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Abstract—A state-dependent Gaussian Z-interference channel
model is investigated in the regime of high state power, in which
transmitters 1 and 2 communicate with receivers 1 and 2, and
only receiver 2 is interfered by transmitter 1’s signal and a
random state sequence. The state sequence is known noncausally
only to transmitter 1, not to the corresponding transmitter 2.
A layered coding scheme is designed for transmitter 1 to help
interference cancelation at receiver 2 (using a cognitive dirty
paper coding) and to transmit its own message to receiver 1.
Inner and outer bounds are derived, and are further analyzed
to characterize the boundary of the capacity region either
fully or partially for all Gaussian channel parameters. Our
results imply that the capacity region of such a channel with
mismatched transmitter-side state cognition and receiver-side
state interference is strictly less than that of the corresponding
channel without state, which is in contrast to Costa type of dirty
channels, for which dirty paper coding achieves the capacity of
the corresponding channels without state.

I. INTRODUCTION

A number of state-dependent interference channel models
have recently been intensively studied. These models [1]–[4]
are based on the classic interference channel with receivers
being interfered not only by other transmitters’ signals but also
by random state sequences. The state sequences are known
noncausally to some or all of the transmitters. Similar models
of the state-dependent cognitive interference channel have
also been studied in [5]–[8], in which the transmitters and/or
receivers have message cognition.

In this paper, we study a state-dependent Z-interference
channel (see Fig. 1), in which transmitters 1 and 2 communi-
cate with receivers 1 and 2, and only receiver 2 is interfered by
transmitter 1’s signal and a random state sequence. In contrast
to the state-dependent Z-interference channel model studied
previously in [9], which assumes that state interference at both
receivers are known to both (corresponding) transmitters, our
model assumes that state interference (only to receiver 2) is
known noncausally only to transmitter 1, not to the correspond-
ing transmitter 2. Hence, transmitter-side state cognition and
receiver-side state interference are mismatched. Our goal is to
investigate such a mismatched scenario in high state power
regime, i.e., as the power of the state sequence Q → ∞.

In general, it is challenging to design capacity-achieving
schemes for such a system with mismatched property. Clearly,
it is not possible for transmitter 1 to directly cancel state

interference due to the large state power. One natural idea is to
apply lattice coding in high state power regime as in [10] for
the state-dependent multiple access channel (MAC). However,
lattice coding does not achieve the capacity for our model here.
Another approach is to apply dirty paper coding [11]. However,
the difficulty associated with the Z-channel here lies in that
transmitter 1 needs to resolve the tension between transmitting
its own message to receiver 1 and helping receiver 2 to cancel
its interference.

In this paper, we design a layered coding scheme, in which
a cognitive dirty paper coding scheme for transmitter 1 to
help interference cancelation is superposed with transmitter 1’s
transmission to receiver 1. It can be shown that when receiver
1’s power is sufficiently large, layered coding we adopt is
superior to time-sharing between serving receiver 2 (using
cognitive dirty paper coding) and receiver 1. In our scheme,
cognitive dirty paper coding is designed due to mismatched
state cognition and interference, in which transmission of the
message and treatment of state interference are performed by
separate transmitters. Differently from dirty paper coding for
the asymmetric MAC in [12], cognitive dirty paper coding
does not encode any message, as transmitter 1 does not know
message 2 that is interfered. In such a scheme, correlation
between the state variable and the state-cancelation variable
is a design parameter, and can be chosen to optimize the
rate region. This is in contrast to classical dirty paper coding
[11], in which such a correlation parameter is fixed for fully
canceling the state. We note that such a scheme can be readily
applied to study the MAC with two independent states [13]
and the relay channel with state cognition [14], [15]. We
summarize our main contributions as follows:

• We develop a layered coding approach for the mismatched
scenario, based on which we derive achievable regions for
both the discrete memoryless and Gaussian dirty (i.e., state-
dependent) Z-interference channels.

