
International Journal of Control
Vol. 79, No. 10, October 2006, 1277–1284

State consensus for multi-agent systems with switching
topologies and time-varying delays

F. XIAO* and L. WANG

Center for Systems and Control, Department of Mechanics and Space Technologies,
College of Engineering, Peking University, Beijing 100871, China

(Received 19 February 2006; in final form 22 May 2006)

In this paper, we investigate state consensus problems for discrete-time multi-agent systems

with changing communications topologies and bounded time-varying communication delays.

The analysis in this paper is based on the properties of non-negative matrices. We first extend

the model of networks of dynamic agents to the case with multiple time-delays and prove that

if the communication topology, time-delays, and weighting factors are time-invariant, then the

necessary and sufficient condition that the multi-agent system solves a consensus problem is

that the communication topology, represented by a directed graph, has spanning trees. Then

we allow for dynamically changing communication topologies and bounded time-varying

communication delays, and present some sufficient conditions for state consensus of system.

Finally, as a special case of our model, the problem of asynchronous information exchange

is also discussed.

1. Introduction

Recently, as a new area of research, consensus problems

in networks of dynamic agents have received consider-

able attention. They are the basic, yet fundamental,

problems in distributed coordination of networks of

dynamic agents and require that all agents reach

consensus on certain quantities of interest. The

common value may be attitude in multiple space-craft

alignment, heading direction in flocking behaviour,

rendezvous of multiple vehicles, or average in distrib-

uted computation.
Consensus problems of all agents’ states have been

studied by many researchers. Vicsek et al. (1995)

propose a discrete-time model of n agents all moving

in the plane with the same speed but with different

headings. Each agent’s heading is updated using a local

rule based on the average of its own heading plus the

headings of its neighbours. Jadbabaie et al. (2003)

provide a theoretical explanation of the consensus

behaviour of the Vicsek model, where each agent’s set

of neighbours changes with time as the system evolves.

The concept of solvability of consensus problems is
formally introduced by Olfati-Saber and Murray (2004).
Under the assumption that the dynamic of each agent is
a simple scalar continuous-time integrator _x ¼ u, three
consensus problems are discussed in Olfati-Saber and
Murray (2004). They are directed networks with fixed
topology, directed networks with switching topology,
and undirected networks with communication time-
delays and fixed topology. Ren and Beard (2005) extend
the results of Jadbabaie et al. (2003) and Olfati-Saber
and Murray (2004) and present more relaxable condi-
tions for consensus of information under dynamically
changing interaction topologies. Moreau (2005) studies
the non-linear discrete-time multi-agent systems with
time-dependent communication channels, and intro-
duces a novel method based on the notion of convexity.
Xiao et al. (2005a) characterize the consensus property
by the concepts of ‘‘leader’’ and ‘‘leaders–followers-
decomposition’’ of multi-agent systems. Recent devel-
opment also adds some new contents to this subject.
For example, asynchronous information consensus
(Fang and Antsaklis 2005), dynamic consensus
(Spanos et al. 2005), consensus problems over random
networks (Hatano and Mesbahi 2005), consensus filters
(Olfati-Saber and Shamma 2005), and others closely*Corresponding author. Email: fengxiao@pku.edu.cn
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related (Chu et al. 2005, Mu et al. 2005, Shi et al. 2004,
2006, Wang et al. 2004, Xiao and Wang 2006, Xiao et al.
2005b, Xie and Wang 2005). For more details, see the
survey of the latest development (Ren et al. 2005) and
references therein.
The objective of this paper is to investigate consensus

problems in the presence of changing communication
topologies and time-varying information transmission
delays and present conditions that ensure all agents’
states to reach consensus asymptotically. There are
some works closely related to our results. For example,
Olfati-Saber and Murray (2004) study directed networks
under the topologies that switch among a finite
collection of strongly connected and balanced digraphs,
and undirected networks with fixed topology that all
communication channels (including self-loops) have a
common time-delay. Jadbabaie et al. (2003) give the
conclusion that consensus can be achieved asymptoti-
cally if the union of communication graphs is connected
frequently enough as the system evolves. Ren and Beard
(2005) extend the results of Jadbabaie et al. (2003) to the
case of directed information flow, but they also suppose
that there exist no communication time-delays. By using
a continuous-time model and employing the method of
Lyapunov functions, Moreau (2004) gives a sufficient
condition that ensures a system that there is a common
time-delay in communication between distinct agents
to reach consensus asymptotically. Tanner and
Christodoulakis (2005) study a discrete-time model
with fixed undirected topology that all agents transmit
their state information in turn. Consequently, outdated
information may be used and the equivalent augmented
system becomes a periodical switched system, which can
be seen as a multi-agent system with switching topology.
In this paper, we study a discrete-time model with
switching topologies and allow communication time-
delays to be not only different but also time-varying.
The analytical tools rely on matrix theory, graph theory,
and control theory.
This paper is organized as follows. In x 2, we present

