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Although the perception of pain is widely considered
to be the invariant consequence of the activation of
peripheral nociceptors by potentially tissue-damaging
stimuli, such stimuli are just one of the many factors
that are involved. There have been reports that, under
conditions of great threat or strong emotion, people
with severe injuries (including open wounds and bone
fractures) report little or no pain1. Drug actions can
also be highly variable; for example, opioid drugs that
are selective for a single receptor can either relieve or
worsen pain, depending on an animal’s behavioural
state. Such top–down variability of pain intensity and
drug action highlights the importance of using a 
systems neuroscience approach to study pain modula-
tion. This review focuses on the properties of an 
opioid-sensitive pain-modulating circuit: how the
synapses of its component neurons are affected 
by opioids, how this action modulates nociceptive
transmission, and how such modulation contributes
to behavioural choice.

Opioids such as morphine and heroin are not only
powerful analgesics; they also produce profound
appetitive motivational actions. They can be addictive
when used recreationally, and can enhance food 
and alcohol consumption. For these reasons, opioid
receptors have received widespread interest from 
clinicians and basic scientists alike. Investigations into
pain have focused largely on the µ-opioid receptor
(MOR/OPRM), because its activation is necessary for

the action of the most potent analgesics2,3. Other 
members of the opioid receptor family regulate pain,
but their contribution has been more difficult to study
because their pain-relieving actions are neither as
robust nor as consistent as those of MOR ligands. So,
the functional significance of opioid receptor diversity
remains puzzling. However, experiments are beginning
to shed light on the inconsistencies and paradoxes in
the field, and a deeper understanding is emerging
about how the members of this family of closely related
receptors interact to provide a flexible choreography
for pain control. Crucial to this improved understand-
ing has been the systems neuroscience approach;
the analysis of the firing properties and anatomical
connectivity of neurons in defined opioid-sensitive
pain-modulating circuits.

Matching neural circuits to behaviour
Whether one’s goal is to explain the pharmacology of
an exogenously applied opioid or to understand the
physiology of endogenous opioid peptide function, the
systems neuroscience approach has contributed to 
the discovery process by producing mechanistic models
of opioid function that are detailed and that have 
great predictive power. Because the biologically relevant
output of the nervous system is behaviour, circuits are
meaningfully defined in relation to a specific behaviour.
Consequently, tracing a circuit requires the selection of
the behaviour of interest.
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Defining the pain-modulation circuit. In the early 1970s,
the circumstances were in place for explosive growth 
in our understanding of pain-modulation circuits.
Recording from single neurons in the CNS led to the 
conceptual breakthrough that these neurons are feature
detectors that are tuned to detect tissue-damaging stim-
uli. Building on this discovery, scientists were able to show
that specific laminae (I, II and IV–VI) of the spinal cord
dorsal horn were a vital relay for nociceptive signals14. A
key advance in the modulatory field was Wall’s discovery
that nociceptive neurons in these laminae are subject to
powerful control by supraspinal sites17.

Stimulation-produced analgesia was the next crucial
discovery. Working in rats and using simple withdrawal
reflexes as the pain measure, Reynolds18 and later
Liebeskind and colleagues19,20 showed that stimulation of
a specific region of the midbrain — the periaqueductal
grey (PAG) — inhibited behavioural responses to nox-
ious stimulation. In a dramatic extension of this finding,
electrical stimulation of the midbrain PAG in humans
was reported by several neurosurgical groups to produce

The first step in determining how a drug affects
behaviour is to inject it directly into nuclei that are part
of the behaviourally-defined circuit. The effect of the
drug is then explained by determining how it changes
the firing of neurons in that nucleus. Using innate 
nocifensive withdrawal reflexes as behavioural surro-
gates for pain, an opioid-sensitive circuit that selectively
controls nociceptive transmission has been defined4,5.
Locally acting opioids robustly alter the activity of
neurons in several serially-connected relays within this
circuit. These neurons modulate nociceptor-driven
behaviours6–8 and the synaptic mechanisms by which
opioids directly regulate their activity have been deter-
mined9–11. Furthermore, through the use of selective
opioid receptor antagonists, usefully constrained
hypotheses of endogenous opioid function have been
tested. Importantly, circuit models have been tested in
human subjects through the use of functional imaging
and opioid antagonists. Pain is a subjective experience
and only humans can give ‘direct’ reports about what
they feel, so the ability to conduct relevant experiments
in humans provides a rare opportunity to validate
hypotheses about human subjective experience based
on animal research. Therefore, the circuit analytical
approach allows us to establish a chain of causality from
molecular events at the synapse to human perception
and behaviour.

