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Abstract— We present a general intrinsic tracking controller
design for fully-actuated simple mechanical systems, when the
configuration space is one of a general class of Lie groups.
We show that if a suitable error function can be found, then
a general smooth and bounded reference trajectory may be
tracked asymptotically from almost every initial condition,
with locally exponential convergence. Such functions may be
shown to exist on any compact Lie group, or on any product
of a compact Lie group and Rn. In the case of compact Lie
groups, we show that the full-state feedback law composed
with an exponentially convergent velocity estimator, also con-
verges globally for almost every initial tracking error. We
explicitly compute these controllers on SO(3), and simulate
their performance for the axisymmetric top problem.

I. INTRODUCTION

Formally, a holonomic simple mechanical system consists
of (i) a smooth manifold, corresponding to the configuration
space of the system, (ii) a smooth Lagrangian corresponding
to kinetic energy minus potential energy and (iii) a set of
external forces or one-forms. When some of these forces
may be used for control, we refer to a simple mechanical
control system [5], [8]. In many systems of practical and
theoretical interest, the configuration space of the system
may be given the structure of a Lie group. Examples include
underwater vehicles, satellites, surface vessels, airships,
hovercrafts, robots, and MEMS [2], [3], [5], [6], [9].

The stabilization of a desired equilibrium of a simple
mechanical system by means of a suitable choice of a
potential function is extensively treated by Koditschek [8].
Bullo and Murray use the Riemannian structure of the
configuration manifold of a fully-actuated simple mechan-
ical control system to derive a full-state, feedback-plus-
feedforward controller that tracks a general reference trajec-
tory [5]. Significant progress in geometric control has been
made by specializing results from the general Riemannian
framework to Lie groups. However this approach may fail
to fully exploit the additional structure available in the latter
case. In fact, the group structure may be used to transform
the trajectory tracking problem into the better understood
problem of stabilizing the identity element. This is not
possible in a general Riemannian setting.

The chief difficulty in the general tracking problem lies
in defining the tracking error, and tracking error dynamics.
When the configuration space is a Lie group we have a

well-defined natural notion of error dynamics. Given two
elements of the group, g and h, define the configuration er-
ror to be gh−1. The configuration error is also an element of
the Lie group, and has no analog in the general Riemannian
approach. The velocity error is naturally defined using left
translation. The derivatives of the configuration error and
the velocity error define the tracking error dynamics on the
tangent space of the Lie group. For fully-actuated simple
mechanical systems on Lie groups we show that there
exists a feedback control that transforms the tracking error
dynamics to a simple mechanical system, with damping and
potential energy arbitrarily assignable using additional state
feedback. On a general Riemannian manifold the absence of
the group operation precludes the definition of an intrinsic
configuration error and associated tracking error dynamics
on the state space. In this sense, the tracking problem on a
Lie group is actually much more closely related to tracking
on Rn than it is to the general case, for which the group
operation is lacking.

Solution of the tracking problem is thus reduced to
the task of stabilizing the identity element of the trans-
formed system. A suitable state-feedback control is given by
Koditschek [8], who shows that convergence is completely
governed by the properties of the assigned potential energy
function. To give “almost global” stability—that is, stability
for all initial conditions in an open and dense subset of
the state space—the potential energy should be a globally
defined, smooth, proper Morse function, with a unique
minimum at the identity. In the context of the tracking
problem, we follow the nomenclature of Bullo and Murray
[5], and call a function with these properties an error func-
tion. Suitable functions are constructed for Lie groups of
practical interest by Koditschek (who calls them navigation
functions) [8], and by Dynnikov and Vaselov [7]. A result of
Morse [11] shows that such functions exist on any compact
connected manifold. By a straightforward extension of these
results, such functions also exist on any Lie group of the
form G×Rn, where G is any compact connected Lie group.
The presence of anti-stable equilibrium points, and saddle
points and their stable manifolds, prevents the results from
being truly global. We show that almost global stabilization
of the identity element of the transformed system yields
almost global tracking for the original system. We cite an
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observation of Koditschek [8] to show that, unless the Lie
group is homeomorphic to Rn, almost global tracking is
the best one can hope for. If the Lie group is not of the
form given above, the existence of a globally defined error
function is, to our knowledge, an open question.