• We derive an outer bound for the Gaussian dirty Z-
interference channel in high state power regime. This outer
bound (and hence the capacity region) is strictly inside
an achievable rate region (and hence the capacity region)
of the corresponding Z-interference channel without state
[16]. This is in contrast to the results for Costa type of dirty
paper channels, for which dirty paper coding achieves the
capacity of the corresponding channels without state.

• By comparing the inner and outer bounds, we characterize



the boundary of the capacity region either fully or partially
for all Gaussian channel parameters in high state power
regime.

The rest of the paper is organized as follows. In Section
II, we describe the channel model. In Section III, we present
inner and outer bounds on the capacity region. In Section
IV, we characterize the boundary of the capacity region fully
or partially for all Gaussian channel parameters. Finally, we
conclude the paper in Section V.

II. CHANNEL MODEL

We study a state-dependent Z-interference channel model
(see Fig. 1) defined as follows. Transmitters 1 and 2 wish
to send messages W1 and W2 respectively to receivers 1
and 2. The two messages are assumed to be independent of
each other, and are randomly and independently distributed
over the message sets W1 and W2, respectively. Encoder 1
at transmitter 1, f1 : W1 × Sn → Xn

1 , maps each message
w1 ∈ W1 and a state sequence sn ∈ Sn to a codeword
xn
1 ∈ Xn

1 , where X1 and S are the channel input and state al-
phabets, respectively, and n is the number of channel uses. The
sequence sn is the realization of an identical and independently
distributed (i.i.d.) state sequence Sn, which is noncausally
known only at transmitter 1, not at any other terminals in
the system. Encoder 2 at transmitter 2, f2 : W2 → Xn

2 ,
maps each message w2 ∈ W2 to a codeword xn

2 ∈ Xn
2 ,

where X2 is the second channel input alphabet. The two inputs
xn
1 and xn

2 are transmitted over a Z-interference channel with
transition probability having marginal distributions PY |X1

and
PZ|X1,X2,S . Two decoders respectively at receivers 1 and 2,
g1 : Yn → W1 and g2 : Zn → W2, map received sequences
yn and zn to estimates ŵ1 ∈ W1 and ŵ2 ∈ W2, respectively.

Fig. 1. A state-dependent Z-interference channel model.

The average probability of error for a length-n code is
defined as

P (n)
e =

1

|W1||W2|
|W1|∑
w1=1

|W2|∑
w2=1

Pr{(ŵ1, ŵ2) �= (w1, w2)}. (1)

A rate pair (R1, R2) is achievable if there exists a sequence of
message sets W1n and W2n with |W1n| = 2nR1 and |W2n| =
2nR2 , and encoder-decoder tuples (f1n, f2n, g1n, g2n) such
that the average error probability P

(n)
e → 0 as n → ∞. The

capacity region is defined to be the closure of the set of all
achievable rate pairs (R1, R2).

In this paper, we focus on the Gaussian channel with the
outputs at receivers 1 and 2 for one channel use given by

Y = X1 +N1, Z = X1 +X2 + S +N2 (2)

where the noise variables N1 and N2 and the state variable S
are Gaussian distributed with distributions N1, N2 ∼ N (0, 1)
and S ∼ N (0, Q), and all of the three variables are i.i.d.
over channel uses. The channel inputs X1 and X2 are subject
to the average power constraints P1 and P2. Our goal is to
characterize the capacity region of the Gaussian channel in
high state power regime, i.e., as Q → ∞.

III. INNER AND OUTER BOUNDS

In this section, we provide inner and outer bounds (on
the capacity region) for the state-dependent Gaussian Z-
interference channel. We characterize the boundary of the
capacity region based on these bounds in the next section.

