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State and Parameter Estimation of a Drift-Flux
Model for Under-Balanced Drilling Operations

Amirhossein Nikoofard, Ulf Jakob F. Aarsnes, Tor Arne Johansen, and Glenn-Ole Kaasa

Abstract—We consider a drift-flux model (DFM) describing
multiphase (gas-liquid) flow during drilling. The DFM uses a
specific slip law which allows for transition between single and
two phase flows. With this model, we design Unscented and
Extended Kalman Filters (UKF and EKF) for estimation of
unmeasured state, production, and slip parameters using real
time measurements of the bottom-hole pressure, outlet pressure,
and outlet flow-rate. The OLGA high-fidelity simulator is used
to create two scenarios from Under-Balanced Drilling (UBD) on
which the estimators are tested: A pipe connection scenario and
a scenario with a changing production index. A performance
comparison reveals that both UKF and EKF are capable of
identifying the production indices of gas and oil from the
reservoir into the well with acceptable accuracy, while the UKF
is more accurate than the EKF. Robustness of the UKF and EKF
for the pipe connection scenario is studied in case of uncertainties
and errors in the reservoir and well parameters of the model. It
is found that these methods are very sensitive to errors in the
reservoir pore pressure value. However, they are robust in the
presence of error in the liquid density value of the model.

Index Terms—Under-balanced drilling, UKF, adaptive ob-
server, simplified drift-flux model, production index.

I. INTRODUCTION

There has been an increasing research focus on automation
of drilling for exploration and production of hydrocarbons
in the recent years. Modeling for estimation, and model-
based control techniques have been studied in a wide range
of drilling and production scenarios. In Managed Pressure
Drilling (MPD), a back-pressure pump in conjunction with a
back pressure choke is used to control the pressure in the well,
posing new control and estimation challenges. In a typical
scenario, the control goal is to keep the pressure of the well
(pwell(t, x)) greater than pressure of the reservoir (pres(t, x))
to prevent influx from entering the well, but lower than the
fracture pressure (pfrac(t, x)) to avoid the loss of drilling fluids
to the reservoir [1], [2]

pres(t, x) < pwell(t, x) < pfrac(t, x) (1)

at all times t and along the well profile x ∈ [0, L].
In an alternative approach, known as Under-Balanced

Drilling (UBD), the pressure in the well is kept greater than
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the collapse pressure of the well but lower than the pressure
of the reservoir [3]

pcoll(t, x) < pwell(t, x) < pres(t, x) (2)

In this case, due to the pressure drawdown (meaning the
positive difference of the reservoir pressure and well pressure)
inflow fluid, in many cases gas, is produced continuously
from the reservoir. The rate of reservoir inflow is typically
approximated mathematically by a so-called Production Index
(PI) parameter

qinflux = PI ∗max(pres − pbh, 0). (3)

where pbh is the bottom hole pressure. Especially for under-
balanced wells producing gas, the magnitude of the production
index has a significant impact on the dynamics of the UBD
and thus on the control problem as well [4]. Hence, accurate
estimation of the production index and reservoir pressure are
important for an UBD operation.

Modeling of UBD operations and MPD scenarios handling
influx requires a multiphase model. A popular model in the
literature is the Drift-Flux Model (DFM) [5], [6], [7]. The drift
flux model is a set of first order nonlinear hyperbolic partial
differential equations (PDE). In case of two-phase flow, it
consists of three governing equations. The Low-Order Lumped
(LOL) models are simpler methods that can be used. However,
these models are only able to capture the major effects in
the well and for the general purpose it produces less accurate
results [8], [9], [10].
Due to the complexity of the multi-phase flow dynamics of
a UBD well coupled with a reservoir, the modeling, estima-
tion and model based control of UBD operations are still
considered emerging and challenging topics within drilling
automation. Nygaard et al.[11] compared and evaluated the
performance of the extended Kalman filter, the ensemble
Kalman filter and the unscented Kalman filter based on a low
order model to estimate the states and the production index
in UBD operation. In Nygaard et al. [12], a finite horizon
nonlinear model predictive control in combination with an
unscented Kalman filter was designed for controlling the
bottom-hole pressure based on a low order model developed
in [8] for a pipe connection scenario. The unscented Kalman
filter was used to estimate the states, and the friction and
choke coefficients. Nikoofard et al.[9] designed a Lyapunov-
based adaptive observer, a recursive least squares estimation
and a joint unscented Kalman filter based on a low-order
lumped model to estimate states and parameters during UBD
operations. This model was the extended version of an adaptive
observer used in [9] for directly using real-time measurements
of the choke and the bottom-hole pressures to estimate states
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and parameters [13]. The performance of the adaptive ob-
servers was compared and evaluated for a typical drilling case
to estimate only production index of gas using a simulated
scenario with a drift-flux model. A Nonlinear Moving Horizon
Observer based on a low-order lumped model was designed for
estimating the total mass of gas and liquid in the annulus and
geological properties of the reservoir during UBD operation
in [14].

