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Abstract Stability of a two degrees of freedom model

of the turning process is considered. An accurate mod-

eling of the surface regeneration shows that the regener-

ative delay, determined by the combination of the work-

piece rotation and the tool vibrations, is in fact state-

dependent. For that reason, the mathematical model

considered in this paper is a delay-differential equa-

tion with state-dependent time delay. In order to study

linearized stability of stationary cutting processes, an

associated linear system, corresponding to the state-

dependent delay equation, is derived. Stability analysis

of this linear system is performed analytically.

A comparison between the state-dependent delay

model and the previously used constant or time-

periodic delay models shows that the incorporation of

the state-dependent delay into the model slightly affects

the linear stability properties of the system in certain

parameter domains.
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1. Introduction

Systems governed by delay-differential equations

(DDEs) often appear in different fields of science and

engineering. One of the most relevant mechanical ap-

plications is the cutting process dynamics. An im-

portant phenomenon that limits the productivity of

machining is the development of self-excited vibra-

tions, also known as machine tool chatter. The work

of Tlusty [1] and Tobias [2] led to the development

of the regenerative machine tool chatter theory. The

basis of regenerative cutting model is that either the

tool, or the workpiece or both are flexible and the chip

thickness varies due the relative vibrations of the tool

and the workpiece. The tool cuts the surface that was

formed in the precious cut, and the chip thickness is

determined by the current and a previous position of

the tool/workpiece. In standard models appearing in

the literature, the time delay between two succeed-

ing cuts is considered to be constant, which is equal

to the period of the workpiece rotation in turning,

or to the tooth passing period in milling. The corre-

sponding mathematical model of the turning process

in that case is an autonomous DDE. Models describ-

ing milling are DDEs with time-periodic coefficients.

DDEs have infinite dimensional state spaces, therefore

closed form stability criteria are not available. Stabil-

ity analysis of these systems is often performed by

numerical simulations (see, e.g., [3, 4]), and different

“semi-analytical” approximation techniques (see, e.g.,

[5–13]).
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Models with constant time delay capture the main

character of regenerative dynamics, and can be used to

describe linear stability properties in good agreement

with experiments. However, some phenomena can only

be explained using more sophisticated models that in-

corporate varying time delay. Long and Balachandran

[14, 15] pointed out that, in an accurate model of

the milling process, the regenerative delay is time-

dependent due to the feed rate and the consequent tro-

choidal path of the teeth. The resulting model is a DDE

with periodic coefficients and with time-periodic de-

lay. They showed that for large feed rates, the tradi-

tional constant delay models overestimate stability lim-

its. Faassen et al. [16] used time-periodic delay with an

updated model of the undeformed chip thickness and

showed that stability boundaries obtained by their new

model differ from the ones of traditional models espe-

cially for small radial depths of cut.

Time periodic delays also arise in the model of turn-

ing with varying spindle speed (see, e.g., [17–19]). The

aim of the varying spindle speed technique is to sup-

press regenerative chatter. The corresponding model

equation is a DDE with time-periodic delay. Stability

analysis of systems with periodic delay is more com-

plicated than that of systems with constant time delay,

still there are numerical algorithms that can be used

to perform these calculations. An efficient technique

is the semi-discretization method (see [20, 21]), as it

was shown in [19] for turning with varying spindle

speed.

If the regeneration process is modeled accurately,

then the vibrations of the tool should also be included

in the regeneration model. In turning processes, the

time delay is basically determined by the rotation of

the workpiece but it is also affected by the current and

the delayed position of the tool. This results in a DDE

with state-dependent delay (SD-DDE), where the de-

lay depends on the present state and also on a delayed

state. The analysis of SD-DDEs is a recently develop-

ing research area in mathematics (see, e.g., [22–26]).

