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Abstract—In this paper, we consider a binary energy har-
vesting transmitter that wishes to control the amount of side
information the receiver can obtain about its energy harvests.
Specifically, we study state amplification and state masking,
which define the maximum and minimum amount of state
information conveyed to the receiver for a given message rate, re-
spectively. For an independent and identically distributed energy
harvesting process, we first find the amplification and masking
regions for a transmitter without a battery and a transmitter with
an infinite battery. Next, we find inner bounds for these regions
for a unit-sized battery at the transmitter using two different
encoding schemes, using instantaneous Shannon strategies and
using a scheme based on the equivalent timing channel introduced
in our previous work. We observe that the former provides better
state amplification, while the latter provides better state masking.

I. INTRODUCTION

In the energy harvesting channel, the harvested energy is
a random process that is revealed to the transmitter causally
throughout the transmission. Since the transmitted symbols
are constrained by the energy available at the encoder, the
decoder obtains some information about the energy harvesting
process in addition to the intended message. Depending on
the application, it may be desirable to maximize or minimize
this side information about the harvested energy, e.g., it
may facilitate smart scheduling based on energy harvesting
rates, but may also reveal the position or energy source of a
wireless node. These scenarios result in the problems of state
amplification [1], [2] and state masking [3], respectively.

The capacity of an energy harvesting channel is determined
in previous work for two extreme cases for the AWGN
channel. When the battery-size is unlimited, [4] shows that
the capacity is equal to the capacity of the same system with
an average power constraint equal to the average recharge
rate. At the other extreme, when the battery size is zero, the
system becomes a stochastic amplitude-constrained channel
and the capacity in this case is achieved [5] by using Shannon
strategies [6]. The capacity for the case of a finite-sized battery
is open in general. In the special case of a noiseless binary
channel and a unit-sized battery, [7] shows that the channel is
equivalent to an additive geometric-noise timing channel, for
which upper bounds and achievable rates using timing channel
based encoding schemes are proposed. Concurrently, in [8],
encoding schemes that utilize Shannon strategies are studied

This work was supported by NSF Grants CNS 09-64364/CNS 09-64632,
and CCF 14-22347/CCF 14-22111.

in a more general setting, and the corresponding achievable
rates are found, where only the instantaneous battery states
are used to determine channel input at each channel use.
For the channel model in [7], [9] introduces a tighter upper
bound and a better encoding scheme, outperforming i.i.d.
and first order Markov Shannon strategies that utilize current
battery state only. Reference [10] extends the model of [9]
to a noisy channel with arbitrary battery size, and obtains
upper bounds by providing battery state information to the
receiver. The finite-sized battery model is also of interest in
an AWGN channel. In [11], an approximate capacity for this
channel model is found with a constant gap using amplitude
constrained codebooks. For deterministic energy harvesting
in an AWGN channel, [12] evaluates a lower bound on the
capacity via the volume of the feasible input set.

The state amplification problem, i.e., sending information
about system state along with the message, is first studied
in [1]. This reference quantifies the side information revealed
to the receiver as the mutual information between the output
sequence and the state sequence. This problem is later con-
sidered in terms of the distortion in channel state estimation
in [2]. The state masking counterpart, i.e., concealing channel
state as much as possible while sending a message, is intro-
duced in [3] for both causal and non-causal state information
at the encoder. In an energy harvesting setting, the state
amplification problem is first studied in [13] for an AWGN
channel with infinite and no battery at the encoder.

In this paper, we evaluate state amplification and state
masking regions, which outline the set of achievable message
rates and state revealing rates for a binary energy harvesting
channel. Our goal is to investigate the trade-off between the
energy arrival information that the receiver can extract from
the communication and the message transmission rate. We
consider binary energy arrivals as the state of the channel,
where each energy unit corresponds to the energy required to
send a 1 through the binary channel once. We consider the no
battery case and the infinite battery case, for which the channel
capacities are known, and the unit battery case, for which we
derive inner bounds using the achievable rates in [7], [8].