Lorentzen et al. designed an ensemble Kalman filter based
on the drift-flux model to tune the uncertain parameters of
a two-phase flow model in the UBD operation [6]. Vefring
et al.[15], [16] compared and evaluated the performance of
the ensemble Kalman filter and an off-line nonlinear least
squares technique utilizing the Levenberg-Marquardt optimiza-
tion algorithm to estimate reservoir pore pressure and reservoir
permeability during UBD while performing an excitation of
the bottom-hole pressure. The result shows that excitation of
the bottom-hole pressure might improve the estimation of the
reservoir pore pressure and reservoir permeability [15], [16].
Aarsnes et al.[17] used a drift-flux model and an Extended
Kalman Filter to estimate the states and production index
online, and suggested a scheme combining this with off-line
calibration using the algorithm in [15]. The provided analysis
also suggests how such a scheme fits into the UBD operating
envelope as proposed by [18], and explored in [19]. Di Meglio
et al. designed an adaptive observer based on a backstepping
approach for a linear first-order hyperbolic system of Partial
Differential Equations (PDEs) by using only boundary mea-
surements with application to UBD [20]. It is shown that
this method has exponential convergence for the distributed
state and the parameter estimation. This adaptive observer is
applied to estimate distributed states and unknown boundary
parameters of the well during UBD operations. Gao Li et
al. presented an algorithm for characterizing reservoir pore
pressure and reservoir permeability during UBD of horizontal
wells [21]. Since the total flow rate from the reservoir has
a negative linear correlation with the bottom hole pressure,
reservoir pore pressure can be identified by the crossing of
the horizontal axis and the best-fit regression line between the
total flow rate from the reservoir and the bottom hole pressure
while performing an excitation of the bottom-hole pressure
by changing the choke valve opening or pump rates. The
unscented Kalman filter (UKF) has been shown to typically
have a better performance than other Kalman filter techniques
for nonlinear systems ([22], [23]). Nikoofard et al. used
an UKF with the drift-flux model for the first time [24].
They designed an UKF for estimation of unmeasured states,
production and slip parameters of simplified drift-flux model
using real time measurements of the bottom-hole pressure
and liquid and gas rate at the outlet [24]. This paper is an
extended version of work published in [24] which presents
the design of a UKF based on a simplified drift-flux model
to estimate the states, geological properties of the reservoir
and slip parameters during UBD operation. In this work,
both production indices of gas and liquid and unmeasured
states are estimated by using only measurements of the choke
and the bottom-hole pressures during UBD operation for a
pipe connection procedure. In this paper, it is assumed that

the electromagnetic measurement while drilling (MWD) is
used for the telemetry system. The performance of UKF
is evaluated against EKF by using measurements from the
OLGA simulator and the consequences of not estimating slip
parameters are discussed. These adaptive observers were tested
by two challenging scenarios:

1) Changing the production index of gas.
2) Pipe connection.

The performance of the estimation algorithms to detect and
track the change in production parameters is investigated. The
main purpose of the paper is to estimate production indices of
gas and liquid during UBD operations for different scenarios
and different conditions such as working with a manual or
automatic controller. In addition, this study assesses the effect
of the discretization, the choice of estimated parameters, effect
of measurements on the simulated estimation algorithms.
Robustness of the estimators for the pipe connection scenario
is studied in case of uncertainties and errors in the reservoir
and well parameters of the model. This paper is organized
as follows: Section II presents the simplified drift-flux model
based on mass and momentum balances for UBD operation.
Section III explains UKF and EKF for simultaneously esti-
mating the states and parameters of a simplified drift-flux
model from OLGA simulator measurements. In the section
IV, the simulation results are provided for state and parameter
estimation. The conclusions are presented at the end of the
paper.