some basic definitions and results in matrix theory and
graph theory. In x 3, we formulate the problem. In x 4,
we establish our main results. Finally, in x 5, concluding
remarks are stated.

2. Preliminaries

In this section, we present some definitions and results
in matrix theory and graph theory that will be used in
this paper (Horn and Johnson 1985, Godsil and Royal
2001).
Let In ¼ f1, 2, . . . , ng, Zþ be the set of non-negative

integers, A ¼ ½aij� 2 C
n�r, and 1¼ [1, 1, . . . , 1]T with

compatible dimensions. We say that A5 0 (A is

non-negative) if all its entries aij are non-negative. We
say that A>0 (A is positive) if all its entries aij are
positive. Let B 2 C

n�r. We write A5B if A�B5 0,
and A>B if A�B>0. Given a matrix A 2 C

n�n, the
spectral radius of A is denoted by �(A). A non-negative
matrix A 2 C

n�n with the property that all its row sums
are þ1 is said to be a stochastic matrix. Throughout this
paper, we let

Qk
i¼1 Ai ¼ AkAk�1 . . .A1 denote the left

product of matrices. A stochastic matrix A is called
indecomposable and aperiodic (SIA) (or ergodic) if there
exists f 2 R

n such that limk!1 Ak ¼ 1fT.
Directed graphs will be used to model communication

topologies among agents. A directed graph G consists
of a vertex set VðGÞ ¼ fv1, v2, . . . , vng and an edge set
EðGÞ � fðvi, vjÞ : vi, vj 2 VðGÞg, where an edge is an
ordered pair of vertices in VðGÞ (we allow for self-loops,
i.e., the edges with the same vertices). If (vi, vj) is an edge
of G, vi is defined as the parent vertex and vj is defined as
the child vertex. A subgraph Gs of a directed graph G is a
directed graph such that the vertex set VðGsÞ � VðGÞ and
the edge set EðGsÞ � EðGÞ. If VðGsÞ ¼ VðGÞ, we call Gs a
spanning subgraph of G. For any vi, vj 2 VðGsÞ, if
ðvi, vjÞ 2 EðGsÞ if and only if ðvi, vjÞ 2 EðGÞ, we call Gs an
induced subgraph. In this case, we also say that Gs is
induced by VðGsÞ. The set of neighbours of vertex vi in G is
denoted by NðG, viÞ ¼ fvj : ðvj, viÞ 2 EðGÞ, j 6¼ ig. The
associated index set of neighbours is denoted by
NðG, iÞ ¼ fj : vj 2 N ðG, viÞg. A (directed) path in a
directed graph G is a sequence vi1 , . . . , vik of vertices
such that ðvis , visþ1

Þ 2 VðGÞ for s¼ 1, . . . , k� 1. A directed
graph G is strongly connected if between every pair of
distinct vertices vi, vj in G, there is a directed path that
begins at vi and ends at vj (that is, from vi to vj). A directed
tree is a directed graph, where every vertex, except one
special vertex without any parent, which is called the
root vertex, has exactly one parent, and the root vertex
can be connected to any other vertices through paths. A
spanning tree of G is a directed tree that is a spanning
subgraph of G. We say that a graph has (or contains) a
spanning tree if a subset of the edges forms a spanning
tree. A weighted directed graph GðAÞ is a directed graph G

plus a nonnegative weight matrix A ¼ ½aij� 2 C
n�n such

that ðvi, vjÞ 2 EðGÞ , aji > 0. The union of a group of
directed graphs Gi1 ,Gi2 , . . . ,Gik with a common vertex set
V is a directed graph with vertex set V and with the edge
set given by the union of the edge sets of Gij , j¼ 1, . . . , k.