Pain and pain-modulating circuits
The process that leads to pain perception is typically 
initiated by the activation of peripheral receptors, which
selectively detect intense, potentially tissue-damaging
stimuli. These primary afferent nociceptors have been
studied extensively in animals and humans. We now
know a great deal about the molecular mechanisms of
transduction and the relationship of the firing of these
neurons to stimulus intensity and to the psychophysics
of perceived pain intensity12–14. Furthermore, although
much remains to be learned about central processing,
there is broad agreement on the general outlines of
the afferent transmission pathways from primary affer-
ent nociceptors through the dorsal horn and on to the
thalamus and cortex15 (FIG. 1).

At each of the identified nociceptive relay nuclei in
rodents, cats and primates, neurons have been recorded
with activity increasing as a function of stimulus intensity
across the noxious range. Studies combining functional
imaging and psychophysics have shown that activations
in human thalamic and cortical nociceptive-receiving
areas correlate with perceived pain intensity13,16.
Furthermore, pain perception in humans is blocked by
lesions in spinal cord and brain areas that are homolo-
gous to those identified as pain pathways in animals. The
consistent and lawful relationships between stimulus
intensity, neuronal firing and human reports of pain
intensity, and the striking anatomical homologies across
species have provided a simple, powerful and relatively
complete explanation of the sensory processing that
underlies pain perception. This robust and highly 
conserved afferent circuit provides a firm foundation for
the study of pain modulation.
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Figure 1 | Schematic of afferent pathways underlying the
sensation of pain. Injury activates the primary afferent
nociceptor (PAN), which transmits information to the dorsal horn
of the spinal cord. The terminals of the PAN contact neurons in
specific laminae of the dorsal horn where they release glutamate
and peptides to activate the second order neurons. The axons of
nociceptive dorsal horn neurons cross to the contralateral
anterolateral quadrant to form an ascending tract, which
terminates in the brainstem and several distinct areas of the
thalamus, which contain higher order neurons that project to
various cortical regions that mediate different aspects of the pain
experience. These regions include somatosensory, anterior
cingulate and insular cortices. SMT, spinomesencephalic tract;
SRT, spinoreticular tract.
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Physiological activation of opioid circuits
So far, we have described the connectivity of the pain-
modulation circuit and some of its pharmacological
features. Clearly, the circuit can operate in a serial,
opioid-linked fashion; but how is it normally activated?
Noxious stimuli that are prolonged and inescapable are
particularly effective for activation of the PAG–RVM
network. For example, forepaw shock in rats produces
an acute anti-nociceptive effect that is blocked by the
opioid antagonist naloxone and by RVM lesions37,38.
There is evidence that similar mechanisms operate in
humans (see REF. 7 for a review). First, rodent and
human opioid receptors are almost pharmacologically
identical. Second, endogenous opioid peptides and opi-
oid receptors are present in human brain areas that are
homologous to brainstem pain-modulating nuclei.
Third, analgesia has been produced in people by stimu-
lating the PAG. Last, naloxone enhances experimental
and clinical postoperative pain in human subjects who
have not received exogenous opioids39,40.

clinically significant pain relief (for reviews, see REFS 21,22).
Importantly, stimulation of this midbrain site inhibited
nociceptive dorsal horn neurons, indicating that 
the behavioural changes were due to control of sensory
transmission rather than motor responses23,24.