In engineering practice, DDEs with state-

dependent delay are rarely used since the appropriate

mathematical tools, like linearization techniques, have

just been developed recently (see [24, 26]), and these

new results have not been adopted in engineering

problems yet. Still, the effect of state-dependent

delay becomes important in rotary cutting processes

(e.g., in milling, or drilling) where the torsional

vibrations of the tool are significant in the system’s

dynamics. Richard et al. [27] and Germay et al. [28]

investigated drilling with drag bits and showed that

state-dependent regenerative delay arises due to the

torsional vibration of the tool. They investigated

self-excited vibrations and periodic orbits of the

tool numerically. Insperger et al. [29] showed that

state-dependent delay arise in the governing equation

of the milling process even when only the bending

oscillation of the tool is considered and its torsional

compliance is neglected. The state-dependency of

the regenerative delay due to the bending com-

pliance of the milling tool was also derived by

Long et al. [15].

SD-DDEs are always nonlinear, since the state it-

self arises in its own argument trough the delay. The

linearized system, however, is a DDE with constant (or

time-dependent) delay. Linearization of SD-DDEs is

complicated by the fact that the solution of the system

is not differentiable with respect to the state-dependent

delay (see, e.g., [30] and the references therein). Con-

sequently, “true” linearization is not possible, rather

we are looking for a linear DDE, which is associated

to the original system in the sense that they have the

same local stability properties. For example, consider

the autonomous scalar SD-DDE

ẋ(t) = x(t − (τ0 + x(t))). (1)

This is a nonlinear equation due to the state-dependent

time delay τ (x(t)) = τ0 + x(t). The DDE

ẏ(t) = y(t − τ0) (2)

with constant time delay is a linear system that can be

considered as a linear variational system correspond-

ing to Equation (1) around the equilibrium x = 0. In

our terminology, linearization means that the trivial

solutions y(t) ≡ 0 of Equation (2) and x(t) ≡ 0 of

Equation (1) are asymptotically stable at the same time.

Linearization techniques for general autonomous SD-

DDEs were given by Hartung and Turi [24] and for

time-periodic SD-DDEs by Hartung [26].

In this paper, a 2 DOF model of turning process

is considered. In Section 2, it is shown that an accu-

rate modelling of the regenerative effect results in a

state-dependent delay, and the governing equation is

an SD-DDE. The linearized equation corresponding to

the steady state motion of the tool is determined in

Section 3 using the technique of Hartung and Turi [24].
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It is shown that the associated linearized equation dif-

fers from the DDE with constant delay used in the stan-

dard turning models. In Section 4, the stability analysis

of the system is performed analytically, and it is shown

that the incorporation of the state-dependent delay into

the model slightly affects linear stability properties of

the system.

2. Mechanical model with state-dependent
regenerative delay

Figure 1 shows the turning process in question. The tool

is assumed to be compliant that experiences bending os-

cillations in directions x and y, while the workpiece is

assumed to be rigid. Therefore, the system can be mod-

eled as a 2 DOF oscillator that is excited by the cutting

force, as it is shown in Fig. 2. The tool is modeled as

a beam, and the associated modal parameters are: the

mass m, the damping cx and cy and the stiffness kx and

ky . The governing equations read

mẍ(t) + cx ẋ(t) + kx x(t) = Fx , (3)

mÿ(t) + cy ẏ(t) + ky y(t) = −Fy . (4)

The x and y components of the cutting force can be

written as

Fx = Kxwhq , (5)

Fy = Kywhq , (6)

Fig. 1 Turning model

where Kx and Ky are the cutting coefficients in the x
and y directions, w is the depth of cut, h is the chip

thickness and q is an exponent (q = 0.75 is a typical

empirical value for this parameter). In this model, it is

assumed that the tool never leaves the workpiece, that

is, h > 0 during the cutting process.