A. Inner Bound

The major challenge in designing an achievable scheme
arises from the mismatched property due to transmitter-side
state cognition and receiver-side state interference. Thus, trans-
mitter 1 needs to resolve the tension between transmitting its
own message to receiver 1 and helping receiver 2 to cancel
its interference. A simple scheme of time-sharing between
the two in general is not optimal. In our scheme, transmitter
1 splits its signal into two parts in a layered fashion: one
(represented by X ′

1 in Lemma 1) for transmitting its own
message and the other (represented by U in Lemma 1) for
helping receiver 2 to remove both state and signal interference
via a single-bin binning scheme. In particular, the second part
of the scheme does not apply dirty paper coding [11] (that
removes state interference for the encoded message) directly,
because transmitter 1 knows the state but does not know the
message (of transmitter 2) that the state interferes, and hence
cannot encode this message via dirty paper coding. Instead,
a cognitive dirty paper coding scheme is applied, in which
transmission of W2 and treatment of state interference for
decoding W2 are performed separately by transmitters 2 and 1.
Based on such a scheme, we obtain the following achievable
rate region for the discrete memoryless channel, which is
useful for deriving an inner bound for the Gaussian channel.
The detail of the proof is omitted due to the space limitations.

Lemma 1. For the discrete memoryless state-dependent Z-
interference channel defined in Section II, an inner bound on
the capacity region consists of rate pairs (R1, R2) satisfying:

R1 � I(X ′
1;Y )

R2 � I(X2;Z|U)

R2 � I(X2U ;Z)− I(U ;SX ′
1) (3)

for some distribution PSPX′
1
PU|SX′

1
PX1|USX′

1
PX2PY Z|SX1X2

.

Based on Lemma 1, we have the following simpler inner
bound by adding a constraint to remove (3) as a redundant
bound.

Corollary 1. For the discrete memoryless state-dependent Z-
interference channel defined in Section II, an inner bound on
the capacity region consists of rate pairs (R1, R2) satisfying:

R1 � I(X ′
1;Y )

R2 � I(X2;Z|U) (4)



for some distribution PSPX′
1
PU|SX′

1
PX1|USX′

1
PX2PY Z|SX1X2

that satisfies I(U ;Z) � I(U ;SX ′
1).

We next derive an inner bound for the Gaussian channel
based on Corollary 1 by setting U = X0 + α(S + X ′

1)
and X1 = X0 + X ′

1 with independent X0, X
′
1 and X2

having distributions X0 ∼ N (0, βP1), X
′
1 ∼ N (0, β̄P1) and

X2 ∼ N (0, P2), where α � 0, 0 � β � 1, and β̄ = 1−β. We
note that although Corollary 1 may provide a smaller inner
bound than that given in Lemma 1, it can be shown that two
inner bounds are equivalent for our chosen auxiliary random
variables and input distribution.

Proposition 1. For the state-dependent Gaussian Z-
interference channel defined in Section II, an inner bound on
the capacity region consists of rate pairs (R1, R2) satisfying:

R1 � 1

2
log

(
1 +

β̄P1

βP1 + 1

)
(5)

R2 � 1

2
log

(
1 +

P2

1 + (1 − 1
α )

2βP1

)
(6)

for some real constants α � 0 and 0 � β � 1 that satisfy
α2(β̄P1+Q)(βP1+P2+1)−2αβP1(β̄P1+Q)−β2P 2

1 � 0.
As Q → ∞, the preceding condition becomes α � 2βP1

βP1+P2+1 .

We note that in Proposition 1, the parameter α captures
correlation between the state variable S and the auxiliary
variable U for dealing with the state, and can be chosen to
optimize the rate region. This is in contrast to the classical
dirty paper coding [11], in which such correlation parameter
is fixed for state cancelation.

B. Outer Bound

In this subsection, we provide an outer bound on the
capacity region in high state power regime, i.e., as Q → ∞.