Subsequent work using a combination of methods
(brain mapping by electrical stimulation, anatomical
tract tracing, inhibition of withdrawal reflexes and dorsal
horn electrophysiology) rapidly led to detailed knowledge
of the anatomy, physiology and pharmacology of this
pathway7. The PAG receives direct inputs from the hypo-
thalamus and from the LIMBIC forebrain, including several
regions of the frontal neocortex and the central nucleus of
the AMYGDALA (FIG. 2). The PAG controls nociceptive trans-
mission indirectly by means of connections through 
neurons in the rostral ventromedial medulla (RVM) and
the dorsolateral pontine tegmentum (DLPT). These two
regions project through the spinal cord dorsolateral
funiculus and selectively target the dorsal horn laminae
that house the nociceptive relay neurons. So, the selective
control of pain by this circuit is explained by its anatomi-
cal selectivity for primary afferent nociceptor terminals
and somata of dorsal horn neurons that respond to 
noxious stimulation.

Opioids in the pain-modulation circuit. Morphine is the
prototypical MOR agonist. MOR agonists produce 
analgesia through both pre- and postsynaptic mecha-
nisms at multiple CNS sites (FIG. 3). MOR agonists can
directly inhibit pain transmission at spinal levels
through actions on primary afferents25 and nociceptive
relay neurons in the dorsal horn26,27, but this review will
focus on supraspinal modulatory circuits. The MOR is
present in all of the known supraspinal components of
the pain-modulation circuit including the insular 
cortex, amygdala, hypothalamus, PAG, DLPT, RVM and
spinal cord dorsal horn2,28–30. Microinjection of MOR
agonists into each of these sites inhibits behavioural
responses to noxious stimulation4,5,31,32. Inactivating the
RVM or cutting the axons of RVM neurons that project
to the spinal cord dorsal horn reduces analgesia 
produced by morphine that has been given systemically
or microinjected into supraspinal sites. This shows 
that MOR-agonist analgesia depends on activation of
supraspinal neurons that project by way of the RVM to
the spinal cord dorsal horn (FIG. 2).

Beyond its distributed MOR agonist sensitivity,
another distinctive feature of the pain-modulation circuit
is that the serial linkage of its component nuclei involves
the release of endogenous opioids. The behavioural effect
of activating the circuit at one site can be blocked by
microinjection of opioid antagonists at a downstream site
in the pathway. For example, analgesia produced by MOR
agonists microinjected into the posterior hypothalamus
or basolateral amygdala is reversed by a MOR antagonist
in the PAG33, and PAG-elicited analgesia is blocked by
naloxone or selective MOR antagonists microinjected
into the RVM34,35.Although the endogenous opioid that
mediates these effects has not been identified, the fact that
an enkephalinase inhibitor injected into the RVM 
produces analgesia implicates the enkephalins36.

LIMBIC

A term that refers to a collection
of cortical and subcortical
structures that are important for
processing memory and
emotional information.
Prominent structures include
the hippocampus and amygdala.

AMYGDALA

A small almond-shaped
structure, comprising 13 nuclei,
buried in the anterior medial
section of each temporal lobe.
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Figure 2 | Outline of opioid-sensitive pain-modulating
circuit. This is a top–down pathway that can be activated by
both exteroceptive stimuli and certain motivational states.
Limbic forebrain areas, including the anterior cingulate cortex
(ACC), other frontal cortical areas, the hypothalamus (H) and
central nucleus of the amygdala project to the midbrain
periaqueductal grey (PAG), which can be thought of as a main
output pathway of the limbic system. The PAG, in turn,
indirectly controls pain transmission in the dorsal horn through
the rostral ventromedial medulla (RVM). This pathway can
exert both inhibitory (green) and facilitatory (red) control. A
separate control channel through serotonergic neurons in the
RVM (yellow) can also modulate pain in a state-dependent
manner. T, thalamus.
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It is now clear that this dual control results from the
activity of two neuronal subpopulations. The two cell
classes, which are present in the PAG, DLPT and RVM,
exhibit phasic reciprocal changes in firing that precede
nociceptor-elicited withdrawal reflexes4,49,50. One class,
termed ‘off cells’, shows a pause in firing that begins
before the withdrawal reflex. The other class — ‘on cells’
— shows a burst of activity that begins before the reflex 
(FIG. 4a). Consistent with their role in pain modulation,
RVM on- and off-cell axons project directly and 
selectively to dorsal horn laminae that relay nociceptive
signals51.