The chip thickness h is determined by the feed mo-

tion, by the current tool position and by an earlier posi-

tion of the tool. The time delay τ between the present

and the previous cut is determined by the equation

R�τ = 2Rπ + x(t) − x(t − τ ), (7)

where � is the spindle speed given in [rad/s] and R is

the radius of the workpiece. This is an implicit equation

for the time delay. It can be seen that the delay actu-

ally depends on the current state x(t) and on a delayed

state x(t − τ ), that is, the time delay is state-dependent:

τ (xt ), where xt (s) = x(t + s), s ∈ [−r, 0], r ∈ R+ de-

scribes the past of the state.

The chip thickness can be given as the combination

of the feed, the present tool position and the delayed

position of the tool:

h = vτ (xt ) + y(t) − y(t − τ (xt )), (8)

where v is the speed of the feed.

Thus, the governing equation can be written as

mẍ(t) + cx ẋ(t) + kx x(t)

= Kxw(vτ (xt ) + y(t) − y(t − τ (xt )))
q , (9)

mÿ(t) + cy ẏ(t) + ky y(t)

= −Kyw(vτ (xt ) + y(t) − y(t − τ (xt )))
q . (10)

This is a system of SD-DDEs, where the state-

dependent delay τ (xt ) is given by the implicit Equation

(7).

Equations (9) and (10) can be written in the compact

form

ż(t) = f(z(t), z(t − τ (zt )), τ (zt )), (11)
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Fig. 2 Model of regeneration in turning process

where

z =

⎛⎜⎜⎜⎜⎝
x

y

ẋ

ẏ

⎞⎟⎟⎟⎟⎠ ,

f =

⎛⎜⎜⎜⎜⎝
ẋ

ẏ

− cx
m ẋ − kx

m x + Kx w

m (vτ (xt ) + y(t) − y(t − τ (xt )))
q

− cy

m ẏ − ky

m y − Kyw

m (vτ (xt ) + y(t) − y(t − τ (xt )))
q

⎞⎟⎟⎟⎟⎠ (12)

and zt (s) = z(t + s), s ∈ [−r, 0], r ∈ R+. Note that f
also depends explicitly on the delay τ (zt ) = τ (xt ).

3. Construction of the associated linear system

For nonlinear systems, a standard way for stability anal-

ysis consists of two steps: linearization of the nonlinear

system and investigation of the characteristic exponents

or characteristic multipliers of the linearized system.

In Hartung and Turi [24] (see Theorem 3.3 on page

423), under very non-restrictive conditions on the SD-

DDE, it was shown that the asymptotic stability of the

trivial solution of the associated linearized equation

implies the asymptotic stability of a constant steady-

state solution of the original equation. In particular, the

linearized system associated to the constant solution

z(t) ≡ z̄ of SD-DDE (11) is given as

u̇ = D1f(z̄, z̄, τ (z̄t ))u(t) + D2f(z̄, z̄, τ (z̄t ))u(t − τ (z̄))

+ D3f(z̄, z̄, τ (z̄t ))Dτ (z̄t )ut , (13)

where D1f, D2f, D3f denotes the derivatives with respect

to the 1st, 2nd and 3rd argument of f, respectively, and

Dτ denotes the Frechét derivative (the infinite dimen-

sional gradient) of the time delay τ with respect to zt .

The vector u reads

u = (ξ η ξ̇ η̇)T, (14)

where ξ and η denote the perturbations around the con-

stant solution x(t) ≡ x̄ and y(t) ≡ ȳ.

First, the constant solution

z̄ = (x̄ ȳ 0 0)T (15)

of the SD-DDE (11) is determined. This solution cor-

responds to the stationary cutting process with a con-

stant deflection of the tool. Substitution of x(t) ≡ x̄
into Equation (7) gives the constant delay

τ (x̄t ) = τ̄ = 2π

Ω
+ x̄ − x̄

RΩ
= 2π

Ω
. (16)
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This constant time delay is used by the standard models

of turning processes where the delay is assumed to be

determined only by the workpiece rotation.