II. THE DRIFT FLUX MODEL

The model employed is the same as the one used in [19].
It expresses the mass conservation law for the gas and the
liquid separately, and a combined momentum equation. The
mud, oil and water are lumped into one single liquid phase.
In developing the model, the following mass variables are used

m = αLρL, n = αGρG

where for k = L,G denoting liquid or gas, ρk is the phase
density, and αk is the volume fraction satisfying

αL + αG = 1. (4)

Further vk denotes the velocities, and P the pressure. All of
these variables are functions of time and space. We denote
t ≥ 0 the time variable, and x ∈ [0, L] the space variable, cor-
responding to a curvilinear abscissa with x = 0 corresponding
to the bottom hole and x = L to the outlet choke position (see
Fig. 1). The isothermal equations are as follows,

∂m

∂t
+
∂mvL
∂x

= 0, (5)

∂n

∂t
+
∂nvG
∂x

= 0, (6)

∂(mvL + nvG)

∂t
+
∂(P +mv2L + nv2G)

∂x

= −(m+ n)g cos ∆θ − 2f(m+ n)vm|vm|
D

. (7)

In the momentum equation (7), the term (m + n)g cos ∆θ
represents the gravitational source term, g is the gravitational
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Fig. 1. Drilling process schematic for UBD.

constant and ∆θ is the mean angle between gravity and the
positive flow direction of the well, while −−2f(m+n)vm|vm|

D
accounts for frictional losses. The mixture velocity is given as

vm = αGvG + αLvL. (8)

Along with these distributed equations, algebraic relations are
needed to describe the system.

A. Closure Relations

Both the liquid and gas phase are assumed compressible.
This is required for the model to handle the transition from
two-phase to single-phase flow. The densities are thus given
as functions of the pressure as follows

ρG =
P

c2G
, ρL = ρL,0 +

P

c2L
, (9)

where ck is the velocity of sound and ρL,0 is the reference
density of the liquid phase given at vacuum. Note that the
velocity of sound in the gas phase cG depends on the tem-
perature as suggested by the ideal gas law. The temperature
profile is assumed to be known.
Combining (9) with (4) yields the following equalities that can
be exploited to find the volume fractions as a function of mass
variables:

αG =
1

2
−

c2G
c2L
n+m+

√
∆

2ρL,0
, (10)

∆ =
(
ρL,0 −

c2G
c2L
n−m

)2
+ 4

c2G
c2L
nρL,0 (11)

Then the pressure can be found using a modified expression
to ensure pressure is defined when the gas vanishes

P =

{(
m

1−αG
− ρL,0

)
c2L, if αG ≤ α∗G

n
αG
c2G, otherwise,

(12)

Note that the above two expressions are equivalent except
for the singularities occurring at 0 and 1, respectively. Hence
α∗G can be set to any value α∗G ∈ (0, 1) [19]. Because
the momentum equation (7) was written for the gas-liquid
mixture, a so-called slip law is needed to empirically relate the
velocities of gas and liquid. To handle the transition between
single and two-phase flow, a relation with state-dependent
parameters is needed ([25], [26]).

vG = (K − (K − 1)αG)vm + αLS (13)

where K ≥ 1 and S ≥ 0 are constant parameters.

B. Boundary Conditions

Boundary conditions are given by the mass-rates of gas and
liquid injected from the drilling rig and flowing in from the
reservoir. Denoting the cross sectional flow area by A, the
boundary fluxes are given as:

mvL|x=0 =
1

A

(
WL,res(t) +WL,inj(t)

)
, (14)

nvG|x=0 =
1

A

(
WG,res(t) +WG,inj(t)

)
. (15)

The injection mass-rates of gas and liquid, WG,inj ,WL,inj ,
are specified by the driller and can, within some constraints,
be considered as manipulated variables. The inflow from the
reservoir is dependent on the pressure on the left boundary,
for which, within the operational range of a typical UBD
operation, an affine approximation should suffice, i.e.

WL,res = kL max(Pres−P (0), 0) (16)
WG,res = kG max(Pres−P (0), 0) (17)

Here Pres is the reservoir pore pressure and kG, kL are the
production index of the gas and liquid respectively.

The topside boundary condition is given by a choke equation
relating topside pressure to mass flow rates

mvL√
ρL

+
nvG
Y
√
ρG

∣∣∣
x=L

=
Cv
(
Z
)

A

√
max (P (L, t)− Ps, 0),

(18)

where Cv is the choke opening given by the manipulated
variable Z. Y ∈ [0, 1] is a gas expansion factor for the gas flow
and Ps is the separator pressure, i.e. the pressure downstream
the choke.

C. Numerical Implementation

The drift flux model described above was implemented
using a fully implicit Backwards Time-Central Space (BTCS)
finite differences numerical scheme with an explicitly derived
Jacobian as described in [19].

The state vector consists of the conserved mass variables m
and n and the combined momentum I = mvL + nvG, X =
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[
m n I

]T
. For each of the states it is used the following

definition for finite differences,

mk
i = m(k∆t, i∆x), etc.

where i = 0, 1, . . . , N and k = 0, 1, . . . . It is arranged the
terms into a vector

Xk =
[
mk

1 ,m
k
2 , . . . ,m

k
N , n

k
1 , . . . , n

k
N , I

k
1 , . . . , I

k
N

]
.