II. CHANNEL MODEL AND PROBLEM FORMULATION

We consider a binary symmetric channel (BSC) with an en-
ergy harvesting transmitter, as shown in Fig. 1. The crossover
probability of the binary symmetric channel is denoted by
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Fig. 1. The energy harvesting channel with battery size Emax.

pe ≤ 1
2 . In the ith channel use, the encoder harvests an energy

of Ei ∈ {0, 1}, i.e., harvests a unit of energy or not, and sends
a binary symbol Xi ∈ {0, 1} through the channel. The energy
cost of sending a 1 is 1 unit, while sending a zero does not
require any energy. The energy arrivals Ei are independent
and identically distributed (i.i.d.) with the probability of arrival
Pr[E = 1] = q. Ei values are revealed to the encoder causally,
while not available to the decoder. We consider two cases for
the energy storage and consumption model. If the encoder has
no battery, denoted by Emax = 0, then the channel input is
constrained by the energy harvested within the same channel
use, i.e., Xi ≤ Ei. For Emax > 0, we consider a transmit-first
model. Denoting the state of the battery at the beginning of the
ith channel use as Bi, the encoder first transmits Xi ≤ Bi, and
then stores the harvested energy Ei in the battery, provided that
the battery capacity permits storage. Hence, the battery state
evolves as

Bi+1 = min{Bi −Xi + Ei, Emax}. (1)

In this work, we are interested in how much the decoder
can learn about the energy arrival process En. From the
decoder’s perspective, there are 2H(En) possible energy arrival
sequences, since 2H(En) is the size of the typical set for En.
Upon receiving Y n, the decoder can reduce the size of this
list to those that are possible given Y n, which has a size of
2H(En|Y n). Hence, the reduction in the entropy of En for the
decoder can be expressed as

∆ =
1

n
(H(En)−H(En|Y n)) =

1

n
I(En;Y n). (2)

Note that the value of ∆ is related strongly to the encoding
scheme adopted by the encoder. For example, the encoder can
choose to send Xi = 0 for all i, thus achieving no message
rate, but obtaining ∆ = 0. On the other extreme, the encoder
can choose Xi = Ei, once again achieving no message rate,
but obtaining ∆ = H(En). For a non-zero rate, different
encoding schemes achieving the same rate may yield different
values for ∆.

A. State Amplification Problem

In the state amplification problem, the encoder wishes the
decoder to obtain as much information as possible about the
energy harvesting process En, i.e., maximize ∆, while reliably
conveying a message with some rate R. This problem is first
considered in [1], where the achievable message rates and state

amplification rates are shown to satisfy

R ≤ I(U ;Y ), (3)
∆ ≤ H(S), (4)

R+ ∆ ≤ I(X,S;Y ), (5)

for a memoryless channel with state S known causally at the
transmitter. Here, U is an auxiliary random variable yielding
the joint distribution p(s)p(u)p(x|u, s)p(y|x, s).

B. State Masking Problem

The state masking problem, studied first in [3], finds a lower
bound on ∆ for any given message rate R. Hence, it indicates
the minimum amount of information ∆ that must be revealed
to the decoder about the state in order to achieve some rate
R. The achievable (R,∆) regions are obtained by the union
of the regions

R ≤ I(U ;Y ), (6)
∆ ≥ I(S;Y |U), (7)

for causally available state at the encoder [3]. Note that (3)
and (6) are identical, and (7) provides a lower bound on ∆
while (4) and (5) provide upper bounds.

In the remainder of this paper, we consider the state ampli-
fication and state masking problems individually for the cases
Emax = 0, Emax =∞, and Emax = 1.

III. NO BATTERY CASE: Emax = 0

For Emax = 0, the energy available at channel use i is
Ei, which is i.i.d., and therefore the state of the channel
is memoryless. Hence, the results of [1] extend directly to
this case. Given the two states, Ei ∈ {0, 1}, the two inputs
Xi ∈ {0, 1}, and the restriction Xi ≤ Ei, there are two
feasible mappings from E to X . We refer to these mappings
as strategies, and denote them as U = (X, X̄), where X
is the channel input when E = 0 and X̄ is the channel
input when E = 1. The two feasible strategies are (0, 0)
and (0, 1), corresponding to always transmitting a zero and
attempting to send a 1, respectively. For an encoding strategy
with Pr[U = (0, 1)] = p, the exact (R,∆) region for state
amplification is obtained as

R ≤ H(pq ∗ pe)− pH(q ∗ pe)− (1− p)H(pe), (8)
∆ ≤ H(q), (9)

R+ ∆ ≤ H(pq ∗ pe)−H(pe), (10)

where H(a) denotes the binary entropy function, and p ∗ q =
p(1− q) + (1− p)q.