Implementation of full state-feedback requires both con-
figuration and velocity measurements. In application it is
not unusual for only one of these to be available for
measurement. In some cases it is the velocities, while in
others it is the configuration [2], [13], [12]. This paper is
concerned with the latter case, where dynamic estimation
of the velocities is necessary. We have shown in [10] that a
“separation principle” applies for the dynamic configuration
feedback tracking control obtained by composing the full
state-feedback compensator with an exponetially convergent
velocity observer. In a recent paper Aghannan and Rouchon
gives such an intrinsic observer that provides locally expo-
nentially convergent estimates of the velocities of a simple
mechanical system on a Riemannian manifold, given con-
figuration variable measurements [1]. In this paper we use
this observer to implement the full state-feedback controller
without velocity measurements. In section II we briefly
present notation and review mathematical background for
simple mechanical control systems on Lie groups. Section
III-A presents an intrinsic, globally valid, full state-feedback
tracking control for any fully-actuated simple mechanical
system on a very wide class of Lie groups. This track-
ing control guarantees almost-globally asymptotic stability
with locally exponential convergence to an arbitrary twice
differentiable configuration reference signal. No invariance
properties are required of the kinetic energy, potential
energy, or external forces. To the best of our knowledge
its the first time such a general result has been reported.
In Section III-B we present the dynamic output feedback
controller. In Section III-D we explicitly derive the full-state
and dynamic output feedback controllers on the Lie group
SO(3) and the effectiveness of the dynamic output feedback
is demonstrated using simulation of the axisymmetric top
problem.

II. MATHEMATICAL BACKGROUND

This section briefly describes the notations and a few
geometric notions that will be employed in the rest of the
paper. Let G be a connected finite dimensional Lie group
and let G � TeG be its Lie algebra. The left translation of
ζ ∈ G to TgG will be denoted g · ζ = DLg ζ. The adjoint
representation DLg ·DRg−1 will be denoted Adg . The Lie
bracket on G for any two ζ, η ∈ G will be denoted [ζ, η] =
adζ η and the dual of the ad operator will be denoted ad∗.
Any smooth vector field X(g) on G has the form g · ζ(g)
for some smooth ζ(g) ∈ G. Let {ei} be any basis for the
Lie algebra G and let {Ei(g) = g · ei} be the associated
left invariant basis vector field on G. Now [ei, ej ] = Ck

ijek,
where Ck

ij are the structure constants of the Lie algebra G
(Ck

ij = −Ck
ji), and [Ei, Ej ] = Ck

ijEk.

A. The Riemannian Structure

For each g ∈ G, I(g) : G �→ G∗ is an isomorphism
such that the relation 〈〈ζ , η〉〉G = 〈I(g)ζ , η〉 for ζ, η ∈ G
defines an inner product on G. Here 〈·, ·〉 denotes the
usual pairing between a vector and a co-vector. Identifying
G∗ and G with Rn, let Iij(g) and Iij(g) be the matrix
representations of I(g) and I−1(g) respectively. I(g) is
symmetric and positive definite. If I(g) is globally smooth
then such an I(g) induces a unique metric on G by the
relation 〈〈g ·ζ , g ·η〉〉 = 〈I(g)ζ , η〉. Further, it follows that
every metric has such an associated family of isomorphisms.
If the metric is left-invariant then I is a constant and any
constant symmetric positive definite matrix induces a left-
invariant metric on G.

In the remainder of the section we present expressions for
the Levi-Civita connection and the Riemannian curvature
corresponding to left-invariant metrics. We intensionally
avoid the use of coordinate-frame fields to facilitate the
coordinate-free expressions developed in section III-C. As-
sociated with any metric there exists a unique connection
that is torsion free and metric called the Levi-Civita connec-
tion. For a vector field X = Xk Ek and a vector v = vkEk

the Levi-Civita connection is given by

∇vX = (dXk(v) + ωk
ij(g)viXj)Ek , (1)

where ωk
ij(g) are the connection coefficients in the frame

{Ek}. For left-invariant metrics the connection coefficients
turn out to be constants, given by