When MOR agonists are administered systemically,
either into the PAG or locally in RVM, off-cell firing
accelerates and becomes continuous (FIG. 4c). With-
drawal reflexes are inhibited and no off-cell pause 
is seen. Selective blockade of off-cell activation 
prevents morphine’s anti-nociceptive effect52. There-
fore, off-cell activation is necessary for the pain-
inhibitory effects of MOR ligands given systemically 
or supraspinally53,54.

On cells and pain facilitation. The correlation of on-cell
discharge with withdrawal reflexes indicates that their
action is to facilitate such responses and their dorsal
horn projection target indicates that this effect is
achieved through control of nociceptive transmission.
Several independent lines of evidence support this idea.
Analgesic doses of MOR agonists silence on cells. On
cells in the RVM contribute to the enhanced nocicep-
tion that accompanies various manipulations, including
nerve injury, inflammation, tonic activation of nocicep-
tors and systemic cytokine administration (see table 1 
in REF. 42). Tonic activation of nociceptors results in 
prolonged on-cell activity, which enhances certain with-
drawal reflexes48,55. Furthermore, destruction of RVM
on cells by a MOR-selective neurotoxin blocks the
hyperalgesic state elicited by nerve injury56,57. Finally,
selective activation of on cells enhances responses to
noxious stimulation8.

Reciprocal and state-dependent neuronal activity.
Recordings of pairs of neurons in the RVM of lightly
anaesthetized rats demonstrate that on- and off-cell 
populations are active at different times6,58,59. In fact,
these cells show reciprocal patterns of activity under vari-
ous conditions (FIG. 4a–c, TABLE 1). Despite the tendency
towards reciprocal firing, each population is capable of
independent action. For example, one can block the
reflex-related on-cell burst without affecting the off-cell
pause60. Conversely, the activation of off cells by opioids
can be blocked without affecting the on-cell burst. These
findings indicate that the reciprocity of activity in the
two RVM populations depends on shared upstream con-
nectivity rather than direct inhibitory connectivity
within the RVM.

One of the more striking features of the pattern of
activity for both on- and off-cell populations is that it
consistently varies with the animal’s state of arousal61.
For example, in awake unrestrained rats, the off-cell
population fires intermittently, only to accelerate and

Bidirectional control of pain transmission
One of the more striking and informative discoveries
about the pain-modulating circuit is that it can facilitate
as well as inhibit nociceptive transmission41–43. In 
addition to the inhibition discussed above, stimulation 
of the RVM can enhance behavioural and dorsal horn
neuronal responses to noxious stimulation44–46.
Furthermore, prolonged nociceptor inputs, including
thermal and chemical stimulation, inflammation or
nerve injury produce a state of generalized hyperalgesia
that is reversed by lesions or reversible inactivation of the
RVM42,47,48. So, the activation of RVM neurons can gen-
erate either facilitation or inhibition of pain transmission
under different conditions. How are we to understand
this apparent paradox?
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Figure 3 | Synaptic actions of µµ-opioid receptor (MOR) agonists in the rostral
ventromedial medulla (RVM). Reproduced, with permission, from REF. 66  (1990) The
Physiological Society. a | MOR agonists reduce release of GABA (γ-aminobutyric acid) through
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The opioid receptor family and pain modulation
The known opioid receptors are members of the large 
G-PROTEIN-coupled receptor family. There are currently
four well-established members of the opioid receptor
family — µ, δ (DOR/OPRD), κ (KOR/OPRK1) and 
opioid receptor-like (ORL1/OPRL) (for reviews, see 
REFS 63,64). The first three were defined on the basis of
ligand-binding studies, and subsequent cloning of their
genes revealed high sequence homology. The ORL1
receptor was identified on the basis of its high sequence
homology with the other three receptors. The anatomical
distributions of DOR, KOR and ORL1 receptors parallel
that of the MOR; they are present in the component
nuclei of the pain-modulating circuit2,29,30,63,65. Ligands