The following lemma provides us a basic tool to deal
with consensus problems of discrete-time multi-agent
systems. And we denote the set of matrices that satisfy
the conditions of the following lemma by S.

Lemma 1: Let A be a stochastic matrix. If GðAÞ has a
spanning tree with the property that the root vertex of the
spanning tree has self-loop in GðAÞ, then A is SIA.

Proof: See the appendix. œ
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3. Problem formulation

In this section, we formulate the problem to be studied
and present some basic definitions.
Suppose that the system to be studied consists of n

autonomous agents, e.g., birds, robots, etc., labelled 1
through n. All these agents share a common state space
R. At each time, each agent updates its current state
based upon the information received from other agents.
We use directed graphs to model communication
topologies, and these directed graphs have a common
vertex set V ¼ fv1, v2, . . . , vng. Agent i is represented by
vertex vi. Edge ðvj, viÞ 2 EðGðtÞÞ corresponds to an
available information channel from agent j to agent i
at time t, where GðtÞ is the communication topology
at time t. And the neighbours of agent i at time t
correspond to the set of neighbours NðGðtÞ, viÞ. Let
�G ¼ fG1,G2, . . . ,Gmg denote the set of all possible
communication topologies.
Suppose that xi 2 R denotes the state of vertex vi

(agent i). Let x¼ [x1,x2, . . . , xn]
T. Then the whole system

can be represented by the discrete-time model
x(tþ 1)¼ u(t), where u(t) is a state feedback. If for any
initial state, x(t) converges to some equilibrium point x*
(dependent on the initial state) such that x�i ¼ x�j for all
i, j 2 In, as t!1, then we say that this system solves
a consensus problem (Olfati-Saber and Murray 2004)
(or has consensus property).
In this paper, we study the model presented by Ren

and Beard (2005) and take communication time-delays
into account. We suppose that each agent takes the
following dynamics, (cf. Ren and Beard (2005)),

xiðtþ 1Þ ¼
1Pn

j¼1 �ijðtÞGijðtÞ

Xn
j¼1

�ijðtÞGijðtÞxjðt� �ijðtÞÞ,

ð1Þ

where i, j 2 I n, �ij(t)>0 is a weighting factor chosen
from any finite set ��, Gii(t)� 1, Gij(t), i 6¼ j, equals one if
agent i obtains the state information of agent j at time t,
and equals zero otherwise, �ijðtÞ 2 Zþ, �ij(t)4 �max is the
transmission time-delay of information from vj to vi,
�ii(t)� 0, and xj(t� �ij(t)), j 6¼ i, is the state information
of agent j obtained by agent i at time t if Gij(t)¼ 1.
In system (1), �max 2 Zþ is the maximal communica-

tion time-delay, and we allow the weighting factor �ij(t)
to be dynamically changing to represent possible time-
varying relative confidence of each agent’s information
state or relative reliability of different information
exchange links between agents. We assume that delays
affect only the information that is actually being
transmitted from one agent to another, i.e., �ii(t)� 0
for all i 2 In. Gii(t)� 1 implies that each agent
always can get its own state value, i.e., for any

j 2 f1, 2, . . . ,mg, i 2 In, ðvi, viÞ 2 Gj. We can see that
that is a reasonable assumption.

The existence of communication channel (vj, vi) at
time ta, taþ 1, . . . , tb does not imply that Gij(t)¼ 1,
ta4 t4 tb, since communication time-delays may
destroy the continuity of information. At each time,
agent j sends its state information through communica-
tion channel (vj, vi). Because of time-varying delays,
some information may reach at agent i simultaneously,
and there also may be some times, at which no
information reach at agent i at all. If at time t, the
states of agent j received by agent i are more than one,
then agent i randomly choose one of them to use and
throw away others. However, if the topology and delays
are time-invariant, then information obtained by agent i
will be continuous after the first �max time steps.

Due to unreliable transmission or limited commu-
nication/sensing range, the communication topology
may be dynamically changing. If communication chan-
nel (vj, vi) fails at time t, then the data being transmitted
on the way are all lost. If (vj, vi) creates at time t, then
agent j starts to transmit its current state information
to agent i through communication channel (vj, vi).