Consequently, propagating the states in time from Xk to Xk+1

equates to solving a set of nonlinear equations that are implicit
in Xk+1, which it is denoted as

F (Xk+1, Xk) = 0, F : R3N × R3N → R3N . (19)

These are solved using Newton steps which require the inverse
of the Jacobian of F w.r.t. Xk+1 denoted FXk+1

. We note that
the existence of this inverse is guaranteed by the 1/∆t terms
making up the diagonal of FXk+1

.

III. UNSCENTED AND EXTENDED KALMAN FILTER

A. UKF

The implemented drift-flux model based on equations (5)-
(18), although solved implicitly, can conceptually be repre-
sented as

Xk = f(Xk−1, θ) + qk (20)
yk = h(Xk) + rk (21)

where qk ∼ N(0, Qk−1) is the zero mean white Gaussian
process noise and model error, and rk ∼ N(0, Rk) is the
zero mean white Gaussian measurement noise. yk is a set of
measurements from the model and θ is the set of unknown
parameters of the model that must be estimated. yk and θ for
each scenario are defined and discussed in section IV.
The Kalman filter based on a linearized model was developed
to estimate both state and parameter of the system usually
known as an augmented Kalman filter. The augmented state
vector is defined by xa = [X, θ]. The state-space equations
for the augmented state vector at time instant k are written as:[

Xk

θk

]
=

[
f(Xk−1, θk−1) + qk

θk−1

]
= fa(Xk−1, θk−1) + qak

(22)

The UKF technique has been developed to work with
non-linear systems without using an explicit linearization of
the model ([27], [28], [29]). The UKF estimates the mean
and covariance matrix of the estimation error with a minimal
set of sample points (called sigma points) around the mean
by using a deterministic sampling approach known as the
unscented transform. The nonlinear model is applied to sigma
points to predict uncertainty instead of using a linearization
of the model. More details can be found in ([28], [29], [22]).

Dual and joint UKF techniques are two common approaches
for estimation of parameters and state variables simultane-
ously. The dual UKF method uses another UKF for parameter
estimation so that two filters run sequentially in every time
step; the state estimator updates with new measurements,
and then the current estimate of the state is used in the

parameter estimator. The joint UKF augments the original state
variables with parameters and a single UKF is used to estimate
augmented state vector.

In this paper, the joint UKF is used.

B. EKF

For the implementation of an Extended Kalman Filter,to
be used for comparison we need the Jacobian of the ex-
plicit formulation of the system equation. A first order Tay-
lor series expansion around the trajectory X̄ , noting that
F (X̄k+1, X̄k) = 0, yields

FXk+1
(X̄k+1, X̄k)X̃k+1 + FXk

(X̄k+1, X̄k)X̃k = 0. (23)

where FXk
(X̄k+1, X̄k) is F with respect to a Xk. Hence, for

the system Jacobian, this gives

J = −F−1Xk+1
(X̄k+1, X̄k)FXk

(X̄k+1, X̄k)

where the partial derivatives are evaluated at the trajectory. We
recognize FXk+1

to be the Jacobian, previously discussed, the
inverse of which is known to exist.

IV. SIMULATION RESULTS

A. Simulation with perfect model data

First, the presented DFM, (5)-(15) was used to create the
measurements and true states in this simulation study. In this
case the estimated states and parameters, in several configura-
tions of unknown parameters to be estimated, converged to the
true states (results not shown). Convergence transients were
typically 0.5 hours for the UKF and 1.5 hours for the EKF.
Of significantly more interest, however, is how the estimators
performs in a more realistic setting where we would have
model errors to deal with. Such a scenario is considered next.

B. Case 1: Tracking production index

In starting a UBD operation, estimates of reservoir pressure
are provided to the driller by reservoir engineers ahead of
time and these are updated during the operation by performing
flow tests. The reservoir pressure is then assumed reasonably
homogeneous in time as one is drilling through the same
reservoir, while the production index increases as progressively
larger parts of the production matrix is opened up and the
drilling bit potentially encounters faults [30], [31].

As such, a scenario is considered where the reservoir pres-
sure is assumed known and the performance of the estimation
algorithm is evaluated by its ability to track a rapid change in
the production index.

1) Parameter values and OLGA setup: The parameter val-
ues for the simulated well and reservoir are summarized in
Table I. These parameters are used from the OLGA simulator.
The OLGA dynamic multiphase flow simulator is a high
fidelity simulation tool which has become the de-facto industry
standard in oil and gas production, see [32]. The measurements
have been synthetically generated by using OLGA. The OLGA
simulator uses the same model for the mass flow from the
reservoir into the well as in equations (16)-(17).