The substitution of x(t) ≡ x̄ and y(t) ≡ ȳ into Equa-

tions (9) and (10) (or the substitution of z(t) ≡ z̄ into

Equation (11)) gives the solution

x̄ = Kxw(vτ̄ )q

kx
, (17)

ȳ = − Kyw(vτ̄ )q

ky
. (18)

This constant steady-state solution is equal to the de-

flection of the tool for a stationary case, when the tool

does not vibrate during the cutting process, but it has a

constant deflection.

Now, the terms in Equation (13) are given as

D1f(z̄, z̄, τ (z̄t ))

=

⎛⎜⎜⎜⎜⎝
0 0 1 0

0 0 0 1

− kx
m

Kx w

m q(vτ̄ )q−1 − cx
m 0

0 − ky

m − Kyw

m q(vτ̄ )q−1 0 − cy

m

⎞⎟⎟⎟⎟⎠,

(19)

D2f(z̄, z̄, τ (z̄t )) =

⎛⎜⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 − Kx w

m q(vτ̄ )q−1 0 0

0
Kyw

m q(vτ̄ )q−1 0 0

⎞⎟⎟⎟⎟⎠
(20)

and

D3f(z̄, z̄, τ (z̄t )) =

⎛⎜⎜⎜⎜⎝
0

0
Kx w

m q(vτ̄ )q−1v

Kyw

m q(vτ̄ )q−1v

⎞⎟⎟⎟⎟⎠ . (21)

The term Dτ (z̄t )ut is determined in the following

way:

Dτ (z̄t )ut =

⎛⎜⎜⎜⎝
Dxt τ (z̄t )

Dyt τ (z̄t )

Dẋt τ (z̄t )

Dẏt τ (z̄t )

⎞⎟⎟⎟⎠
T ⎛⎜⎜⎜⎝

ξt

ηt

ξ̇t

η̇t

⎞⎟⎟⎟⎠
= Dxt τ (z̄t )ξt + Dyt τ (z̄t )ηt + Dẋt τ (z̄t )ξ̇t

+Dẏt τ (z̄t )η̇t , (22)

where Dxt τ , Dyt τ , Dẋt τ and Dẏt τ denote the Frechét

derivatives of τ with respect to the 1st, 2nd, 3rd and 4th

elements of vector zt . As it can be seen in Equation (7),

the time delay depends only on the first element xt of

vector zt , consequently, Dyt τ = 0, Dẋt τ = 0, Dẏt τ = 0

and

Dτ (z̄t )ut = Dxt τ (z̄t )ξt . (23)

Take the Frechét derivative of both sides of Equation

(7) with respect to xt :

R� Dτ (x̄t )ξt = ξ (t) − ξ (t − τ (x̄t )). (24)

From here, using the notation τ̄ = τ (x̄t ), we get

Dτ (x̄t )ξt = ξ (t) − ξ (t − τ̄ )

R�
. (25)

Substitution of Equations (19), (20), (21), (23) and

(25) into Equation (13) gives the linearized equation

d

dt

⎛⎜⎜⎜⎝
ξ

η

ξ̇

η̇

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
ξ̇

η̇

− kx
m ξ − cx

m ξ̇ + Kx w

m q(vτ̄ )q−1
(
�η + v

R�
�ξ

)
− kx

m η − cx
m η̇ − Kx w

m q(vτ̄ )q−1
(
�η + v

R�
�ξ

)

⎞⎟⎟⎟⎟⎠ ,

(26)

where �η = η(t) − η(t − τ̄ ) and �ξ = ξ (t) − ξ (t −
τ̄ ).
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Transformation of Equation (26) results in the linear

system of DDEs

mξ̈ (t) + cx ξ̇ (t) + kxξ (t)

= Kxwq(vτ̄ )q−1((η(t) − η(t − τ̄ ))

+ v

R�
(ξ (t) − ξ (t − τ̄ ))), (27)

mη̈(t) + cy η̇(t) + kyη(t)

= −Kywq(vτ̄ )q−1((η(t) − η(t − τ̄ ))

+ v

R�
(ξ (t) − ξ (t − τ̄ ))), (28)

with constant time delay τ̄ = 2π/�.