4. Main results

In this section, we present our main results.
In order to facilitate our analysis, we introduce some

notations. For any n� n non-negative matrix A¼ [aij],
let �(A)¼ {B: bij equals aij or 0}, and let�(A) denote the
set of matrix

diagðAÞ þA0 A1 � � � A�max�1 A�max

I 0 � � � 0 0

0 I � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � I 0

2
6666664

3
7777775

ð�maxþ1Þn�ð�maxþ1Þn,

where diag(A) is a diagonal matrix with the same
diagonal entries as A, A0, . . . ,A�max

2 �ðAÞ such that
diagðAÞ þ A0 þ A1 þ � � � þ A�max

¼ A, and I is the iden-
tity matrix with compatible dimensions.

Let DðtÞ ¼ ½dijðtÞ� 2 R
n�n, where dijðtÞ ¼ �ijðtÞGijðtÞ=Pn

j¼1 �ijðtÞGijðtÞ. Obviously, D(t) is stochastic and
system (1) becomes

xiðtþ 1Þ ¼
Xn
j¼1

dijðtÞxjðt� �ijðtÞÞ: ð2Þ

Remark 1: By the assumptions in previous section,
EðGðDðtÞÞÞ � EðGðtÞÞ, t 2 Zþ. But that EðGðDðtÞÞÞ ¼
EðGðtÞÞ does not hold generally because of the existence
of time-varying delays.
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4.1 The case with fixed topology and
time-invariant delays

As a first step toward the general case, we first assume
that the communication topology GðtÞ 2 �G is fixed,
which is denoted by G, the communication delays are
time-invariant and weighting factors �ij(t) are constant.
As a result, D(t), t5 �max, is also time-invariant,
denoted by D. Furthermore, GðDÞ ¼ G when we ignore
the weight of each edge.
Let y(t) denote [x(t)T, x(t� 1)T, . . . , x(t� �max)

T]T.
Then there exists a matrix � 2 �ðDÞ such that for any
t5 �max, system (1) can be equivalently represented by

yðtþ 1Þ ¼ �yðtÞ: ð3Þ

In order to introduce the main result of this
subsection, we need the following lemma.

Lemma 2: Let A0,A1, . . . ,A�max
be n� n non-negative

matrices and let

M1 ¼

A0 A1 � � � A�max�1 A�max

I

I 0
. .
.

0 I

2
6666664

3
7777775
,

M2 ¼

A0 � � � A�max�2 A�max�1 A�max

I

I 0
. .
.

0 I

2
6666664

3
7777775
,

. . .M�max
¼

A0 A1 A2 � � � A�max

I

I 0
..
.

I

2
6666664

3
7777775
: ð4Þ

If GðA0 þ A1 þ � � � þ A�max
Þ has spanning trees, then

GðM1Þ,GðM2Þ, . . . ,GðM�max
Þ also have spanning trees.

Furthermore, if A0 þ A1 þ � � � þ A�max
is stochastic and

there exists �>0 such that A05�I, then for any
i 2 f1, 2, . . . , �maxg, Mi is SIA.

Proof: Let the vertices in GðA0 þ A1 þ � � � þ A�max
Þ

be v1, v2, . . . , vn, and let the vertices in GðMiÞ

be u1, u2, . . . , uð�maxþ1Þn. It is easy to see that for any
j 2 I n, there exist paths from uj to ujþn, ujþ2n, . . . , ujþ�maxn.
The reason is that ðuj, ujþnÞ, ðujþn, ujþ2nÞ, . . . , ðujþð�max�1Þn,

ujþ�maxnÞ 2 GðM1Þ, ðuj, ujþnÞ, ðuj, ujþ2nÞ, ðujþn, ujþ3nÞ, . . . ,
ðujþð�max�2Þn, ujþ�maxnÞ 2 GðM2Þ, . . . , ðuj, ujþnÞ, ðuj, ujþ2nÞ

, . . . , ðuj, ujþ�maxnÞ 2 GðM�max
Þ. If there exists an edge (vj,

vk) in GðA0 þ A1 þ � � � þ A�max
Þ, then there exists

04 l4 �max such that ðujþln, ukÞ 2 EðGðMiÞÞ. Therefore,

if GðA0 þ A1 þ � � � þ A�max
Þ has a spanning tree and vj is

the root vertex, then GðMiÞ also has a spanning tree and
uj is the root.