ωk
ij =

1
2

(
Ck

ij − Iks(IirC
r
js + IjrC

r
is)

)
. (2)

Since in general the Ek are not coordinate vector fields,
ωk

ij , are not the Christoffel symbols. The corresponding
coefficients of the Riemannian curvature two-forms Rk

jab

are also constant and can be shown to be,

Rk
jab = (−ωk

rjC
r
ab + 2ωk

arω
r
bj). (3)

The Riemannian curvature is then

R(ζ, η)ξ = {Rk
jabξ

j(ζaηb− ζbηa)− ωk
ijC

i
abζ

aηbξj}ek.(4)

B. Simple Mechanical Control Systems on Lie Groups

A simple mechanical control system evolving on a Lie
group G equipped with a metric << · , · >> is defined as
a system with kinetic energy E(ġ) = 1

2 << ġ , ġ >>,
conservative plus dissipative forces f(g, ζ) ∈ G∗ and a
set of linearly independent forces uif

i(g) ∈ G∗ for i =
1, · · · , m , [5]. The scalar functions ui ∈ R are the controls.
If m = n = dim(G) the system is said to be fully actuated.

Let I(g) : G �→ G∗ be the isomorphism associated with
the kinetic energy metric; << g · ζ , g · η >>= I(g)ζ · η
for ζ, η ∈ G. Then the Euler-Lagrange equations of motion
of the system are

ġ = g · ζ , (5)

ζ̇ = f̃(g, ζ) + I−1(g)

(
f(g, ζ) +

m∑
i

uif
i(g)

)
, (6)
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where f̃(g, ζ) = −ωk
ij(g)ζiζjek. If the kinetic energy

metric is left invariant then I is a constant and f̃(g, ζ) =
I−1ad∗ζ Iζ.

III. INTRINSIC TRACKING FOR SIMPLE MECHANICAL

SYSTEMS

Let (gr(t), ζr(t)) ∈ G × G be a desired bounded and
smooth reference trajectory to be tracked by (5)–(6). We
introduce the configuration error, defined as

e(t) = gr(t)g−1(t). (7)

This object is intrinsic and globally defined. Most impor-
tantly, it is itself an element of the configuration space.
Differentiating (7) and setting ηe = Adg(ζr − ζ) the error
dynamics are computed to be

ė = e · ηe, (8)

η̇e = Adg

(
ζ̇r − ζ̇ + [ζ, ζr]

)
, (9)

where ζ̇ is given by (6). Observe that these dynamics
are defined on TG � G × G as well. As we now
show, through a suitable choice of controls, the dynamics
of the configuration error may be given the form of a
fully-actuated simple mechanical system with arbitrarily
assignable potential energy and damping.

A. Full State Feedback Tracking

Let B = I−1(g)[f1(g) f2(g) · · · fn(g)]. Substituting

u = B−1
(
ζ̇r−f̃(g, ζ)−I−1f(g, ζ)+[ζ, ζr]−Adg−1ν

)
(10)

in equation (9), we have the transformed error dynamics

ė = e · ηe, (11)

η̇e = ν, (12)

where ν ∈ G. These transformations reduce the problem
of stably tracking the reference input to the problem of
stabilizing (id, 0) of (11) – (12). The error dynamics (11)–
(12) are those of a fully-actuated simple mechanical control
system on G. This is a key observation, since it has
been shown that the stability of simple mechanical systems
is completely determined by the nature of the potential
energy. In particular, it is shown by Koditschek [8] that
any given point of a compact configuration space with or
without boundary may be made an almost globally stable
equilibrium by the appropriate choice of an potential energy
function. Thus the task is now to assign a suitable potential
energy, F : G �→ R, such that the equilibrium (id, 0)
is almost globally stable. The assigned potential energy
function plays a role analogous to that of the norm in the
case of tracking on Rn. The value of the potential energy for
the configuration error is therefore a measure of the size of
that error, and we refer to it as the error function. Observe
that the convergence properties are completely determined
by the properties of the error function, and are independent
of the specifics of the simple mechanical system. Thus for

any given Lie group, solution of the tracking problem is
essentially reduced to the topological question of finding
an appropriate error function for that space.