It can easily be seen that if the state-dependency

of the delay is not modeled, i.e., τ ≡ τ̄ is used in the

model, then the linearized equations of motion read

mξ̈ (t) + cx ξ̇ (t) + kxξ (t)

= Kxwq(vτ̄ )q−1(η(t) − η(t − τ̄ )), (29)

mη̈(t) + cy η̇(t) + kyη(t)

= −Kywq(vτ̄ )q−1(η(t) − η(t − τ̄ )). (30)

Note that Equation (29) is an ordinary differential equa-

tion forced by η, while Equation (30) is identical to the

standard linear model of 1 DOF turning with constant

regenerative delay. Consequently, the stability of the

constant delay model is determined only by Equation

(30).

Comparison of Equations (27)–(28) and (29)–(30)

shows that the only difference between the state-

dependent delay model and the standard model is the

term v
R�

(ξ (t) − ξ (t − τ̄ )). Actually, the appearance of

this additional term is related to the fact that the chip

thickness and, consequently, the cutting force explicitly

depend on the state-dependent time delay as it can be

seen in Equation (8) and as it was noted after Equation

(12).

4. Stability analysis

In the following investigations, it is assumed that the

tool is symmetric: cx = cy = c, kx = ky = k. The cor-

responding natural angular frequency is ωn = √
k/m

and the damping ratio is ζ = c/(2mωn). Introduce the

normalized time t̃ = ωnt , and by abuse of notation,

drop the tilde immediately. The equations of motion

(27) and (28) can be written in the form

ξ̈ (t) + 2ζ ξ̇ (t) + ξ (t)

= 1

kr
K1ρ

q−1(η(t) − η(t − ωn τ̄ ))

+ 1

kr
K1ρ

q (ξ (t) − ξ (t − ωn τ̄ )), (31)

η̈(t) + 2ζ η̇(t) + η(t)

= −K1ρ
q−1(η(t) − η(t − ωn τ̄ ))

−K1ρ
q (ξ (t) − ξ (t − ωn τ̄ )), (32)

where kr = Ky/Kx is the cutting force ratio, K1 =
(Kywq(2π R)q−1)/(mω2

n) is the dimensionless depth of

cut (or chip width), ρ = v/(R�) is the dimensionless

feed per revolution. Note that ρ = fZ/(2π R), where

fZ = vτ̄ is the feed per revolution and 2π R is the cir-

cumference of the workpiece. Since fZ � 2π R, prac-

tically, ρ � 1.

Stability analysis of the linear autonomous system

of DDEs (31)–(32) is performed following the devel-

opments in Stépán [5]. First, the characteristic equation

is determined, then the stability boundaries in the pa-

rameter plane (�/ωn, K1) are given, where �/ωn is

the normalized spindle speed.

A lengthy but straightforward calculation gives the

characteristic equation of system (31)–(32) in the form

(λ2 + 2ζλ + 1)

(
λ2 + 2ζλ + 1

+K1ρ
q−1

(
1 − ρ

kr

)
(1 − e−ωnλτ̄ )

)
= 0. (33)

There are two roots with negative real parts determined

by λ2 + 2ζλ + 1 = 0, and the remaining roots are de-

termined by the transcendental equation

λ2 + 2ζλ + 1 + K1ρ
q−1

×
(

1 − ρ

kr

)
(1 − e−ωnλτ̄ ) = 0. (34)

Substitution of λ = i ω and τ̄ = 2π/� into

Equation (34) and separation of the imaginary and real
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parts give the closed form stability boundaries

K1 SDD =
(

kr

kr − ρ

)
(ω2 − 1)2 + (2ζω)2

2ρq−1(ω2 − 1)
, (35)

�

ωn
= ωπ

arctan
(

1−ω2

2ζω

) + kπ
, k = 1, 2, . . . , (36)

where the chatter frequency ω is used as a parameter,

and the index SDD refers to state-dependent delay.