If A0 þ A1 þ � � � þ A�max
is stochastic, Mi is also

stochastic. If A05�I, then Mi satisfies the conditions
of Lemma 1, i.e., Mi 2 S. Therefore Mi is SIA. œ

Theorem 1: With a time-invariant communication topol-
ogy, time-invariant communication delays, and constant
weighting factors, system (1) solves a consensus problem if
and only if the communication topology has spanning trees.

Proof: We consider system (3).

Necessity. If the communication topology has not any
spanning tree, then there will be several subsystems,
among which there is no information transmission, and
thus system (1) will not solve any consensus problem.

Sufficiency. Obvious D is a stochastic matrix with
positive diagonal entries. The fact that graph G has
spanning trees implies that directed graph GðDÞ also has
spanning trees. By Lemma 2, � is SIA, and there exists
f 2 R

ð�maxþ1Þn, f5 0, such that limk!1 �k ¼ 1fT, which
implies that system (3) solves a consensus problem. And
hence system (1) under the assumptions of this theorem
solves a consensus problem. œ

4.2 The general case

In this subsection, we investigate the general case, i.e.,
the case with time-varying communication topologies,
time-varying delays, and time-varying weighting factors.

With the same arguments as previous subsection, there
exists matrix �ðtÞ 2 �ðDðtÞÞ such that for any t5 �max,

yðtþ 1Þ ¼ �ðtÞyðtÞ: ð5Þ

We will study the consensus property of system (1) by
investigating augmented system (5). System (5) is a
switching system without time-delays. It looks similar to
system (1) without time-delays. However, we cannot use
the method provided by Jadbabaie et al. (2003) directly,
since the diagonal entries of �(t) are not all non-zero
(see Jadbabaie et al. (2003, Lemma 2)). We first present
some lemmas.

Lemma 3: For any t 2 Zþ, D(t) is a stochastic matrix
with positive diagonal entries. Let ~D ¼ fDðtÞ : t 2 Zþg.
Then ~D is a finite set.

Proof: It is obvious from the fact that �� and �G are
finite sets. œ

Lemma 4: For any t 2 Zþ, �(t) is a stochastic matrix.
Let �� ¼ f�ðtÞ : t 2 Zþg. Then �� is a finite set.

Proof: The first property follows from the fact that
D(t) is stochastic and the second is a consequence of
the fact that �D is finite. œ
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Lemma 5 (Wolfowitz 1963): Let P1,P2, . . . ,Pk be a
finite set of SIA matrices with the property that for each
sequence Pi1 ,Pi2 , . . . ,Pij of positive length, the matrix
product Pij ,Pij�1

, . . . ,Pi1 is SIA. Then, for each infinite
sequence Pi1 ,Pi2 , . . . , there exists a column vector f such
that

Y1
j¼1

Pij ¼ 1f T:

Lemma 6: Let ta, tb 2 Zþ such that ta< tb, and
the communication topology be Gl 2 �G in the time
interval between ta and tb. If tb5 taþ �max, then
Gð
Ptb

t¼ta
DðtÞÞ is equivalent to Gl when we ignore the

weight of each edge.

Proof: Since the maximal communication time-delay
is �max, for any i 2 I n, j 2 N ðGl, iÞ, agent i can obtain the
state information xj(ta) at some time t0, ta4 t0 4 tb. That
implies that dij(t

0)>0. Therefore the lemma holds. œ

Lemma 7: Let {z1, z2, . . . , zq} be any finite subset of Zþ.
If Gð

Pq
k¼1 DðzkÞÞ has spanning trees, then

Qq
k¼1 �ðzkÞ

is SIA.

Proof: Let

�ðtÞ ¼

diagðDðtÞÞ þ A0ðtÞ A1ðtÞ � � � A�max�1ðtÞ A�max
ðtÞ

I

I 0
. .
.

0 I

2
6666664

3
7777775
:

Since �D is finite, there exists 0<�4 1 such that
diag(D(t))5�I for any t 2 Zþ, and we have that

By induction, we can prove that
Qq

k¼1 �ðzkÞ5�qF,
where F satisfies the following properties:

(i) if q4 �max� 1, then F has the form of Mq, which
is defined in Lemma 2;

(ii) if, q5 �max, then F has the form of M�max
;

(iii) let the first n rows of F be ½E0,E1, . . . ,E�max
� and

then E0 þ E1 þ � � � þ E�max
¼ Iþ

Pq
k¼1

P�max

i¼0 AiðzkÞ
and E05 I.