In the following, a measurement sampling interval of 10
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TABLE I
PARAMETER VALUES FOR WELL AND RESERVOIR

Name DFM Unit
Reservoir pressure (pres) 279 bar
Collapse pressure (pcoll) 155 bar
Well total length (Ltot) 2530 m
Drill string outer diameter (Dd) 0.1206 m
Well inner diameter (Da) 0.1524 m
Liquid flow rate (wl,d) 13.33 kg/s
Gas flow rate (wg,d) 0 kg/s
Liquid density (ρL) 1000 kg/m3

Gas average temperature (T ) 285.15 K
Average angle (∆θ) 0 rad
Choke constant (Kc) 0.0053 m2

TABLE II
CHOKE OPENING USED IN THIS SCENARIO

Time Choke Opening
0-1 h 10 %
1-2 h 8 %
2-6 h 7 %
6-8 h 6 %
8-10 h 5.5 %

seconds was used, and the model was run with time steps
of 10 seconds using different number of spatial discretization
cells (N = 6, 12, 20).

Two scenarios are simulated. The first scenario of this paper
is the same simulation scenario as [17], considering UBD
operation of a vertical well drilled into a dry gas reservoir
(i.e. WL,res = KL = 0). The scenario in this simulation is
as follows. First drilling in a steady-state condition is initiated
with the choke opening of 10 % , then the choke is closed to 8
% at 1 hour. After 2 hours, the choke is closed to 7 %. After 3.5
hours, there is a linear and sharp increase in the production
index of gas from 0.072 kg/s/bar to 0.12 kg/s/bar. Then
the choke is closed to 6 % at 6 hours, and after 8 hours, the
choke is closed to 5.5 %. The choke opening of this simulation
scenario is summarized in Table II.
In the first scenario, it is assumed that only bottom-hole pres-

sure (P (0)) and liquid and gas rate at the outlet are measured.
The joint UKF and EKF estimate the states, production index
of gas, and slip parameters (S,K) simultaneously. The initial
value for the estimated production index of gas is (K̂G =
0.08 kg/s/bar). UKF parameters are determined empirically
(κ = 0, β = 2, α = 0.00001 ). Note that α can be set to
any small positive value (e.g., α ≤ 1) [29]. The measurement
noise covariance matrix is R = diag[0.01, 0.0004, 0.04]. The
covariance matrix used in this simulation for both EKF and
UKF is

Q = diag[Qs, Qp]

Qp = diag[10−3, 2 ∗ 10−6, 2 ∗ 10−5] , p = [KG,K, S]

where Qs and Qp are the state covariance and parameter
covariance matrices, respectively. We used the same the state
covariance matrix for two scenarios. Choosing process noise
in the UKF or EKF (Q) specifies trade-offs in the UKF or
EKF design. Choosing larger process noise in the UKF or
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Fig. 2. Estimating production index of gas with different number of spatial
discretization cells.

EKF (Q) leads to faster track of data and convergence but
more uncertainty in the estimation. Choosing smaller process
noise in the UKF or EKF (Q) leads to slower track of data
and convergence but less uncertainty in the estimation. In this
paper, it is shown that this choice of covariance matrix (Q)
gives reasonable performance of the estimator algorithms, but
we emphasize that the covariance matrix (Q) is not tuned to
optimize the performances.

The reason the slip parameters K,S are empirical closure
relations without direct physical interpretations [33]. This
means that there is no correct value for the parameter esti-
mation to converge to, but they are included in the hope that
they can compensate for the model errors resulting from the
simplifying assumptions behind the DFM, thereby potentially
improving the estimation of other parameters (namely produc-
tion index).

2) Simulation results and discussion: The estimations of
the production index of gas from the reservoir into the well
for different spatial discretizations for both UKF and EKF
are shown in Figure 2. The estimation algorithms are quite
fast to detect and track changing at production index of gas.
However, there is a small deviation between the estimated and
actual value of the production index of gas. The number of
steps in the spatial discretization does not have a significant
effect on the accuracy of estimation, although the results show
that decreasing number of steps can improve the convergence
rate.