Next, we utilize the results of [3], and characterize the exact
(R,∆) region for state masking as (8) and

∆ ≥ pH(q ∗ pe)− pH(pe). (11)

We remark that for a noiseless binary channel, i.e., pe = 0,
the bounds for ∆ in (8)-(10) and (11) match only at

R = H(pq)− pH(q), ∆ = pH(q). (12)

338



IV. INFINITE BATTERY CASE: Emax =∞
We next consider the infinite battery case, i.e., Emax =∞.

With an infinite battery, [4] showed that a save-and-transmit
scheme achieves the AWGN capacity with average transmit
power. This scheme first saves energy for a negligible duration
of the transmission, and then encodes as if constrained by an
average power constraint only. The save-and-transmit scheme
can be extended to the binary channel, yielding the capacity

CBSC =

{
H(q ∗ pe)−H(pe), q ≤ 1

2 ,

1−H(pe), q > 1
2 ,

(13)

with the channel input distribution Pr[X = 1] = min
(
q, 12
)
.

Note that this is also the capacity of a BSC with an input con-
straint E[X] ≤ q, as is the case in [13] for the AWGN channel.
With this observation, we present the state amplification region
for this channel in the following lemma.

Lemma 1 The exact (R,∆) region for the binary EH channel
with an infinite-sized battery at the transmitter satisfies

R+ ∆ ≤ CBSC , 0 ≤ ∆ ≤ H(q). (14)

Proof: We first show the achievability of these (R,∆) pairs.
Clearly, the rate R = CBSC is achievable with the save-
and-transmit scheme, which we assume to yield ∆ = 0.
Furthermore, by compressing the En sequence and sending
it as a part of the message, the encoder can trade any portion
of the message rate R with ∆, provided that this portion does
not exceed H(q) for q ≤ 0.5 and 1 for q > 0.5. Due to the
causal availability of Ei, this is performed in a block Markov
fashion. For the converse, we write

I(Xn;Y n) = I(Xn, En,W ;Y n) (15)
≥ I(En,W ;Y n) (16)
= I(En;Y n) +H(W )−H(W |Y n, En) (17)
≥ I(En;Y n) +H(W )−H(ε)− ε log(nR) (18)
= n∆ + nR−H(ε)− ε log(nR) (19)

where W is the message and ε is the decoding error proba-
bility. Here, (15) follows from the Markov chain (W,En) −
Xn − Y n, (17) is due to the independence of W and En,
and (18) follows from Fano’s inequality. Hence, whenever the
decoding error probability ε goes to zero as n→∞, we have

∆ +R ≤ lim
n→∞

1

n
I(Xn;Y n) ≤ CBSC , (20)

which concludes the converse. �
For the masking problem, as emphasized in [13], since

(R,∆) = (CBSC , 0) is achievable, perfect masking of the
state En is possible using the save-and-transmit scheme.
Hence, we have ∆ ≥ 0 as the masking lower bound.

V. UNIT BATTERY CASE: Emax = 1

In preceding sections, we considered cases for which the
channel capacity is known. Since this is not the case for
Emax = 1, we are not able to determine the entire (R,∆)

region. In this section, we utilize two encoding schemes,
proposed by [8] and [7], to find inner bounds on the (R,∆)
region for the binary noiseless channel with pe = 0. Although
the channel is noiseless, this is a non-trivial model due to its
memory and the state’s dependence on the channel input, for
which the capacity is an open problem.

A. Instantaneous Shannon Strategies

In [8], the Shannon strategies of [6], which are capac-
ity achieving for a memoryless channel, are used to find
achievable rates for the energy harvesting channel. These
strategies are mappings from the current battery state Bi to
the channel input Xi. Given two battery states, Bi ∈ {0, 1},
two input symbols Xi ∈ {0, 1}, and the restriction Xi ≤ Si
in each channel use, there are two feasible mappings from
B to X . As in Section III, we denote these strategies as
U ∈ {(0, 0), (0, 1)}, where the former gives Xi = 0 for all Bi
and the latter gives Xi = 0 for Bi = 0 and Xi = 1 for Bi = 1.
We consider a codebook consisting of strategy codewords Un,
generated i.i.d. with Pr[U = (0, 1)] = p. Upon selecting the
codeword corresponding to the message, the encoder chooses
Xi based on Ui and Bi in the ith channel use. The achieved
message rate for this encoding scheme is given by

RIID = lim
n→∞

1

n
I(Un;Y n). (21)

To find the corresponding ∆ for this encoding scheme, we
first define the random variable