Consider now the turning model with constant re-

generative delay described by Equation (30). The cor-

responding characteristic equation reads

λ2 + 2ζλ + 1 + K1ρ
q−1(1 − e−ωnλτ̄ ) = 0. (37)

Comparison to Equation (34) shows that the only dif-

ference due to the state dependency of the delay is the

appearance of the multiplicative term (1 − ρ

kr
). The sta-

bility boundaries corresponding to the model with con-

stant delay (that actually coincides with the case of the

standard 1 DOF turning case) is determined by

K1 CD = (ω2 − 1)2 + (2ζω)2

2ρq−1(ω2 − 1)
, (38)

while the expression for �/ωn is identical to

Equation (36).

This shows that if the state dependency of the time

delay is included into the model, then the resulting sta-

bility boundaries are shifted upwards by the ratio

K1 SDD

K1 CD

= kr

kr − ρ
, (39)

where K1 SDD and K1 CD denotes critical depth of cuts

for state-dependent and constant delay models, respec-

tively. Practically, this ratio is close to 1, since ρ � 1

as it was noted after Equation (32), and a typical value

of the cutting force ratio is kr = 0.3. This shows that

the state-dependency of the time delay is important if ρ

is large, i.e, large feed is applied for a workpiece with

small diameter.

In Fig. 3, stability charts are shown for differ-

ent dimensionless feeds ρ per revolution both for

state-dependent and constant delay models. It can be

seen that stability boundaries are higher for the state-

dependent delay model than those of the constant delay

model. This can also be seen from Equation (39), since

Fig. 3 Stability charts for different dimensionless feeds ρ per
revolution. Continuous and dashed lines correspond to state-
dependent and constant delay models. The parameters are ζ =
0.02, q = 0.75 and kr = 0.3

Fig. 4 Ratio of the critical depths of cut for state-dependent and
constant delay models as the function of the dimensionless feed
ρ per revolution (kr = 0.3)

K1 SDD/K1 CD > 1 for positive kr and ρ. The difference

between the two models increases with increasing pa-

rameter ρ.

In Fig. 4, the ratio K1 SDD/K1 CD is shown as a func-

tion ofρ. The caseρ = 0.01 can be considered as a limit

case in practice for turning: when a 6.4 mm diameter

workpiece is cut with 0.2 mm feed per revolution, the

stability boundary is shifted upwards by 3.45% relative

to the constant delay model. Note that this difference

might be even larger for some other manufacturing op-

erations, like milling (see [29]) or drilling with high

torsional compliance of the tool (see [27, 28]).
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5. Conclusion

A 2 DOF model of turning process was considered. It

was shown through an accurate model of the surface

regeneration that the regenerative delay is determined

by the combination of the workpiece rotation and the

tool vibrations resulting in a state-dependent time de-

lay. The corresponding equation is a delay-differential

equation with state-dependent delay as opposed to the

standard models with constant time delay.

The linear equation corresponding to the stationary

cutting with constant deflection of the tool was derived

using the technique of Hartung and Turi [24]. It was

shown that the resulting linearized equation is different

from the DDE with constant time delay used in stan-

dard turning models. An additional term arises due to

the explicit dependence of the cutting force on the state-

dependent delay. Stability analysis of the linearized

system was performed analytically, and it was shown

that the incorporation of the state-dependent delay into

the model slightly affects linear stability properties of

the system in the practical parameter domains. The in-

fluence of the state-dependent delay may be even more

significant on the nonlinear behavior of the system.

Although the importance of the state-dependent de-

lay model seems to be limited at the moment, it might

become more relevant in the future, similarly to the

development of the milling models, where the time-

periodicity of the cutting force had been neglected in

the past, and its importance (that it may cause period

doubling vibrations) was realized only with the recent

appearance of high-speed milling technology.
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