Figures 3 and 4 show the estimated slip parameters K
and S for different spatial discretization cells for both UKF
and EKF, respectively. The estimation of slip parameters for
the UKF seems to converge slowly, or not at all. However,
estimation of production index of gas has some errors during
most of the scenario. On the other hand, estimation of
production index of gas in UKF has less error. In this case
estimation of slip parameters varies during steady state.
Since slip parameters are artificial parameters and has no
reference value their convergence may not be important. As a
production index is a physical parameter, the convergence for
estimation of production index is vital for success of UBD
operations.
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Fig. 3. Estimating slip parameter (K) for different number of spatial
discretization cells.
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Fig. 4. Estimating slip parameter (S) for different number of spatial dis-
cretization cells.

Figure 5 shows the estimation of the production index of
gas with different fixed slip parameters by using UKF with
6 spatial discretization cells. The results show that estimation
of the slip parameters can improve accuracy of the estimation
of the production index of gas. The measured bottom-hole
pressure and choke pressures are illustrated in Figure 6.

The runtime of the simulations for different spatial dis-
cretization cells for both UKF and EKF are summarized in
Table III by using 3.00 GHz Processor with 4 GB RAM

0 1 2 3 4 5 6 7 8 9 10
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time (h)

K
G

(k
g
/b

a
r/

s
)

Trend

 

 

OLGA

UKF with S=0.74, K=1.21

UKF with S=0.70, K=1.21

UKF with S=0.68, K=1.20

UKF with estimation S & K

Fig. 5. Estimating production index of gas with fixed slip parameters.
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Fig. 6. Bottom-hole pressure and choke pressure

TABLE III
SIMULATION RUNTIME FOR DIFFERENT NUMBER OF SPATIAL

DISCRETIZATION CELLS.

Number of Cells UKF (seconds) EKF(seconds)
6 630.38 63.88
12 1110.82 67.27
20 2326.35 78.16

running MATLAB, the runtime of the simulations for EKF
are less than the runtime of the simulations for UKF, but
we emphasize that the implementation is not optimized for
computational efficiency.
Performance of these adaptive observers is evaluated through

the root mean square error (RMSE) metric for the parameter
KG. The RMSE metric for UKF and EKF for different number
of spatial discretization cells is summarized in Table IV.

TABLE IV
RMSE METRIC FOR ESTIMATE OF KG

Number of Cells UKF EKF
3 7.3 × 10−3 9.4 × 10−3

6 4.8 × 10−3 8.2 × 10−3

12 4.8 × 10−3 8 × 10−3

20 5.16 × 10−3 8.3 × 10−3

According to the RMSE metric table, UKF with fewer cells
in the spatial discretization has a slightly better performance
than UKF with larger number of spatial discretization cells
and EKF with different number of spatial discretization cells
for production index estimation, although the number of cells
in the spatial discretization does not have a significant effect
on the accuracy of estimation. If the number of cells is slightly
more than a minimum number ( 5 or 6 spatial discretization
cells for this case) we can get satisfactory results from the
estimator.

The total effective model error is due to a combination of
error in the mathematical model and error introduced by the
discretization. With regards to a given variable, these errors
might be compounded or they might partially cancel each
other. Hence it is possible that reducing the number of cells
in the discretization may yield an improved performance for
a given case. Of course, this does not mean that reducing the



7

number of cells will always improve performance, however,
this point can be used to argue for using low order approxi-
mations as the largest cause of error is often due to the errors
in the mathematical model and not due to the discretization.

C. Case 2: Pipe connection

The second case study that is reported in this paper consid-
ers UBD operation of a vertical well drilled into an oil and
gas reservoir. First the drilling in a steady-state condition is
initiated with the choke opening of 10 %, then at t = 1 hour
and 35 min the main pump is shut off to perform a connection
procedure, and the choke is closed to 6 %. The rotation of
the drill string and the circulation of fluids are stopped for
15 mins. Next after making the first pipe connection at t =
1 hour and 50 min the main pump and rotation of the drill
string are restarted. After 1 hour and 45 min (i.e. 3 hour and
35 min), the choke is closed to 5 %, and the second pipe
connection procedure is started, and is completed after 15
mins. Then the choke is opened to 10 % at t= 3 hours and 50
min. The measured bottom-hole pressure (pbh), choke pressure
(pc), choke opening (Z), and mass flow rate of liquid from the
drill string (wl,d) are illustrated in Figure 7.
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Fig. 7. Measured bottom-hole pressure, choke pressure, choke opening, and
mass flow rate of liquid from the drill string for pipe connection scenario.

Since these two scenarios model two drilling cases with
different specifications, different measurements and different
parameters for each scenario was used. Due to the fact that the
liquid and gas flow rate at the outlet are sometimes measured
by flow meter after separator, these measurements have usually
some delay. Also, these measurements are sometimes not
available. Therefore, the purpose of the second scenario is to
show how the estimator works without these measurements.
This way we can answer a wide range of problems in UBD
operation with choosing different measurements by using these
two scenarios.

