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ABSTRACT

This paper deals with the problem of fault detection and

identification in noisy systems. A proportionnal integral

observer with unknown inputs is used to reconstruct state

and sensors faults. A mathematical transformation is made

to conceive an augmented system, in which the initial sen-

sor fault appear as an unknown input. The noise effect on

the state and fault estimation errors is also minimized. The

obtained results are then extended to nonlinear systems de-

scribed by nonlinear Takagi-Sugeno models.

Index Terms— state estimation, Takagi-Sugeno, sen-

sor fault, unknown input, multiple model

1. INTRODUCTION

State estimation is an important field of research with nu-

merous applications in control and diagnosis. Generally

the whole system state is not always measurable and the

recourse to its estimation is a necessity.

An observer is generally a dynamical system allowing the

state reconstruction from the system model and the mea-

surements of its inputs and ouputs [?]. For linear models,

state estimation methods are very efficient [?]. However

for many real systems, the linearity hypothesis cannot be

assumed. In that case, the synthesis of a nonlinear ob-

server allows the reconstruction of the system state. For

example, let us cite sliding mode observers [?], the Thau-

Luenberger observers [?] and observer for nonlinear sys-

tems described by Takagi-Sugeno models [?].

Approaches using Takagi-Sugeno model (sometimes named

multiple model) are the object of many works in differ-

ent contexts including the taking into account of unknown

inputs or parameter uncertainties [?, ?]. Various studies

dealing with the presence of unknown inputs acting on the

system were published [?, ?, ?]. Some of them tried to

reconstruct the system state in spite of the unknown in-

put existence. This reconstruction is assured via the elim-

ination of unknown inputs [?, ?]. Other works choose to

estimate, simultaneously, the unknown inputs and system

state [?, ?]. Among the techniques that do not require the

elimination of the unknown inputs, Wang [?] proposes an

observerable to entirely reconstruct the state of a linear

system in the presence of unknown inputs and in [?], to

estimate the state, a model inversion method is used. Us-

ing the Walcott and Zak structure observer [?] Edwards et

al. [?, ?] have also designed a convergent observer using

the Lyapunov approach.

Observers with unknown inputs are used to estimate actua-

tors faults wich can be assumed to unknown inputs, this es-

timation can be made by the use of a proportionnel integarl

observer [?]. In often cases, process can be subjected to

disturbances which have as origin the noises due to its en-

vironment, uncertainty of measurements, fault of sensors

and/or actuators. These disturbances have harmful effects

on the normal behavior of the process and their estimation

can be used to conceive a control strategy able to minimize

their effects. In the case of sensor faults, Edwards [?] pro-

pose for linear systems to use a new state wich is a filtrate

version of the output, to conceive an augmeted system in

wich th sensor fault appear as un unknown input. This for-

mulation was used by [?].

In this paper, a prportionnel integral observer will be con-

ceived to estimate the state and sensor faults. The exten-

sion of this method to nonlinear systems described by non-

linear Takagi-Sugeno models will be proposed afterthat.

2. LINEAR SYSTEM CASE

The objective of this part is to estimate a sensor fault af-

fecting a linear system via an unknown input proportional

integral state observer.

2.1. Problem formulation

Consider the linear model affected by a sensor fault and a

measurement noise described by :

ẋ(t) = Ax(t) +Bu(t) (1)

y(t) = Cx(t) + Ef(t) +Dw(t) (2)



where x(t) ∈ Rn represents the system state, y(t) ∈ Rm

is the measured output, u(t) ∈ Rr is the system input, f(t)
represents the fault and w(t) is the measurement noise.

A, B and C are known constant matrices with appropri-

ate dimensions. E and D are respectively the fault and

the noise distribution matrices which are assumed to be

known. Consider also the state z(t) ∈ Rp [?] that is a

filtered version of the output y(t). It is given by :

ż(t) = −Āz(t) + ĀCx(t) + ĀEf(t) (3)

where −Ā ∈ Rp∗p is a stable matrix.

One introduce the augmented state X =
[

xT zT
]T

,

this state is given by the equation (??).

