP(xl,Nlx,j)V(i,x'), a

Q-learning algorithm needs samples of x' and N drawn according to P(x' , Nlx,j).
The second part of the proof involves showing that regardless of whether we execute
j in state (x, Yl) or in (x, Y2), the resulting x' and N will have the same distribu­
tion, and hence, give the correct expectations. Analogous arguments apply for leaf
irrelevance and V (a, x). The termination and shielding cases are easy.

4 Experimental Results

We implemented MAXQ-Q for a noisy version of the Taxi domain and for Kael­
bling's HDG navigation task [5] using Boltzmann exploration. Figure 2 shows the
performance of flat Q and MAXQ-Q with and without state abstractions on these
tasks. Learning rates and Boltzmann cooling rates were separately tuned to opti­
mize the performance of each method. The results show that without state abstrac­
tions, MAXQ-Q learning is slower to converge than flat Q learning, but that with
state abstraction, it is much faster.

5 Conclusion

This paper has shown that by understanding the reasons that state variables are
irrelevant, we can obtain a simple proof of the convergence of MAXQ-Q learning

1000

200

MAXQ+Abscradion
0

1 ·200

. ~
i --e
j -600

-BOO

· 1000
0 20000 40000

l
, \ FIalQ

1-\

f

LX.\'
~ ~fo~ \
60000 80000 100000

Primidve Actions

'!
~
.~

~
g

::E

120000 140000 160000

· 20

..0

-60

-SO

- 100

- 120

· 140

T. G. Dietterich

200000 400000 600000 800000 le+06 1.2e+06 l . ~

Primitive Actioru

Figure 2: Comparison of MAXQ-Q with and without state abstraction to flat Q learning
on a noisy taxi domain (left) and Kaelbling's HDG task (right). The horizontal axis gives
the number of primitive actions executed by each method. The vertical axis plots the
average of 100 separate runs.

under state abstraction. This is much more fruitful than previous efforts based
only on weak notions of state aggregation [10], and it suggests that future research
should focus on identifying other conditions that permit safe state abstraction.

References

[1) D. Precup and R. S. Sutton, "Multi-time models for temporally abstract planning,"
in NIPS10, The MIT Press, 1998.

[2) R. S. Sutton, D. Precup, and S. Singh, "Between MDPs and Semi-MDPs: Learn­
ing, planning, and representing knowledge at multiple temporal scales," tech. rep.,
Univ. Mass., Dept. Compo Inf. Sci., Amherst, MA, 1998.

[3] R. Parr and S. Russell, "Reinforcement learning with hierarchies of machines," in
NIPS-10, The MIT Press, 1998.

[4) S. P. Singh, "Transfer of learning by composing solutions of elemental sequential
tasks ," Machine Learning, vol. 8, p. 323, 1992.

[5) L. P. Kaelbling, "Hierarchical reinforcement learning: Preliminary results," in Pro­

ceedings ICML-l0, pp. 167-173, Morgan Kaufmann, 1993.

[6) M. Hauskrecht , N. Meuleau, C. Boutilier, L. Kaelbling, and T . . Dean, "Hierarchical
solution of Markov decision processes using macro-actions," tech. rep ., Brown Univ.,
Dept. Compo Sci., Providence, RI, 1998.

[7) P. Dayan and G. Hinton, "Feudal reinforcement learning," in NIPS-5, pp. 271- 278,
San Francisco, CA: Morgan Kaufmann, 1993.

[8) T . G. Dietterich, "The MAXQ method for hierarchical reinforcement learning," in
ICML-15, Morgan Kaufmann, 1998.

[9) S. Singh, T. Jaakkola, M. L. Littman, and C. Szpesvari, "Convergence results
for single-step on-policy reinforcement-learning algorithms," tech. rep. , Univ. Col.,
Dept. Compo Sci., Boulder, CO, 1998.

[10) D. P. Bertsekas and J . N. Tsitsiklis, Neu.ro-Dynamic Programming. Belmont, MA:
Athena Scientific, 1996.

[11) T. Jaakkola, M. 1. Jordan, and S. P. Singh, "On the convergence of stochastic iterative
dynamic programming algorithms," Neur. Comp ., vol. 6, no. 6, pp. 1185- 1201, 1994.

[12) C. Boutilier, R. Dearden, and M. Goldszmidt, "Exploiting structure in policy con­
struction ," in Proceedings IJCAI-95, pp. 1104- 1111, 1995.