1) Case 2a: Pipe connection with manual controller: In the
second scenario, it is assumed that only bottom-hole pressure
(P (0)) and choke pressure (P (L)) are measured. The UKF
estimates the states and production indices of gas and liquid
(KG,KL). Since slip parameters can be estimated only by
measurement of the liquid and gas flow rate, slip parameters in
this simulation are fixed (K = 1.15, S = 0.56). The parameter
values for the UKF for pipe connection scenario are the same
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Fig. 8. Estimating gas production index of gas with different number of
spatial discretization cells during a pipe connection.
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Fig. 9. Estimating liquid production index with different number of spatial
discretization cells during a pipe connection.

as previous scenario. The initial values for the estimated and
real parameters are as follows:

KG = 0.07, KL = 0.1, K̂G = 0.091, K̂L = 0.13

The bottom-hole and the choke pressure measurements are
corrupted by zero mean additive white noise with the following
covariance matrix

R =

[
0.9 ∗ 0.42 0

0 0.9 ∗ 0.22

]
(bar2)

The covariance matrix for parameter variations uses in this
simulation for both EKF and UKF is

Qp = diag[4 ∗ 10−4, 2 ∗ 10−3], p = [KG,KL].

Figures 8 and 9 show the estimated production indices of gas
and liquid from the reservoir into the well for different spatial
discretization cells for UKF, respectively.

The RMSE metric of the parameters KG and KL for UKF
and EKF for different spatial discretization cells after initial
transient (t ≥ 0.5hour) are summarized in Table V. The
results show that UKF and EKF with fewer cells in the spatial
discretization for the estimation of gas and liquid production
indices have a better accuracy than UKF and EKF with larger
spatial discretization cells with different spatial discretization
cells for the estimation of gas and liquid production indices
during the pipe connection. Since the model is significantly
less accurate during the pipe connection, we need to prevent
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TABLE V
RMSE METRIC FOR ESTIMATE OF KG AND KL FOR PIPE CONNECTION

SCENARIO WITHOUT CONTROLLER

Number
of Cells

KG (after t ≥ 0.5h) KL (after t ≥ 0.5h)
UKF EKF UKF EKF

3 1.3 × 10−3 1.4 × 10−3 5.0 × 10−3 5.2 × 10−3

6 1.4 × 10−3 1.5 × 10−3 3.6 × 10−3 3.6 × 10−3

12 1.8 × 10−3 2.2 × 10−3 3.8 × 10−3 3.8 × 10−3

20 2.4 × 10−3 3.1 × 10−3 4.8 × 10−3 4.9 × 10−3

that the production index estimates drift away in order to
compensate for other model errors. Hence, the Qp of UKF
and EKF is 1000 times smaller than the nominal value during
the pipe connection. For the same reason, the measurement
covariance of UKF and EKF is tuned 1000 times larger than
the nominal value during the pipe connection.

The RMSE metric shown in Table V, shows the same trend
as previous case, where the UKF with fewer cells in the spatial
discretization for the estimation of gas production index (KG)
has a slightly better performance than the UKF with larger
spatial discretization cells and the EKF with different spatial
discretization cells, for the estimation of KG. This can be
explained by considering the fact that there are two potential
sources of error: model error, and numerical error due to
discretization. In most cases, reducing the numerical error
by increasing the number of cells will reduce the total error.
However, there is an optimum number of cells that has better
performance compared to smaller or larger number of cells.
It is possible that two sources of error can, to some degree,
cancel each other out which is the case here. Based on the
above mentioned reason, it can be concluded that increasing
the number of cells beyond a certain point will result in
small increase in performance as the model error will start
to dominate over the numerical.

2) Case 2b: Pipe connection with PI controller: For au-
tomated control of bottom hole pressure, a PI controller was
applied to the drilling system for pipe connection scenario.
This controller creates a dynamic mapping from the bottom
hole pressure to the choke opening Z in (18). The PI con-
troller is popular as an industrial controller and easy to tune.
Proportional and integral gains are chosen as 0.01 and 0.0002,
respectively. For more details on how the PI controller can be
designed and tuned for this scenario the interested reader is
referred to [33], [34], [35]. The parameter values for the UKF
are the same as previous scenario.The measured bottom-hole
pressure (pbh) and choke pressure (pc) for pipe connection
scenario with PI controller is illustrated in Figure 10. Figure
11 shows the choke opening for pipe connection scenario with
PI controller.

Figures 12 and 13 show the estimated production indices
of gas and liquid from the reservoir into the well with PI
controller for pipe connection scenario by using UKF with 6
spatial discretization cells, respectively.