Ẋ(t) = AaX(t) +Bau(t) + Eaf(t) (4)

Y (t) = CaX(t) +Daw(t) (5)

with :

Aa =

[

A 0
ĀC −Ā,

]

, Ca =

[

C 0
0 I

]

(6)

Ba =

[

B

0

]

, Ea =

[

0
ĀE

]

and Da =

[

D

D

]

(7)

The structure of the chosen observer is as follows :

˙̂
X(t) = AaX̂(t) +Bau(t) + Eaf̂(t) +K(Y (t) − Ŷ (t))

(8)

˙̂
f(t) = L(Y (t) − Ŷ (t)) (9)

Ŷ (t) = CaX̂(t) (10)

where X̂(t) is the estimated state, f̂(t) represents the esti-

mated fault, Ŷ (t) is the estimated output,K is the propor-

tional observer gain and L is the integral gain to be com-

puted. It is supposed that the fault affecting the system is

bounded. Let us define the state estimation error x̃(t) and

the fault estimation error f̃(t) :

x̃(t) = X(t) − X̂(t) and f̃(t) = f(t) − f̂(t) (11)

The dynamics of the state estimation error is given by the

computation of ˙̃x(t) which can be written :

˙̃x(t) = Ẋ(t) − ˙̂
X(t)

= (Aa −KaC)x̃(t) + Eaf̃(t) −KDaw(t) (12)

The dynamics of the fault estimation error is :

˙̃
f(t) = ḟ(t) − ˙̂

f(t)

= ḟ(t) − LCaX̃(t) − LDaw(t) (13)

The following matrices are introduced :

ϕ =

[

x̃

f̃

]

and ε =

[

w

ḟ

]

(14)

From the equations (??) and (??), one can obtain :

ϕ̇ = A0ϕ+B0ε (15)

with :

A0 =

[

Aa −KCa Ea

−LCa 0

]

, B0 =

[

−KDa 0
−LDa I

]

(16)

The matrix I is the identity matrix with appropriate dimen-

sions. In order to analyse the convergence of the general-

ized estimation error ϕ(t), let us consider the following

quadratic Lyapunov candidate function V (t) :

V (t) = ϕTPϕ (17)

where P denotes a positive definite matrix.

The problem of robust state and fault estimation is to find

the gainsK and L of the observer to ensure an asymptotic

convergence of ϕ(t) toward zero if ε(t) = 0 and to ensure

a bounded error in the case where ε(t) 6= 0, i.e. :

lim
t→∞

ϕ(t) = 0 for ε(t) = 0

‖ϕ(t)‖Qϕ
≤ µ‖ε(t)‖Qε

for ε(t) 6= 0 and e(0) = 0

(18)

where µ > 0 is the attenuation level. To satisfy the con-

straints (??), it is sufficient to find a Lyapunov function

V (t) such that :

V̇ (t) + ϕTQϕϕ− µ2εTQεε < 0 (19)

where Qϕ and Qε are two positive definite matrices. In

order to simplify the notations, the time index (t) will be

omitted henceforth.

The inequality (??) can also be written as :

ψT Ωψ < 0 (20)

with :

ψ =

[

ϕ

ε

]

,Ω =

[

AT
0
P + PA0 +Qϕ PB0

BT
0
P −µ2Qε

]

(21)

The quadratic form in (??) is negative if :

Ω < 0 (22)

The matrix A0 can be expressed as :

A0 = Ã− K̃C̃ (23)

with :

Ã =

[

Aa Ea

0 0

]

, K̃ =

[

K

L

]

, C̃ =
[

Ca 0
]

(24)

The matrix B0 can be written as :

B0 = −K̃D̃ + Ĩ (25)

with :

Ĩ =

[

0 0
0 I

]

and D̃ =
[

Da 0
]

(26)



Using ?? and ??, the matrix Ω can be written as :

Ω =

[

PÃ+ ÃTP − PK̃C̃ − C̃T K̃TP +Qϕ ...

ĨTP − D̃T K̃TP ...

... −PK̃D̃ + P Ĩ

... −µ2Qε

]

(27)

The presence of the terms PK̃ and −µ2 make the inequal-

ity ?? non linear and the LMI’s methods of resolution can

not be used. To make linear this inequality, let us define

the following changes of variables G = PK̃ and m = µ2.

The matrix Ω can be written as :

Ω =

[

PÃ+ ÃTP −GC̃ − C̃TGT +Qϕ ...

ĨTP − D̃TGT ...

... −GD̃ + P Ĩ

... −mQε

]

(28)

The resolution of the inequality ?? that is now linear with

regard the different unknowns leads to find the matrix P

and G and the scalar m. The gain matrix K̃ is determined

via the resolution of K̃ = P−1G and the attenuation level

is given by µ =
√
m.