Proposition 2. For the state-dependent Gaussian Z-
interference channel defined in Section II, an outer bound on
the capacity region for the regime when Q → ∞ consists of
rate pairs (R1, R2) satisfying:

R2 � 1

2
log(1 + P2) (7)

R1 +R2 � 1

2
log(1 + P1). (8)

The bound (7) on R2 follows simply from the capacity of
the point-to-point channel between transmitter 2 and receiver 2
without signal and state interference. The bound (8) on the sum
rate is limited only by the power P1 of transmitter 1, and does
not depend on the power P2 of transmitter 2. Intuitively, this
is because P1 is split for transmission of W1 and for helping
transmission of W2 by removing state interference, and hence
P1 determines a trade-off between R1 and R2. On the other
hand, improving the power P2, although may improve R2,
can also cause more interference for receiver 2 to decode the
auxiliary variable for canceling interference. Thus, the balance
of the two effects turns out not to affect the sum rate. The
mathematical proof of the bound (8) is omitted due to the
space limitations.

We further note that although the sum-rate upper bound (8)
can be achieved easily by keeping transmitter 2 silent (i.e., R1

achieves the sum rate bound with R2 = 0), we are interested in
characterizing the capacity region (i.e., the trade-off between
R1 and R2) rather than a single point that achieves the sum-
rate capacity. In the next section, we characterize such optimal
trade-off based on the sum-rate bound.

Remark 1. The outer bound in Proposition 2 is strictly inside
an achievable rate region of the corresponding Z-interference
channel without state interference [16], which implies that
the capacity region of our model is strictly inside that of the
corresponding channel without state. This suggests that state
interference does cause performance degradation for systems
with mismatched state cognition and interference in high state
power regime. This is in contrast to the results for Costa type
of dirty paper channels, for which dirty paper coding achieves
the capacity of the corresponding channels without state.

IV. BOUNDARY OF CAPACITY REGION

In this section, we characterize the boundary points of the
capacity region for the Gaussian channel based on the inner
and outer bounds given in Propositions 1 and 2, respectively.
We partition the Gaussian channel into four cases based on
the conditions on the power constraints: (1) P2 � P1 + 1;
(2) P1 � P2 < P1 + 1; (3) P1 − 1 � P2 < P1; and (4)
0 � P2 < P1 − 1. For each case, we optimize the dirty paper
coding parameter α that satisfies 0 � α � 2βP1

βP1+P2+1 to find
achievable rate points that lie on the sum-rate upper bound (8)
in order to characterize the boundary points of the capacity
region. The proofs are omitted due to the space limitations.

Case 1: P2 � P1 + 1. For this case, we set the actual
transmission power for transmission of W2 to be P̃2 = βP1+
1, and then the inner bound (6) on R2 is optimized when
α = 2βP1

βP1+P̃2+1
. Thus, the inner bound given in Proposition

1 matches the outer bound given in Proposition 2, and the
capacity region is fully characterized as illustrated in Fig. 2.
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Fig. 2. The capacity region for case 1 with P1 = 1.5 and P2 = 3.

Theorem 1. Consider the state-dependent Gaussian Z-
interference channel defined in Section II in the regime when
Q → ∞. If P2 � P1 + 1, the capacity region consists of the
rate pairs (R1, R2) satisfying

R1 +R2 � 1

2
log(1 + P1). (9)



Theorem 1 implies that when P2 is large enough, the power
of transmitter 1 limits the system performance. Furthermore,
since P2 for transmission of W2 causes interference for
receiver 2 to decode the auxiliary variable for interference
cancelation, beyond a certain value, increasing P2 does not
improve the rate region any more. Theorem 1 also suggests
that in order to achieve different points on the boundary of the
capacity region (captured by parameters β), different amounts
of power P̃2 should be applied.

Case 2: P1 � P2 < P1 + 1. For this case, if P2 < 1,
the inner and outer bounds match only at the rate point A as
illustrated in Fig. 3 (a), which achieves the sum-rate capacity.
However, if P2 � 1, i.e., P2 is larger than the noise power,
inner and outer bounds match over the line between the points
A and B as illustrated in Fig. 3 (b), and thus optimal trade-off
between R1 and R2 is achieved over the points on this line.
We summarize this capacity result in the following theorem.