The RMSE metric of the parameters KG and KL for UKF
for different spatial discretization cells after initial transient
(t ≥ 0.5hour) are summarized in Table VI. The results show
that PI controller can improve accuracy of the estimation of
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Fig. 10. Measured bottom-hole pressure and choke pressure for pipe connec-
tion scenario with PI controller.
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Fig. 11. Choke opening for pipe connection scenario with PI controller.

the production indices of gas and liquid due to reducing the
disturbance of pipe connection.

3) Case 2c: Robustness analysis of UKF and EKF in
case of uncertainties and errors in the reservoir and well
parameters of the model: Robustness of the adaptive observers
is investigated in case of errors in the reservoir and well
parameters of the model. This test is performed in case of
errors in the reservoir pore pressure and liquid density for
pipe connection scenario. The RMSE metric for UKF and EKF
in the two cases of 1% error on the reservoir pore pressure
(pres,model = 282 bar) and 10% error on the liquid density
(ρL,model = 1100 kg/m3) for different spatial discretization
cells after initial transient (t ≥ 0.5hour) are summarized in
Table VII and VIII, respectively.

Since the reservoir pore pressure has a direct effect on
the mass flow rates from the reservoir into the well, small
inaccuracies in the reservoir pore pressure have a significant

TABLE VI
RMSE METRIC FOR ESTIMATE OF KG AND KL FOR PIPE CONNECTION

SCENARIO WITH PI CONTROLLER.

Number of Cells KG (after t ≥ 0.5h) KL (after t ≥ 0.5h)
6 0.6 × 10−3 1.3 × 10−3

12 0.85 × 10−3 1.1 × 10−3

20 1.1 × 10−3 1.4 × 10−3
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Fig. 12. Estimating production index of gas for pipe connection with PI
controller
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Fig. 13. Estimating liquid production index for pipe connection with PI
controller.

TABLE VII
RMSE METRIC IN CASE OF ERROR IN THE RESERVOIR PRESSURE VALUE

FOR PIPE CONNECTION SCENARIO WITHOUT CONTROLLER

Number
of Cells

KG (after t ≥ 0.5h) KL (after t ≥ 0.5h)
UKF EKF UKF EKF

6 5.4 × 10−3 5.6 × 10−3 5.2 × 10−3 5.3 × 10−3

12 5.8 × 10−3 6.0 × 10−3 6.0 × 10−3 6.0 × 10−3

20 6.2 × 10−3 6.7 × 10−3 6.1 × 10−3 6.3 × 10−3

TABLE VIII
RMSE METRIC IN CASE OF ERROR IN THE LIQUID DENSITY VALUE FOR

PIPE CONNECTION SCENARIO WITHOUT CONTROLLER

Number
of Cells

KG (after t ≥ 0.5h) KL (after t ≥ 0.5h)
UKF EKF UKF EKF

6 1.4 × 10−3 1.6 × 10−3 3.7 × 10−3 3.8 × 10−3

12 1.9 × 10−3 2.2 × 10−3 3.9 × 10−3 3.9 × 10−3

20 2.4 × 10−3 3.1 × 10−3 4.8 × 10−3 5.0 × 10−3

effect on the estimation of production indices. Therefore these
methods with different number of spatial discretization cells
are very sensitive to errors in the reservoir pore pressure value.
The results show that UKF and EKF with different number of
spatial discretization cells are robust in case of error in the
liquid density value of the model.

V. CONCLUSION

In this paper, the joint UKF and EKF have been applied to
the drift-flux model for different spatial discretization cells to
estimate the distributed unmeasured states, geological proper-
ties of the reservoir (production index) and slip parameters
(S,K) during UBD operations using measurement of the
bottom-hole pressure and liquid and gas rate at the outlet.
Furthermore, both production indices of gas and liquid and
unmeasured states were estimated by using only measurements
of the choke and the bottom-hole pressures for the pipe con-
nection procedure. Simulation results demonstrated reasonable
performance of the joint UKF and EKF to detect and track
a changing gas production coefficient using the simulated
scenario with OLGA. Even though the simulation scenario is
somewhat idealized the results are encouraging. The number of
spatial discretization cells was found to not have a significant
effect on accuracy of estimation. The UKF was also found
to estimate more accurately than the EKF. The results show
that these methods are very sensitive to errors in the reservoir
pore pressure value. However, the methods are robust in case
of error in the liquid density value of the model.

Since some type of MWD (i.e. Wired Drill Pipe or Mud
Pulse Telemetry) loses down hole data for a few minutes for
each connection, the future research could be to evaluate these
proposed methods with missing down hole data.
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