2.2. Example

Lets us consider the linear system described by the follow-

ing matrices :

A =









−0.3 −3 −0.5 0.1
−0.7 −5 2 4

2 −0.5 −5 −0.9
−0.7 −2 1 −0.9









, B =









1 2
5 1
4 −3
1 2









,

C =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, D =









0.5 0.5
0.2 0.2
0.1 0.1
0 0.1









, E = B

The system input u(t) is defined as follows :

u(t) =
[

u1(t) u2(t)
]T

where u1(t) is a telegraph type

signal varying between zero and one and u2(t) is defined

by u2(t) = 0.3 + 0.1 sin(πt). The fault f(t) is made up

of two components : f(t) =
[

f1(t) f2(t)
]T

with :

f1 =

{

0, t ≤ 0.6sec
sin(0.5πt), t > 0.6sec

, f2 =

{

0, t ≤ 1sec
0.4, t > 1sec

To define the state z, one choose Ā = 25 ∗ I , where I is

the identity matrix.

The µ, K and L computation gives : µ = 0.3317,

L =

[

−99.566 −31.179 −25.850 −18.090 ...

−71.636 −38.768 −4.346 −34.992 ...

... −31.055 323.373 94.166 18.293

... 86.279 44.744 −83.663 37.041

]

and

K =

























−8.925 −54.319 39.277 4.858 ...

−2.688 −7.409 14.877 2.259 ...

−2.567 −12.062 16.080 2.343 ...

−1.704 10.346 −5.056 14.141 ...

−0.751 −41.280 37.530 6.423 ...

−16.984 5.449 15.115 1.393 ...

−3.115 −7.090 33.576 3.298 ...

−9.858 1.925 −2.030 30.579 ...

... 49.140 −6.962 14.658 3.805

... 11.930 −3.436 3.833 1.019

... 11.558 −3.353 3.778 0.763

... −1.357 0.191 −1.603 −0.741

... 38.041 −7.502 10.874 5.102

... 22.549 −4.191 6.355 2.896

... 3.621 4.755 3.737 −1.686

... 7.681 6.721 −5.810 −6.283

























The simulation results are shown in the figure ??. This

method allows to estimate well the sensor faults even in

the case of time-varying faults.
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Figure 1. Sensor faults and their estimates .

3. EXTENSION TO MULTIPLE MODEL

REPRESENTATION

The objective of this part is to extend the previous pro-

posed method to nonlinear systems represented by a mul-

tiple model.

3.1. Problem formulation

Consider the following nonlinear Takagi-Sugeno system

affected by a sensor fault :

ẋ(t) =

M
∑

i=1

µi(ξ(t))(Aix(t) +Biu(t)) (29a)

y(t) = Cx(t) + Ef(t) +Dw(t) (29b)



where x(t) ∈ Rn represents the system state, y(t) ∈ Rm

is the measured output, u(t) ∈ Rr is the system input, f(t)
represents the fault and w(t) is the measurement noise.

Ai, Bi and C are known constant matrices with appro-

priate dimensions. E and D are respectively the fault

and noise distribution matrices which are assumed to be

known. The scalarM represents the number of local mod-

els. The weighting functions µi are nonlinear and depend

on the decision variable ξ(t) which must be measurable.

The weighting functions satisfy the sum convex property

expressed in the following equations :

0 ≤ µi(ξ(t)) ≤ 1,

M
∑

i=1

µi(ξ(t)) = 1 (30)

Let us consider the state z ∈ Rp given by :

ż(t) =

M
∑

i=1

µi(ξ(t))(−Āiz(t) + ĀiCx(t) + ĀiEf(t))

(31)

where −Āi, i ∈ 1, ..,M are stables matrices.

One introduce the augmented state X =
[

xT zT
]T

,

this state is given by the equation (??) :

Ẋ(t) =
M
∑

i=1

µiξ(t))(AaiX(t) +Baiu(t) + Eaif(t)) (32a)

Y (t) = CaX(t) +Daw(t) (32b)

with :

Aai =

[

Ai 0
ĀiC −Āi

]

, Bai =

[

Bi

0

]

, Eai =

[

0
ĀiE

]

(33)

The matrices Ca and Da are given by the equation (??).