Theorem 2. Consider the state-dependent Gaussian Z-
interference channel defined in Section II in the regime when
Q → ∞. If P1 � P2 < P1 + 1 and P2 � 1, the rate points
(R1, R2) on the line between (12 log(1+P1), 0) (i.e., point A in

Fig. 3 (b)) and
(

1
2 log

(
1 + P1−P2+1

P2

)
, 1
2 logP2

)
(i.e., point

B in Fig. 3 (b)) are on the boundary of the capacity region.

Case 3: P1−1 � P2 < P1. For this case, similar to case 2,
if P2 < 1, the inner and outer bounds match only at point A as
illustrated in Fig. 4 (a), which achieves the sum-rate capacity.
However, if P2 � 1, inner and outer bounds match over the
line between points A and B as illustrated in Fig. 4 (b), and
this capacity result is stated in the following theorem.

Theorem 3. Consider the state-dependent Gaussian Z-
interference channel defined in Section II in the regime when
Q → ∞. If P1 − 1 � P2 < P1 and P2 � 1, the points
(R1, R2) on the line between (12 log(1 + P1), 0) (i.e., point

A in Fig. 4 (b)) and
(

1
2 log

(
1 + P1−P2+1

P2

)
, 1
2 logP2

)
(i.e.,

point B in Fig. 4 (b)) are on the boundary of the capacity
region.

We note that case 3 differs from case 2 in that the outer
bound for case 3 includes one more bound R2 ≤ 1

2 log(1+P2).
As illustrated in Fig. 4, this upper bound is not achieved by
the inner bound, because the power P1 is not large enough to
perfectly cancel state and signal interference at receiver 2.

Case 4: P2 < P1 − 1. Similar to cases 2 and 3, the inner
and outer bounds match partially over the sum rate bound, i.e.,
the two bounds match at the point A (see Fig. 5 (a)) if P2 < 1,
and match over the line between points A and B (see Fig. 5
(b)) if P2 � 1. However, differently from case 3, the inner
and outer bounds also match when R2 = 1

2 log(1 + P2) over
the line between points D and E (see Fig. 5 (a) and (b)). This
is because the power P1 of transmitter 1 in this case is large
enough to fully cancel state and signal interference so that
transmitter 2 is able to reach its maximum point-to-point rate
to receiver 2 without interference. Furthermore, transmitter 1
is also able to simultaneously transmit its own message at a
certain positive rate as reflected by the line D-E in Fig. 5 (a)
and (b). We summarize these results on the boundaries of the

capacity region in the following theorem.

Theorem 4. Consider the state-dependent Gaussian Z-
interference channel defined in Section II in the regime when
Q → ∞. If P2 < P1 − 1 and P2 < 1, then the point
(12 log(1 + P1), 0) (i.e., point A in Fig. 5 (a)) and the points

on the line between
(

1
2 log(

P1+1
P2+2 ),

1
2 log(1 + P2)

)
(i.e., point

D in Fig. 5 (a)) and (0, 12 log(1 + P2)) (i.e., point E in Fig. 5
(a)) are on the boundary of the capacity region.

If P2 < P1 − 1 and P2 � 1, then the points
on the line between (12 log(1 + P1), 0) (i.e., point A in

Fig. 5 (b)) and (12 log
(
1 + P1−P2+1

P2

)
, 1
2 logP2) (i.e., point

B in Fig. 5 (b)), and the points on the line between(
1
2 log(

P1+1
P2+2 ),

1
2 log(1 + P2)

)
(i.e., point D in Fig. 5 (b)) and

(0, 12 log(1 + P2)) (i.e., point E in Fig. 5 (b)) are on the
boundary of the capacity region.

V. CONCLUSION

In this paper, we have studied the state-dependent Gaussian
Z-interference channel with mismatched transmitter-side state
cognition and receiver-side state interference in high state
power regime. We have applied a layer coding scheme with a
cognitive dirty paper coding in order to deal with the mismatch
property of the channel. We have derived inner and outer
bounds on the capacity region for the Gaussian channel, and
have shown that the two bounds match either fully or partially
for all Gaussian channel parameters. We have also discussed
the properties of these rate regions and their implications on
the capacity results. In the future, we will further explore other
multiuser state-dependent channels with state cognition.
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terference channels with state information,” in Proc. IEEE Int. Symp.
Information Theory (ISIT), Toronto, Canada, July 2008.