Let Ĩ be any symmetric positive definite matrix. This
induces an inner product << · , · >>G on G and a left
invariant metric on G. This metric need not be the kinetic
energy metric of the mechanical system under considera-
tion. Let ζe = e−1 · grad F , where < dF, e · η >=<<
e−1grad F, η >>G and

ν = −ζe − k ηe, (13)

where k is a positive constant, yields the following error
dynamics:

ė = e · ηe, (14)

η̇e = −ζe − k ηe. (15)

In summary, our approach implements a two-part composite
control, in which the first component (10) is used to give
the configuration error dynamics the structure of a simple
mechanical control system, and the second component (13)
is used to assign potential energy F and damping to the
transformed system. The combined control is

u = B−1
(
Adg−1ζe + k(ζr − ζ) + ζ̇r − f̃(g, ζ)

− I−1f(g, ζ) + [ζ, ζr]
)
, (16)

We now state the properties required by the assigned
potential energy function F for almost-global tracking. A
function with only non-degenerate critical points is called
Morse.

Definition 1: A smooth, proper Morse function F : G �→
R, bounded below by zero, and with a unique minimum at
the identity is called an error function.
A result of Morse [11] shows that such functions exist
on any compact connected manifold. By a straightforward
extension of these results, such functions also exist on any
Lie group of the form G × Rn, where G is any compact
connected Lie group. In [10] we have proved the following
theorem:

Theorem 1: If F : G �→ R is an error function then
the fully-actuated simple mechanical control system (5)–
(6) with the control (16) almost globally tracks any smooth
trajectory (gr(t), ζr(t)) with local exponential convergence.
Koditschek [8] points out that, unless the configuration man-
ifold is homeomorphic to Rn, global stability is impossible,
so almost global stability is the best possible outcome in
general. A perfect Morse function has exactly as many
critical points as the homology of the underlying manifold
requires. To minimize the number of unstable equilibrium
points, whenever possible we use a perfect Morse function
as the error function. Examples of perfect Morse functions
on certain symmetric spaces, including SO(n), U(n), and
Sp(n), may be found in the literature [7]. Koditschek [8]
gives an example of an error function that is a perfect Morse
function on SO(3), which we use in Section III-D.
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B. Dynamic Output Feedback Tracking

The tracking control (16) involves both the configuration
variable g and the velocity variable ζ. In this section we
assume that only the configuration variables are available
for measurement, and estimate the velocity. If ζo is the
estimated value of ζ, the dynamic configuration-feedback
tracking control obtained by composing a velocity observer
with the state-feedback control (16) is

u = B−1(g)
(
Adg−1ζe + k(ζr − ζo) + ζ̇r

−f̃(g, ζo) − I−1f(g, ζo) + [ζo, ζr]
)

, (17)

where g is measured. The following theorem provides a sep-
aration principle for this dynamic configuration-feedback
control and was proved in [10]

Theorem 2: Consider the fully actuated simple mechan-
ical system (5)–(6) on a compact and connected Lie group
G where the external forces are of the form f(g, ζ) =
f c(g)+fd(g, ζ) with fd(g, ζ) linear in ζ. Then the dynamic
configuration-feedback control (17) composed with any
locally exponentially convergent velocity observer almost-
globally tracks an arbitrary bounded once-differentiable ref-
erence trajectory (gr(t), ζr(t)) for sufficiently small initial
observer errors.
One such velocity observer for simple mechanical systems
is presented in [1], for the case f(g, ζ) = fc(g), that
is, in the absence of damping. It is shown in [9] that
velocity dependent external forces do not in fact affect
convergence. Because this locally exponentially convergent
observer is also intrinsic [1], its use in conjunction with
(17) yields a globally well defined configuration-feedback
tracking control. As guaranteed by theorem 2 convergence
is almost-globally asymptotic for sufficiently small initial
observer errors.

C. Coordinate-Free Representation

For many cases of interest the formulation of this dy-
namic configuration-feedback control can be considerably
simplified and expressed explicitly in a coordinate-free
manner.