The structure of the proportional integral observer is cho-

sen as follows :

˙̂
X(t) =

M
∑

i=1

µi(ξ(t))(AaiX̂(t) +Baiu(t) +

Eaif(t) +Ki(Y (t) − Ŷ (t))) (34)

f̂(t) =

M
∑

i=1

µi(ξ(t))(Li(Y (t) − Ŷ (t))) (35)

Ŷ (t) = CaX̂(t) (36)

where X̂(t) is the estimated system state, f̂(t) represents

the estimated fault, Ŷ (t) is the estimated output, Ki are

the local model proportional observer gains and Li are the

local model integral gains to be computed. It is assumed

that the fault affecting the system is bounded.

Using the expressions of x̃(t) and f̃(t) given by the equa-

tion (??), the dynamics of the state reconstruction error is

given by the computation of ˙̃x(t) which is written :

˙̃x(t) = ẋ(t) − ˙̂x(t) =

M
∑

i=1

µi(ξ(t))(Aai −KiCax̃(t) +

Eaif̃(t) +KiDaw(t)) (37)

as the fault estimation error can be written :

˙̃
f(t) = ḟ(t) − ˙̂

f(t)

= ḟ(t) −
M
∑

i=1

µi(ξ(t))(LiCax̃(t) − LiDaw(t)) (38)

Using the definitions of ϕ and ε given in (??) and omitting

to denote the dependance with regard to the time t, the

equations (??) and (??) can be written :

ϕ̇ = Amϕ+Bmε (39)

with :

Am =
M
∑

i=1

µiξÃi and Bm =
M
∑

i=1

µiξB̃i (40)

where :

Ãi =

[

Aai −KiCa Eai

−LiCa 0

]

, B̃i =

[

−KiDa 0
−LiDa I

]

(41)

The matrix I is the identity matrix with appropriate dimen-

sions. By considering the Lyapunov function V given in

(??), and following the same reasoning as for linear sys-

tems, convergence of state and fault estimation errors as

well as attenuation level are guaranteed if :

ψT Ωψ < 0 (42)

with :

ψ =

[

ϕ

ε

]

,Ω =

[

AT
mP + PAm +Qϕ PBm

BT
mP −µ2Qε

]

(43)

The inequality (??) holds if Ω < 0. The matrixAm can be

written as :

Am = Ãm − K̃mC̃a (44)

with :

Ãm =

M
∑

i=1

µi(u(t))Ãmi, K̃m =

M
∑

i=1

µi(u(t))K̃mi (45)

and

C̃a =
[

Ca 0
]

(46)

where

K̃mi =

[

Ki

Li

]

and Ãmi =

[

Aai Eai

0 0

]

(47)

In the same way, the matrix Bm can be formulated as :

Bm = −K̃mD̃a + Ĩ (48)

with :

Ĩ =

[

0 0
0 I

]

et D̃ =
[

Da 0
]

(49)



With the following changes of variables Gm = PK̃m and

m = µ2, the matrix Ω can be put in the following form :

Ω =

[

PÃm + ÃT
mP −GmC̃a − C̃T

a G
T
m +Qϕ ...

ĨTP − D̃T
aG

T
m ...

... −GmD̃a + P Ĩ

... −mQε

]

(50)

As Ω =
M
∑

i=1

µi(ξ(t))Ωi, the negativity of Ω is assured

if, for i = 1...M :

Ωi < 0 (51)

with :

Ωi =

[

PÃmi + ÃT
miP −GiC̃a − C̃T

a G
T
i +Qϕ ...

ĨTP − D̃T
aG

T
i ...

... −GiD̃a + P Ĩ

... −mQε

]

(52)

and Gi = PK̃mi. Solving LMI’s (??) leads to the deter-

mination of the matrices P and Gi and the scalar m. The

gain matrices are then deduced : K̃mi = P−1Gi.

3.2. Example

Consider the nonlinear system described by a Takagi-Sugeno

model with two local models, four states and four outputs

which structure is given by the following equations :

ẋ(t) =
2

∑

i=1

µi(u)(Aix(t) +Biu(t)) (53a)

y(t) = Cx(t) + Ef(t) +Dw(t) (53b)

The system matrices are defined as below :

A1 =









−0.3 −3 −0.5 0.1
−0.7 −5 2 4

2 −0.5 −5 −0.9
−0.7 −2 1 −0.9









, B1 =









1 2
5 1
4 −3
1 2









A2 =









−0.2 −3 −0.6 0.3
−0.6 −4 1 −0.6

3 −0.9 −7 −0.2
−0.5 −1 −2 −0.8









, B2 =









4 6
0 0
−4 2
7 6









C =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, D =









0.5 0.5
0.2 0.2
0.1 0.1
0 0.1









,
E1 = B1

E2 = B2

Considering u(t) =
[

u1(t) u2(t)
]T

, the signal u1(t)
is a telegraph type signal whose amplitude is belongs to

the interval [0, 0.5]. The signal u2(t) is defined by u2(t) =
0.3 + 0.1 sin(πt).