Therefore, if Gð
Pq

k¼1 DðzkÞÞ has spanning trees, then
GðE0 þ � � � þ E�max

Þ also has spanning trees. From the
proof of Lemma 2.

Qq
k¼1 �ðzkÞ 2 S and by Lemma 1Qq

k¼1 �ðzkÞ is SIA. œ

The following theorem is one of our main results.

Theorem 2: If there exists an infinite sequence of time t0,
t1, t2, . . . , where t0¼ 0, 0< tkþ1� tk4T, k,T 2 Zþ, with
the property that for any k 2 Zþ the union of graphs
GðDðtkÞÞ,GðDðtk þ 1ÞÞ, . . . ,GðDðtkþ1 � 1ÞÞ has spanning
trees, then system (1) solves a consensus problem.

Proof: We consider the equivalent system (5).
Let �(t, t)¼ I, t5 0, and let �ðtb, taÞ ¼

Qtb�1
t¼ta

�ðtÞ,
where ta, tb 2 Zþ and ta< tb. Since the union of graph
GðDðtkÞÞ, . . . ,GðDðtkþ1 � 1ÞÞ is equivalent to Gð

Ptkþ1�1
t¼tk

DðtÞÞ. For any k 2 Zþ, by Lemma 7, �(tkþ1, tk) is SIA.
Moreover, the set of possible�(tkþ1, tk), k 2 Zþ, must be
finite because each �(tkþ1, tk) is a product of at most T
matrices from ��which is a finite set. By Lemma 7, the set
of possible�(tkþ1, tk), k 2 Zþ, also satisfies the condition
of Lemma 5. Therefore,

lim
k!1

�ðtk, 0Þ ¼ 1fT, ð6Þ

where f 2 R
ð�maxþ1Þn and f5 0.

�ðz2Þ�ðz1Þ5�2

IþA0ðz2Þ A1ðz2Þ � � � A�max�1ðz2Þ A�max
ðz2Þ

I

I 0
. .
.

0 I

2
6666664

3
7777775

�

IþA0ðz1Þ A1ðz1Þ � � � A�max�1ðz1Þ A�max
ðz1Þ

I

I 0
. .
.

0 I

2
6666664

3
7777775

5u2

IþA0ðz2Þ þA0ðz1Þ þA1ðz2Þ � � � A�
max�2

ðz1Þ þA�
max�1

ðz2Þ A�
max�1

ðz1Þ þA�max
ðz2Þ A�max

ðz1Þ

I

I 0
. .
.

0 I

2
6666664

3
7777775
:
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For each t5 0, let kt be the largest non-negative
integer such that tkt 4 t. Then, �ðt, 0Þ ¼ �ðt, tkt Þ�ðtkt , 0Þ
and �ðt, tkt Þ1 ¼ 1. So

�ðt, 0Þ � 1fT ¼ �ðt, tkt Þð�ðtki , 0Þ � 1fTÞ:

Since the set of all possible �ðt, tkt Þ is finite, by (6),

lim
t!1

�ðt, 0Þ ¼ 1fT: &

The above theorem gives us a sufficient condition that
system (1) solves a consensus problem, but there is a
slight difference when it is compared with the conditions
provided by Ren and Beard (2005, Theorem 3.10) which
is for the case without communication time-delays and is
not valid for our model, see Example 1. For any time
interval ta, taþ 1, . . . , tb, because of the existence
of communication time-delays, that the union of
GðtaÞ,Gðta þ 1Þ, . . . ,GðtbÞ has spanning trees can
not guarantee that the union of GðDðtaÞÞ,
GðDðta þ 1ÞÞ, . . . ,GðDðtbÞÞ has spanning trees.