become continuously active during slow-wave sleep62.
Conversely, on cells show markedly reduced activity
during slow-wave sleep. Taken together, these findings
indicate that the modulatory circuit can operate in one
of two opposing states: an on-cell state that enhances
nociceptive transmission and an off-cell state that
inhibits nociceptive transmission. Administration of
MOR ligands changes the circuit into the off-cell state,
whereas the presence of a prolonged somatic noxious
stimulus changes it into an on-cell state. The concept
that the modulatory circuit can operate in two distinct
modes is crucial for understanding how a given opioid
ligand can have different behavioural effects when given
at different times.

G PROTEIN

A heterotrimeric GTP-binding
and -hydrolysing protein that
interacts with cell-surface
receptors, often stimulating or
inhibiting the activity of a
downstream enzyme. G proteins
consist of three subunits: the 
α-subunit, which contains the
guanine-nucleotide-binding site;
and the β- and γ-subunits, which
function as a heterodimer.
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can block the analgesia that is produced by PAG activa-
tion78,79. Furthermore, in the RVM, DOR agonists 
produce weak to moderate analgesia80 and changes 
in RVM on and off cells that are similar to but weaker
than those produced by MOR agonists81. There are no
published studies of DOR synaptic actions in the RVM.

The modest cellular and behavioural effects of selec-
tive agonists imply a relatively minor contribution of the
DOR to pain modulation. However, another possibility
is that synthesis or cellular trafficking of the DOR is 
variable, and more potent DOR effects could be 
demonstrated under the right conditions. For example,
inflammation increases the targeting of the DOR to the
plasma membrane in the spinal cord dorsal horn82.
Furthermore, prolonged inflammation is associated with
an enhanced anti-nociceptive effect for a DOR-selective
ligand (deltorphin) in the RVM83. These results indicate
that DOR function might be more robust if the receptor
is studied under appropriate conditions.

State-dependent effects of KOR and ORL1 ligands. KOR-
selective agonists have at least two synaptic actions in the
RVM. They directly hyperpolarize neurons that are not
hyperpolarized by MOR agonists (off and/or neutral
cells), and they inhibit excitatory glutamatergic inputs to
RVM neurons, including those that are hyperpolarized by
MOR agonists (on cells). Nociceptin, a ligand that is selec-
tive for the ORL1 receptor, strongly hyperpolarizes all
classes of neurons in the RVM and PAG through activa-
tion of an inwardly rectifying potassium channel85,86. In
addition, nociceptin inhibits GABA release by a pre-
synaptic action84,86. In vivo, RVM microinjection of the
same ORL1 ligand strongly inhibits all on and off cells53.
In summary, KOR agonists act presynaptically and ORL1
agonists act postsynaptically to inhibit both on and 
off cells in the RVM. FIGURE 5b summarizes the synaptic
distribution of opioid receptors in the RVM on and off
cell circuits. The cells of origin of the opioid-regulated
afferent terminals of RVM on and off cells have not been
definitively identified.

In contrast to the robust cellular and synaptic actions
of KOR and ORL1 in vitro, their behavioural effects on
pain transmission are highly variable.Various effects of
supraspinal injection of ORL1 agonists have been
reported; no effect, enhancement of nociceptive respon-
siveness or enhancement followed by inhibition
(reviewed by REF. 87). Similarly, in comparison to MOR
agonists, KOR agonists produce analgesia that is weaker
and more dependent on the type of noxious stimulus

that are selective for each opioid receptor regulate various
motivated behaviours including feeding, alcohol and 
psychostimulant consumption and pain.