The two fault signals f(t) =
[

f1(t) f2(t)
]T

are de-

fined as :

f1 =

{

0, t ≤ 0.6sec
sin(0.5πt), t > 0.6sec

,f2 =

{

0, t ≤ 1sec
0.4, t > 1sec

Choosing Qϕ = Qǫ = I , the µ, K1, K2, L1 and L2 com-

putation gives : µ = 1.2247,

L1 =

[

−283.182 −121.148 74.310 −62.490 ...

−345.040 −151.396 85.418 −61.771 ...

... 153.758 410.074 −5.716 63.338

... 431.054 −96.606 −19.597 61.520

]

L2 =

[

−115.420 −105.768 35.048 −50.308 ...

−141.015 −123.698 40.092 −49.400 ...

... 75.051 190.906 −3.992 50.902

... 202.223 −41.755 −15.471 49.379

]

K1 =

























59.843 −482.376 547.587 97.355 ...

16.116 −166.067 215.763 41.211 ...

12.729 −106.775 131.025 23.323 ...

16.208 156.945 −350.338 69.215 ...

37.647 −470.569 530.406 95.417 ...

8.187 −166.308 210.176 37.676 ...

13.973 −78.243 104.622 22.092 ...

−34.769 69.786 −227.2868 58.444 ...

... 15.166 3.291 6.620 −2.133

... 3.843 0.496 2.505 −0.482

... 1.939 0.185 1.409 −0.301

... −13.356 −4.889 0.677 4.829

... 38.368 −2.347 5.611 1.561

... 0.897 31.048 2.941 1.2672

... −10.948 8.999 12.093 −1.030

... 33.251 29.593 −0.997 26.308

























K2 =

























−16.369 −33.252 66.898 41.566 ...

−11.586 −0.592 29.702 18.084 ...

−4.653 −5.738 18.480 10.259 ...

−32.873 84.740 −35.444 35.046 ...

−23.446 −32.323 67.143 39.703 ...

−13.176 −3.498 26.598 15.452 ...

−4.670 0.306 25.970 10.024 ...

−49.221 46.993 −16.385 33.501 ...

... 13.788 4.941 6.121 −5.722

... 4.862 1.629 2.405 −2.268

... 2.675 0.908 1.364 −1.309

... 3.369 1.273 2.063 −1.122

... 21.968 1.427 5.201 −2.997

... 4.031 12.337 2.670 −0.683

... −2.535 5.046 −0.200 −1.937

... 24.354 17.096 0.599 6.319

























The simulation results are shown in the figures ?? and ??.

As for the previous linear case, the proposed method pro-

vides good estimates of the system state (one present the

states error of estimation of system (??) and sensor faults.

4. CONCLUSION

This paper has presented an estimation method of sensor

faults which can be, by a mathematical transformation,

considered as unknown inputs to an augmented system.

This reconstruction is made for linear and nonlinear sys-

tem represented by a Takagi-Sugeno model. The proposed

method uses a proportionnal integral observer which is



able to estimate simultaneously the state of the system and

the unknown inputs. Small size examples have illustrated

the efficiency of the proposed approach.
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Figure 2. State reconstruction error.
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Figure 3. Faults and their estimate.

5. REFERENCES

[1] Luenberger D.G. An introduction to observers. IEEE

Transactions on Automatic Control, 16 (6):596-602,

1971.

[2] Edwards C. A comparison of sliding mode and un-

known input observers for fault reconstruction. IEEE

Conference on Decision and Control, vol. 5, pp. 5279-

5284, 2004.

[3] Thau F.E. Observing the state of non-linear dynamic

systems. International Journal of Control, vol. 17 (3),

pp. 471-479, 1973.

[4] Akhenak A., Chadli M., Ragot J., Maquin D. Design

of sliding mode unknown input observer for uncer-

tain Takagi-Sugeno model. 15th Mediterranean Con-

ference on Control and Automation, MED’07, Athens,

Greece, June 27-29, 2007.

[5] Ichalal D., Marx B., Ragot J., Maquin D. Concep-

tion de multiobservateurs à variables de décision non
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