0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
1
(bit/use)

R
2(b

it
/u

se
)

E

C

Inner Bound

A

Outer Bound

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
1
(bit/use)

R
2(b

it
/u

se
)

Inner bound

A

E

C

B

Outer bound

(a) P2 < 1 with P1 = 0.5 and P2 = 0.8 (b) P2 � 1 with P1 = 1.5 and P2 = 1.8

Fig. 3. Inner and outer bounds for case 2, which match partially on the boundaries

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
1
(bit/use)

R
2(b

it
/u

se
)

Inner Bound

Outer Bound

A

E

C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
1
(bit/use)

R
2(b

it
/u

se
)

Outer bound

C

A

BInner bound

(a) P2 < 1 with P1 = 0.8 and P2 = 0.5 (b) P2 � 1 with P1 = 2 and P2 = 1.8

Fig. 4. Inner and outer bounds for case 3, which match partially on the boundaries

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
1
(bit/use)

R
2(b

it
/u

se
)

Outer Bound

Inner Bound

C

DE

A
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
2
(bit/use)

R
2(b

it
/u

se
)

B

Outer bound

Inner bound

E D
C

A

(a) P2 < 1 with P1 = 1.5 and P2 = 0.5 (b) P2 � 1 with P1 = 3 and P2 = 1.8

Fig. 5. Inner and outer bounds for case 4, which match partially on the boundaries

[6] R. Duan and Y. Liang, “Gaussian cognitive interference channels with
state,” in Proc. IEEE Int. Symp. Information Theory (ISIT), Boston,
MA, Jul. 2012.

[7] ——, “Bounds and capacity theorems for cognitive interference chan-
nels with state,” Submitted to IEEE Trans. Inform. Theory, June 2012.

[8] M. Kazemi and A. Vosoughi, “On the capacity of the state-dependent
cognitive interference channel. To appear in Proc. IEEE Int. Symp.
Information Theory (ISIT),” Istanbul, Turkey, Jul. 2013.

[9] S. Hajizadeh, M. Monemizadeh, E. Bahmani, G. A. Hod-
tani, and M. Joneidi, “State-dependent z channel,” Available at
http://arxiv.org/abs/1301.6272.

[10] T. Philosof, R. Zamir, U. Erez, and A. J. Khisti, “Lattice strategies for
the dirty multiple access channel,” IEEE Trans. Inform. Theory, vol. 57,
no. 8, pp. 5006–5035, August 2011.

[11] M. H. M. Costa, “Writing on dirty paper,” IEEE Trans. Inform. Theory,
vol. 29, no. 3, pp. 439–441, May 1983.

[12] S. P. Kotagiri and J. N. Laneman, “Multiaccess channels with state
known to some encoders and independent messages,” EURASIP Journal
on Wireless Communications and Networking, 2008.

[13] I.-H. Wang, “Distributed interference cancellation in multiple access
channels,” IEEE Trans. Inform. Theory, vol. 58, no. 5, pp. 2781–2787,
May 2012.

[14] B. Akhbari, M. Mirmohseni, and M. R. Aref, “Compress-and-forward
strategy for the relay channel with non-causal state information,” in
Proc. IEEE Int. Symp. Information Theory (ISIT), Seoul, Korea, Jul.
2009.

[15] A. Zaidi, S. Shamai (Shitz), P. Piantanida, and L. Vandendorpe, “Bounds
on the capacity of the relay channel with noncausal state at source,”
Submitted to IEEE Trans. Inform. Theory, April 2011.

[16] I. Sason, “On achievable rate regions for the Gaussian interference
channel,” IEEE Trans. Inform. Theory, vol. 50, no. 6, pp. 1345–1356,
June 2004.