ψji =

{
0, Ek = 0, i ≤ k < j,

1, otherwise,
(22)

which is an indicator of whether a unit of energy has arrived
or not between the ith and jth channel uses. We then define
the set Ψ(un) = {ψi2i1 , ψ

i3
i2
, . . . } as the collection of mutually

exclusive indicators ψik+1

ik
, where i1 = 1, and ik, k = 2, 3, . . .

are the channel indices that satisfy uik = (0, 1). In other
words, Ψ(un) is the set of indicators that show whether energy
is available or not for each attempt of sending a 1 given the
strategy sequence un. We then write

H(En|Y n)−H(En|Y n, Un) = I(En;Un|Y n) (23)
≤ H(Un|Y n) (24)
≤ H(W |Y n) (25)
≤ H(ε)− ε log(nR) (26)

where ε is the probability of decoding error. Here, (25) is
due to un being a function of message w, and (26) is due
to Fano’s inequality. Hence, whenever the error probability ε
goes to zero as n→∞, we have

lim
n→∞

1

n
H(En|Y n) = lim

n→∞

1

n
H(En|Y n, Un). (27)

With this observation, we write ∆ as

lim
n→∞

1

n
I(En;Y n) = lim

n→∞

1

n
(H(En)−H(En|Y n, Un))

(28)
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= lim
n→∞

1

n
(H(En)−H(En|Y n, Un,Ψ(Un))) (29)

= lim
n→∞

1

n
(H(En)−H(En|Ψ(Un), Un)) (30)

= lim
n→∞

1

n
H(Ψ(Un)|Un) (31)

Here, (28) follows from (27), and (29) holds as Ψ(Un) can
be obtained from Y n and Un. Similarly, (30) follows since
Y n can be obtained from Un and Ψ(Un). Finally, (31) holds
since H(Ψ(Un)|Un, En) = 0, and Un is independent of En.

What the series of equalities in (28)-(31) imply is that,
observing Y n, the decoder learns the indicators Ψ(Un) about
En, and nothing more. Note that the intervals (ik, ik+1) are
disjoint, and therefore the elements of the set Ψ(un) are
independent. Since Pr[ψji = 0] = (1 − q)j−i and ui are
generated i.i.d. with probability Pr[U = (0, 1)] = p, (31)
can be further simplified as

∆ = lim
n→∞

1

n

∑
un

(
p(un)

∑
k

H
(
(1− q)δk

))
(32)

where δk = ik+1 − ik denotes the number of channel uses
between the kth and k+1st u = (0, 1) in un, and is distributed
i.i.d. geometric with parameter p. As n→∞, due to the law
of large numbers, the set Ψ(un) has np elements, yielding

∆ = lim
n→∞

1

n
I(En;Y n) = p2

∞∑
δ=1

(1− p)δ−1H
(
(1− q)δ

)
.

(33)

Lemma 2 For the i.i.d. encoding scheme with Shannon strate-
gies, the decrease in entropy of En upon observing Y n, i.e.,
∆, is equal to (33) for the noiseless channel.

B. Timing-Based Encoding

For the binary noiseless channel, [7] introduced an alter-
native scheme where encoding is performed on an equivalent
timing channel. In the timing channel, the number of channel
uses spent waiting for an energy are denoted by Zi, and the
number of channel uses between the energy arrival and the
departure of a 1 are denoted by Vi. The decoder observes the
number of channel uses between consecutive 1s, given by

Ti = Vi + Zi. (34)

The timing representation is depicted in Fig. 2. Note that one
use of the timing channel corresponds to T uses of the binary
channel. Since energy arrivals are i.i.d., Zi values are i.i.d. and
geometric distributed.

The encoding scheme of [7] for frame length N uses
Shannon strategies U ∈ {0, 1, . . . , N −1} to generate an i.i.d.
codebook. For codeword Um and causally revealed Zm, the
encoder inserts

Vi = (Ui − Zi mod N) + 1 (35)

to the timing channel. Receiving Ti, the decoder can obtain
Ui = Ti − 1 mod N without error. Hence, the rate achieved

V1 Z2 V2 V3

T2 T3

Z1

T1

. . .