ġo = go · (ζo − 2αζoe), (18)

ζ̇o = I−1
(
ad∗

ζo
Iζo − α(ad∗

ζoe
Iζo + ad∗

ζo
Iζo)

)
+α[ ζoe , ζo ]+Γ(S)−R(ζo, ζoe)ζo−βζoe, (19)

where α, β are positive constants, and the configuration
error ζoe ∈ G is defined by exp (ζoe) = g−1go for go

and g sufficiently close. Here S(g, ζo, u) = f(g, ζo) +∑m
i ui(g, ζo)f i(g) and,

Γ(S) = (Sk − ωk
ijS

iζj
eo) ek. (20)

The advantage of this formulation is that all the terms of
the observer with the exception of the external forces S
are independent of g. This leads to a compact and flexible
representation that requires only changes to S and I to

be adapted to different simple mechanical systems. Left-
invariance of kinetic energy also allows the control (17) to
be written as

u = B−1(g)
(
Adg−1ζe + k(ζr − ζo) + ζ̇r

−I−1(ad∗
ζo

Iζo + f(g, ζo)) + [ζo, ζr]
)
, (21)

where now the inertial forces f̃ may be written in terms of
ζ only. This is itself a significant simplification, and if in
addition all external forces are also left-invariant then only
the error feedback term Adg−1ζe is dependent on g. This
last assumption is fairly common, see for example [5], [6].

D. The Rotation Group SO(3)

In this section we explicitly compute the state- and
dynamic-feedback tracking controller for the example of a
simple mechanical systems on the Lie group SO(3), with
left-invariant kinetic energy metric. These expressions can
be readily adapted to a particular application by specifying
the inertia tensor I , and the external forces f(R, ζ). We
make this specialization for the axi-symmetric top, and
simulate the resulting performance.

The three-dimensional rotation group, SO(3), is the Lie
group of matrices R ∈ GL(3,R) that satisfy R RT =
RT R = id and det(R) = 1. The Lie algebra so(3) of
SO(3) is the set of traceless skew symmetric three-by-three
matrices. Note that so(3) � R3 where the isomorphism
is defined by the usual skew symmetrization. The adjoint
representation AdR : so(3) �→ so(3) is explicitly given by
AdR(ξ) = Rξ, or AdR(ξ̂) = Rξ̂RT , respectively. Define
the isomorphism I : so(3) � R3 �→ so(3)∗ � R3 by
the positive definite matrix I . This induces a left invariant
metric on SO(3) by the relation, << R ·ξ , R ·ψ >>=<<
ξ , ψ >>so(3)= Iξ ·ψ, for any two elements R · ξ, R ·ψ ∈
TRSO(3).

From (5) – (6), a simple mechanical control system on
SO(3) with left-invariant kinetic energy takes the form,

Ṙ = R ζ̂ , (22)

ζ̇ = I−1

(
Iζ × ζ + f(R, ζ) +

m∑
i

uif
i(R, ζ)

)
.(23)

Let (Rr(t), ζr(t)) where Ṙr(t) = R(t)ζ̂r(t) is a reference
trajectory to be tracked by (22)–(23). The intrinsic tracking
error e(t) ∈ G is given by e(t) = Rr(t)RT (t). Let F (e)
an error function and let ζe = eT grad F (e) with respect
to the left-invariant kinetic energy metric induced by some
three-by-three positive definite matrix Ĩ . The exact choice
of Ĩ is up to the designer.

Consider the function F (e) = 1
2 trace{K(Ĩ − e)}, where

K is a symmetric, positive definite three-by-three matrix. It
is shown in [8] that F is a Morse function with four critical
points and a unique minima at the identity. It can also be
shown that ζe = Ĩ−1Ωe, where Ω̂e = (Ke − eT KT ). This
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implies that the tracking control (16)

u = B−1(R)
(
RT ζe + k(ζr − ζ) + ζ̇r − I−1(Iζ × ζ

+f(R)) + ζ × ζr) , (24)

achieves almost global tracking with local exponential con-
vergence. It is pointed out in [7], [8] that any Morse function
on SO(3) has at least four critical points. Thus this F is
a perfect Morse function on SO(3), and has the fewest
possible unstable equilibria.