Example 1: Let n¼ 2, and let �G ¼ fGðA1Þ,GðA2Þg, where

A1 ¼
1 1

0 1

� �
and A2 ¼

1 0

1 1

� �
:

If communication time-delays between agent 1 and
agent 2 under topologies GðA1Þ and GðA2Þ are all larger
than 1, and GðA1Þ and GðA2Þ switch in turn at each time
step, then the information of agent 1 can not reach at
agent 2, and vice versa. Therefore, if the initial values of
agent 1 and agent 2 are not equal, then they can not
reach consensus asymptotically although this system
meets the conditions of Ren and Beard (2005,
Theorem 3.10).
The following theorem gives us a sufficient condition

from the point of communication topologies’ properties
that ensure the consensus property of system (1). We
first make the following assumption:

(A) For any Gi 2 �G, if it takes effect at some time, then
it must last for at least �maxþ 1 time steps, that is, if
GðtÞ ¼ Gi and Gðt� 1Þ 6¼ Gi, then GðtÞ ¼ Gðtþ 1Þ ¼ � � � ¼

Gðtþ �maxÞ ¼ Gi.

Theorem 3: If system (1) satisfies assumption (A) and
there exists an infinite sequence of time t0, t1, t2, . . . , where
t0 ¼ 0, 0 < tkþ1 � tk 4T, k,T 2 Zþ, with the property
that the union of graphs GðtkÞ,Gðtk þ 1Þ, . . . ,
Gðtkþ1 � 1Þ, k 2 Zþ, has spanning trees, then system (1)
solves a consensus problem.

Proof: We reconstruct a time sequence that satisfies
the conditions in Theorem 2 by recursion.

Let k0¼ l0¼ 0 and let k1 be the smallest nonnegative
integer such that tk1 � tl0þ1 5 �max.

If ki has already been defined, we let li be the smallest
non-negative integer such that tli � tki 5 �max and let
kiþ1 be the smallest non-negative integer such that
tkiþ1

� tliþ1 5 �max.
Obviously ftkig is a subsequence of {tk}, and for any

i>0, ki< li< kiþ1. Since for any i, the union of graphs
GðtliÞ,Gðtli þ 1Þ, . . . ,Gðtliþ1 � 1Þ has spanning trees, by
assumption (A) and Lemma 6, we have that the union of
graphs GðDðtkiÞÞ,GðDðtki þ 1ÞÞ, . . . ,GðDðtkiþ1

� 1ÞÞ has
spanning trees. Moreover, for any i 2 Zþ,
tli � tki 4 �max þ T� 1 and tkiþ1

� tliþ1 4 �max þ T� 1.
Therefore we have that for any i 2 Zþ, tkiþ1

� tki 4
2�max þ 3T� 2. By Theorem 2, system (1) solves a
consensus problem. œ

Corollary 1: With a time-invariant communication
topology, bounded time-varying communication delays,
and time-varying weighting factors, system (1) solves a
consensus problem if and only if the communication
topology has spanning trees.

Proof: The necessary part is obvious and we only
prove the sufficiency.

Suppose that the communication topology has span-
ning trees, and let t0¼ 0, t1¼ 1þ �max, t2¼
2(1þ �max), . . . . Obviously this system satisfies assump-
tion (A), and by Theorem 3, system (1) solves a
consensus problem. œ

As a special case of Theorem 2, although the
conditions required in Theorem 3 are relatively
stringent, it gives us a direct way to judge the
consensus property of system (1) from the properties
of communication topologies. Furthermore, we can
relax its requirements in several ways. For example, for
any Gi 2 �G, i 2 f1, 2, . . . ,mg, instead of assumption (A),
we can assume that the maximal communication time-
delay is �i and if Gi takes effect, it lasts for at least
�iþ 1 time steps.

4.3 Applications in asynchronous consensus problems

In this subsection, we will show that our analysis
approach can find its broad applications in asynchro-
nous consensus problems. We only consider the model
under asynchronous update scheme with fixed topology,
and our results can be easily applied to the case with
time-varying topologies. The following model is taken
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from Fang and Antsaklis (2005),

xiðtþ 1Þ ¼

Pn
j¼1 bijxjðt� �ijðtÞÞ if t 2 SðtÞ

xiðtÞ otherwise,

�
ð7Þ

where bij5 0, �ijðtÞ 2 Zþ, i, j 2 I n, S(t) are non-empty
subsets of In and called updating sets, and B¼ [bij] is

stochastic.
We assume that system (7) satisfies the following

assumptions

(B1) There exists a nonnegative integer �max such that

04 �ij(t)4 �max for any i, j 2 I n, t 2 Zþ;
(B2) The updating sets S(t) satisfy

9b5 0,
[iþb

t¼i

SðtÞ ¼ I n, for any i 2 Zþ;

(B3) For any i 2 In, bii>0 and �ii(t)� 0.