Actions of MOR ligands on pain-modulating neurons.
Morphine is the prototypical opioid ligand, and its
actions require the MOR3. In vitro studies of neurons in
pain-modulating nuclei have revealed several types 
of synaptic actions by MOR ligands (FIG. 3). Direct post-
and presynaptic inhibition of GABA (γ-aminobutyric
acid) release have been related to the nociception-
modulating function of the PAG and RVM (FIG. 3). Direct
postsynaptic inhibition of subsets of PAG and RVM 
neurons is produced by MOR agonists through activation
of an INWARDLY RECTIFYING POTASSIUM CHANNEL10,66. In vivo
iontophoresis of morphine in the RVM selectively
inhibits on-cells, and blocks their excitation by applied
glutamate. This shows that neurons in this region that are
postsynaptically inhibited by MOR agonists are on cells67.

A subset of RVM neurons, which must include off
cells, is not hyperpolarized by MOR agonists but does
have GABA-releasing inputs that are presynaptically
inhibited by MOR ligands67. Presynaptic inhibition of
GABA-releasing inputs by MOR agonists has also been
demonstrated in PAG neurons of rats and mice68,69. RVM
off cells are activated by local infusion of either MOR
selective ligands or the GABA

A
receptor antagonist bi-

cuculline70,71, and this leads to an anti-nociceptive effect.
Because in vitro studies show no direct excitatory 
effect of MOR ligands on any cell class, RVM off-cell
excitation by local microinfusion of MOR agonists is at
least partly due to inhibition of GABA-releasing inputs.
Although presynaptic inhibition of glutamatergic trans-
mission to on cells in both the RVM and PAG could
contribute under some circumstances72,73, the analgesic
effect of MOR agonists acting in both PAG and RVM is
probably due to disinhibition of off cells.

Contribution of the δ-opioid receptor. The role of the
DOR in pain modulation is puzzling (reviewed by REF. 74).
DOR agonists microinjected into the PAG produce little
or no anti-nociceptive effect in the rat75,76. Consistent with
this observation, in vitro experiments have failed to show
either hyperpolarization of neurons or inhibition of
transmitter release by DOR agonists in rat PAG10,73,77. By
contrast, in the C57B16/J mouse, DOR agonists hyperpo-
larize a small subset of PAG neurons (24% compared
with 72% for MOR agonists)69,70. In the RVM, DOR is
present on axon terminals, and DOR selective antagonists

INWARDLY RECTIFYING

POTASSIUM CHANNELS

Potassium channels that allow
long depolarizing responses, as
they close during depolarizing
pulses and open with steep
voltage dependence on
hyperpolarization. They are
called inward rectifiers because
current flows through them more
easily into than out of the cell.

Table 1 | Rostral ventromedial medulla (RVM) neurons and behavioural state

On cell Off cell Nociceptive Blocked by MOR Blocked by ORL
response antagonist or KOR agonists

MOR agonist – + – Y Y

Acute MOR abstinence + – + N/A Y

Tonic noxious stimulus + – + N/A N/A

Low dose neurotensin (In RVM) + 0 + N/A N/A

Threat or appetitive motivational state – + – Y Y

+, increases; –, decreases; 0, no effect. KOR, κ-opioid receptor; MOR, µ-opioid receptor; N/A, not applicable; ORL, opioid receptor-like; Y, yes.



NATURE REVIEWS | NEUROSCIENCE VOLUME 5 | JULY 2004 | 571

R E V I E W S

These experiments illustrate the power (and the
necessity) of using neural circuit analysis to explain
behavioural pharmacology. In addition to the descending
control that is exerted by on and off cells, serotonergic
neurons in the RVM that project to the dorsal horn 
provide a third, state-dependent element that controls
nociceptive transmission (BOX 1).

The biological imperative for pain modulation
Although the concept of state dependence is helpful for
understanding the role of different opioid receptors in
pain control, it raises an intriguing question: what is the
biological meaning of a ‘behavioural state’? The available
evidence indicates that the most promising framework
for approaching this question is to conceptualize pain 
as primarily a motivational state that has a powerful
influence on decision making.