The intrinsic observer (18) – (19) takes the form,

Ṙo = Ro · (ζo − 2αζeo), (25)

ζ̇o = I−1 (Iζo × ζo−α(Iζo × ζeo+Iζeo × ζo))
+α ζeo × ζo+Γ(S, ζeo)+Rc(ζo, ζeo)ζo−βζeo,(26)

where ζeo satisfies exp(ζeo) = RT Ro and is given by, ζoe =
ψo

2 sin ψo
(RT Ro−RT

o R), where, cos ψo = (tr(RT Ro)−1)/2,
for |ψo| < π. The parallel transport term Γ(S) is calculated
from (20) where S(R, ζo) = f(R, ζo) +

∑m
i uif

i(R) and
the curvature term Rc(ζ̃, ζe)ζ̃ is calculated from (4). With
this observer the tracking feedback (24) can be implemented
with ζ replaced with ζo and achieves almost global tracking
with only the measurement of the configuration R.

Fig. 1. With dynamic output feedback the direction cosines of the unit
vector e3. The axi-symmetric top values are the solid lines while the dotted
lines are the reference values.

Fig. 2. With dynamic output feedback the direction cosines of the unit
vector e1. The axi-symmetric top values are the solid lines while the dotted
lines are the reference values.

1) Simulation Results: In this section we apply the dy-
namic output feedback law (17) to a simulation of a simple

mechanical control system in SO(3). We consider the
classical problem of a axisymmetric top in a gravitational
field. Let P = {P1, P2, P3} be an inertial frame fixed at the
fixed point of the top and let e = {e1, e2, e3} be a body-
fixed orthonormal frame with the origin coinciding with that
of P . At t = 0, the two frames coincide. Let the coordinates
of a point p in the inertial frame P be given by x, and in the
body frame e be given by X . The coordinates are related
by x(t) = R(t)X where R(t) ∈ SO(3). Let −P3 be the
direction of gravity and let I be the inertia matrix of the
axisymmetric top about the fixed point. The kinetic energy
of the top is K = Iζ · ζ/2, where ζ is the body angular
velocity and the potential energy is U(R) = mgl Re3 · P3.
Here m is the mass of the top, g is the gravitational constant,
l is the distance along the e3 axis to the center of mass. For
simplicity we assume the top to be symmetric about the
e3 axis, so I = diag(I1, I1, I3). The generalized potential
forces f(R) in the body frame are < f(R), ζ >= − <
dU, R · ζ >= −mgl Rζ̂e3 · P3 for any ζ ∈ so(3), which
yields f(R) = mgl RT P3 × e3. For convenience, let the
desired reference trajectory (Rr(t), ζr(t)) be generated by
a simple mechanical system without external forces. It is
not necessary for our results that the trajectory correspond
to such a system.

In these simulations top parameters are I1 = I2 =
1, I3 = 2, mgl = 1. The initial body angular velocity
is ζ(0) = [1.3 1.2 1.1], and the initial configuration
corresponds to a π/2 radian rotation about the [1 1 1]T

axis. The reference trajectory (Rr(t), ζr(t)) is generated by
a model simple mechanical system without external forces.
for the initial conditions ζr(0) = [−.8 − .3 − .5] and
Rr(0) = id. The simulation results shown in Figure-1 and
Figure-2 correspond to the dynamic output feedback with
α = β = 10. The initial observer velocity is zero and
the initial observer configuration corresponding to a 0.9π/2
radian rotation about the [1 1 1]T axis.

IV. CONCLUSIONS

We have presented an intrinsic methodology for design-
ing tracking controllers for fully-actuated, simple mechan-
ical control systems on a general class of Lie groups. We
derived a state feedback controller giving almost global
tracking, with local exponential convergence. Except on
Rn, and spaces homeomorphic to Rn, global tracking is
impossible, so this is the best stability result that can be
obtained in general. When combined with a previously de-
scribed locally convergent velocity estimator, the resulting
configuration feedback system is also almost globally con-
vergent with respect to tracking. State- and configuration-
feedback controllers were explicitly computed for the Lie
group SO(3), and applied to the simulated control of an
axisymmetric heavy top.
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