Then we have

Theorem 4 (c.f. Fang and Antsaklis (2005,

Theorem 2)): If system (7) satisfies assumptions
B1–B3, then system (7) solves a consensus problem if

and only if GðBÞ has spanning trees.

Proof: System (7) can be seen as a special case of

system (2) and this result follows from Theorem 2. œ

5. Conclusion

We have considered problems of state consensus under

dynamically changing communication topologies and
time-varying communication delays. For the case with

fixed topology, we proved that the necessary and

sufficient condition that the states of agents reach

consensus asymptotically is that the communication
topology has spanning trees. We also proposed two

sufficient conditions for state consensus under dynami-

cally changing communication topologies and time-
varying communication delays. Finally, we showed the

applications of our results in asynchronous consensus

problems.
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Appendix A

Definition A1: A non-negative matrix A 2 C
n�n is said

to be primitive if it is irreducible and has only one
eigenvalue of maximum modulus.

Lemma A1 (Horn and Johnson 1985, p. 511, Corollary
8.4.8; p. 522, Problem 5): Let A 2 C

n�n be non-negative
and irreducible. If at least one main diagonal entry is
positive, then A is primitive.

Lemma A2 (Horn and Johnson, 1985, p. 497, Lemma
8.2.7): Let A 2 C

n�n be given, let l 2 C be given, and
suppose x and y are vectors such that

(i) Ax¼ lx;
(ii) ATy¼ ly;
(iii) xTy¼ 1;
(iv) l is an eigenvalue of A with geometric multiplicity 1;
(v) lj j ¼ �ðAÞ > 0; and
(vi) l is the only eigenvalue of A with modulus �(A).

Define L¼ xyT. Then (l�1A)k¼Lþ(l�1A�L)k!L as
k!1.

Lemma A3 (Ren and Beard 2005, Lemma 3.4): Let A
be a stochastic matrix. GðAÞ has a spanning tree if and
only if the eigenvalue 1 of A has algebraic multiplicity
equal to one.

Lemma A4 (Horn and Johnson 1985, p. 503, Theorem
8.3.1): If A 2 C

n�n and A5 0, then �(A) is an
eigenvalue of A and there is a non-negative vector f5 0,
f 6¼ 0, such that Af¼ �(A)f.

Proof of Lemma 1: We assume that there exists a
spanning tree with vertex vl1 as its root and
ðvl1 , vl1 Þ 2 EðGðAÞÞ. Suppose that subgraph Gs induced by
vl1 , vl2 , . . . , vlsð14 s4 nÞ is the maximal induced
subgraph that is strongly connected. Let the vertices in
VðGðAÞÞ � fvl1 , vl2 , . . . , vlsg be vlsþ1

, . . . , vln . Then there
exists a permutation matrix P such that

l1

l2

..

.

ln

2
66664

3
77775 ¼ P

1

2

..

.

n

2
66664

3
77775:

Therefore,

PAP�1 ¼
A11 A12

A21 A22

� �
,
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where

A11 ¼

al1, l1 � � � al1, ls

..

. . .
. ..

.

als, l1 � � � als, ls

2
664

3
775,

A12 ¼

al1, lsþ1
� � � al1, ln

..

. . .
. ..

.

als, lsþ1
� � � als, ln

2
664

3
775,

A21 ¼

alsþ1, l1 � � � alsþ1, ls

..

. . .
. ..

.

aln, l1 � � � aln, ls

2
664

3
775 and

A22 ¼

alsþ1, lsþ1
� � � alsþ1, ln

..

. . .
. ..

.

aln, lsþ1
� � � aln, ln

2
664

3
775:

By the assumption that Gs is maximal, A12¼ 0. By
Lemma A1, A11 is primitive. Since 1 is an eigenvalue of
A11, by Lemma A3, 1 is not an eigenvalue of A22. By
Lemma A4 and Geršgorin disk theorem, �(A22)<1.
Therefore, 1 is the only eigenvalue of maximum modulus.
Let fTA¼ f T such that f T1¼ 1. By Lemma A3 and A2,
limk!1 Ak ¼ 1fT.
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