Noxious stimuli produce distinctly unpleasant 
sensations and elicit various innate behaviours that are
appropriate to a continuing physical threat such as
escape, defence and vocalization93. Following injury,
nociceptive inputs elicit recuperative behaviours such as
quiescence, licking and guarding94. The nociceptive
input that activates and maintains these behaviours 
can be conceptualized as inducing a drive state with
powerful motivational effects95. Because they induce a
motivational state, noxious stimuli serve as teaching 
signals, allowing animals to avoid situations that have
either caused or threatened tissue injury in the past96,97.
The powerful behavioural demand that is produced by
noxious stimuli presents the animal with a biological
problem. There will be circumstances — for instance,
the presence of a predator — in which choosing to
respond overtly to a noxious stimulus, such as with
vocalization or sudden movement, places the animal at
risk of even greater injury or death94. Exhibiting certain
‘pain’ behaviours in the presence of a competing domi-
nant male conspecific might significantly reduce repro-
ductive efficiency. So, when the motivational demand
for a behaviour that is typically elicited by a noxious
stimulus occurs in the presence of a biological cost for
its execution, a mechanism that can block the behaviour
confers a potential evolutionary advantage.

Opioid-mediated inhibition of pain has been 
demonstrated in these situations. For example, naloxone-
reversible analgesia is induced in male rodents by 
the presence of a predator98, or an aggressive male con-
specific99. Through classical conditioning, initially neutral
contextual cues can acquire the motivational power to
elicit opioid-mediated analgesia. In the conditioned fear
model, after contingent pairing with an inescapable foot
shock, an initially neutral light or tone can elicit an 
anti-nociceptive effect. This conditioned analgesia is
blocked by microinjection of MOR- but not KOR- or
DOR-selective antagonists into the basolateral amygdala,
PAG and RVM100–102. Similar to the analgesia that is
elicited by PAG MOR agonists, the analgesia that accom-
panies conditioned fear is inhibited by the microinjection
of a KOR agonist in the RVM103.Activation of the opioid-
mediated anti-nociceptive network is part of the process
of deciding to respond to the anticipated threat rather

that is used9,88,89. In addition, KOR agonists can 
functionally antagonize MOR-mediated analgesia9,11,88–90.

How can we resolve the discrepancy between the
robust and consistent synaptic actions of KOR and
ORL1 agonists and their weak and variable behavioural
effects? The key is that the pain-modulating circuit has
two opposing states, and that the behavioural effect 
of an opioid depends on whether the circuit is in the on-
cell or off-cell state. These points are clearly illustrated
by recent studies of the effects of KOR and ORL1 
agonists on nociceptor-elicited behaviours, and on the
activity of RVM neurons during morphine analgesia
(off-cell state) and during naloxone-precipitated 
morphine abstinence (on-cell state).

When morphine is administered (systemically or into
the PAG), the on cells become silent and the off cells fire
continuously (FIG. 4c and FIG. 5a). In the off-cell state,
dorsal horn neurons and withdrawal reflexes are inhib-
ited. This inhibition is reversed by inactivation of
the RVM or selective inhibition of off-cell firing. In the
off-cell state, microinjection of either an ORL1 or KOR
agonist will inhibit off cells and will have an anti-
analgesic (pain-promoting) action11,85. Conversely, if
naloxone is given following systemic administration of
an analgesic dose of morphine, off-cell firing is shut
down, on-cell firing increases and becomes continuous,
and withdrawal reflexes are enhanced91,92 (FIG. 5). In this
on-cell state, microinjection of an ORL1 or KOR agonist
will inhibit on cells and will have an anti-hyperalgesic
(pain-reducing) action11,85.
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Figure 5 | Shifts in nociceptive modulatory state during morphine analgesia and acute
naloxone-induced abstinence. a | Morphine activates off cells to inhibit pain (lower left),
whereas when naloxone is used to precipitate acute abstinence, on cells are activated and
produce a hyperalgesic state (lower right). b | Synaptic distribution of opioid receptors within the
rostral ventromedial medulla (RVM). µ-Opioid receptor (MOR) is located on GABA (γ-aminobutyric
acid)-releasing terminals at off cells and the somadendritic region of on cells. Both cell classes
have somadendritic opioid receptor-like (ORL1) receptors and both are excited by κ-opioid
receptor (KOR)-bearing glutamatergic terminals (glut) that arise from different input neurons.
Whereas MOR agonists produce anti-nociceptive effects by inhibiting on cells and disinhibiting off
cells, ORL1 and KOR agonists acting in the RVM can block analgesia by inhibiting off cells or
block hyperalgesia by inhibiting on cells. PAG, periaqueductal grey.
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with either appetitive or aversive valence are associated
with activation of opioid-mediated anti-nociceptive 
mechanisms.