Fig. 2. Graphical representation of the variables in the equivalent timing
channel Tn, Vn and Zn. Here, circles represent energy arrivals and triangles
represent transmission of a 1 symbol.

with this scheme per use of the binary channel is

R
(N)
A = max

p(u)

H(U)

E[T ]
bits/ch. use, (36)

where E[T ] is the average length of each use of the timing
channel. For this encoding scheme, we next calculate ∆ as a
function of the strategy distribution p(u). For a given output
sequence Tm = tm, we define ai =

∑i
j=1 tj . Then, the ith

use of the timing channel lies on the ai + 1st to ai + tith uses
of the binary channel. For this interval, the decoder can infer
the following: For ti ≤ N , we have zi ≤ ti from (34). Using
the definition in (22), this implies ψai+tiai = 1. Otherwise, for
ti > N , we have zi ≥ ti − N since vi ≤ N by definition.
This implies that ψai+ti−Nai = 0 and ψai+tiai+ti−N = 1. Based on
these two cases, we define the sets

Ψ̄0(tm) =
⋃
ti>N

ψai+ti−Nai , (37)

Ψ̄1(tm) =

 ⋃
ti≤N

ψai+tiai

 ∪( ⋃
ti>N

ψai+tiai+ti−N

)
, (38)

and write

H(En|Tm) =
∑
tm

p(tm)H(En|Tm = tm) (39)

=
∑
tm

p(tm)H(En|Tm = tm, Um = um,

Ψ̄0(tm) = 0, Ψ̄1(tm) = 1) (40)

=
∑
tm

p(tm)H(En|Ψ̄0(tm) = 0, Ψ̄1(tm) = 1) (41)

where Ψ̄0(tm) = 0 denotes element-wise equality for all
elements of the set Ψ̄0(tm). Here, (40) holds since um can
be obtained from tm, which also reveals that Ψ̄0(tm) = 0 and
Ψ̄1(tm) = 1. Note that (41) is the entropy of En given that
parts of En are zero and parts include at least one non-zero
arrival. Calculating and averaging over tm, we get

1

n
I(En;Y n) = H(q)− 1

E[T ]
E
[
δH(q)−H((1− q)δ)

1− (1− q)δ

]
,

(42)

where δ is a random variable denoting the length of ψ terms
in Ψ̄1(tm), and is distributed as

δ =

{
k, 1 ≤ k < N, w.p. pU (k − 1)

(
1− (1− q)k

)
,

N, w.p.
∑N−1
u=0 pU (u)(1− q)u+1.

(43)
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Fig. 3. The maximum ∆ values with respect to message rate R, i.e., state
amplification boundaries, for q = 0.5 and pe = 0.

Lemma 3 For the encoding scheme in [7], the decrease in
entropy of En upon observing Y n, i.e., ∆, for a specific
auxiliary distribution pU (u) is equal to (42).

Finally, we obtain (R,∆) pairs for this encoding scheme
by exhaustively searching pU (u) and using (36) and (42).

VI. NUMERICAL RESULTS

For comparison, we evaluate the state amplification and state
masking regions for the Emax = 0 and Emax = ∞ cases,
and the maximum and minimum achievable values of ∆ with
respect to some message rate R for the Emax = 1 case, in a
noiseless channel with q = 0.5. The state amplification results
are plotted in Fig. 3, and the state masking results are plotted
in Fig. 4.

In Fig. 3, we observe that the instantaneous Shannon
encoding strategy in Section V-A performs state amplification
almost as good as the ideal case of Section IV for low message
rates. As message rate approaches the best achievable rate,
state amplification is sacrificed. Moreover, we note that for
the most part, instantaneous Shannon encoding provides more
state information than the timing channel based encoding
strategy in Section V-B.

For the state masking problem in Fig. 4, we observe that
for low rates, Emax = 1 provides significantly better state
masking compared to the Emax = 0 case. Similar to the state
amplification case, timing-based encoding delivers less state
information than instantaneous Shannon encoding, although
this is desirable for the state masking case. Hence, we con-
clude that timing-based encoding outperforms instantaneous
Shannon encoding in state masking, while the reverse is true
in state amplification.

VII. CONCLUSION

In this paper, we considered the problems of state am-
plification and state masking in an energy harvesting binary
symmetric channel. We focused on the no battery, infinite
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Fig. 4. The minimum ∆ values with respect to message rate R, i.e., state
masking boundaries, for q = 0.5 and pe = 0.

battery, and unit battery cases. For the no battery case, we
obtained the regions b previous results. For the infinite battery
case, we found that perfect state amplification and perfect
state masking are possible, in the sense that message and
state information rates add up to the capacity of the channel
in the case of state amplification. For the unit battery case,
we compared the instantaneous Shannon strategy encoding
scheme and the timing channel based encoding scheme in
the noiseless case, and observed that the former provides
better state amplification while the latter provides better state
masking.
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