Reward expectancy, opioids and placebo
The concept that activation of opioid-mediated 
pain-modulatory circuits is driven primarily by 
motivational state provides a heuristic basis for inter-
preting the literature on neural mechanisms of placebo
analgesia. Shortly after the discovery of endogenous
opioids in the mid-1970s, placebo analgesia was 
shown to be blocked by naloxone111 — a result that has
been replicated several times112,113. An important 
mediating process that underlies placebo analgesia is
expectancy114.

Expectancy can be induced verbally by telling an
individual that they are about to receive a powerful
analgesic, or by conditioning115; for example, by giving
an individual a treatment (pill, ointment or intravenous
infusion) that produces a powerful analgesic effect.
After conditioning, giving the subject a physiologically
inert treatment that closely resembles the appearance of
the actual analgesic produces a powerful, naloxone-
reversible analgesic effect116. By contrast, informing 
the subject that they are getting an inert placebo will
‘reverse’ the effect of conditioning and prevent 
the placebo-induced analgesic response117. From the
standpoint of motivational processes, an effective
placebo manipulation can be considered to be a
reward-predictive cue because pain relief is ‘rewarding’
(negative reinforcement). So, by virtue of leading 
to the expectation of pain relief, placebo analgesics 
have appetitive motivational power. Just as the rodent
anticipating a desired food reward engages its opioid-
mediated analgesia circuit, so might a person anticipating
pain relief engage a homologous opioid-mediated 
circuit (see REF. 118). A sugar pill that resembles a pre-
viously administered analgesic would have the advantage
of directly engaging opioid-mediated circuits through
its sweet taste as well as the cognitive expectation of
pain relief.

Functional imaging studies support the idea that
expectancy, and expectation of pain relief in particular,
can engage opioid-mediated pain-modulating circuitry.
Using positron emission tomography and an experi-
mental pain model, Petrovic and colleagues119 studied
brain areas that are activated by the powerful MOR 
agonist remifentanyl. The same subjects were then 
given a saline infusion with the instruction that it was a
powerful analgesic. Subjects who experienced significant
relief with the placebo infusion showed activation in
areas that were largely coextensive with those activated
by the MOR agonist. These areas included the rostral
anterior cingulate, and brainstem areas that overlap with
nuclei that have been implicated in pain modulation.
Wager and colleagues took the story further by showing
that activation of the anterior cingulate cortex (ACC)
and midbrain PAG correlated with placebo analgesia in
human subjects120. Through its connection to the PAG,
the ACC is anatomically linked to the opioid-mediated
pain-modulatory circuit121.

than the ongoing tissue-damaging stimulus. The decision
is the outcome of a computation of the relative cost and
probability of the threat compared with that of the 
noxious stimulus94.

Consistent with a crucial role in decision making,
opioid-mediated pain-modulatory circuits can be
engaged during appetitive as well as aversive motiva-
tional states. Feeding sucrose to animals104,105 or human
infants106 produces a naloxone-reversible analgesic
effect. Sucrose-induced analgesia in rodents is blocked
by lesions of the ventromedial hypothalamus107, which
projects to both the PAG and RVM. Interestingly, the
RVM on-cell burst and off-cell pause are reduced dur-
ing food or water consumption62. Furthermore, the
anticipation of a food reward can have the same effect.
For example, placing animals in an environment where
they have previously received a desired food raises their
withdrawal threshold, and this effect is blocked by
naloxone108. This demonstrates that food consumption
or food predictive sensory cues activate an opioid-
mediated pain-modulatory circuit, increasing the
probability that the animal will consume the food
despite conflicting drives. Consistent with a direct link
between opioid analgesia and appetitive choice,
microinjection of MOR (or MOR and DOR) agonists
into the nucleus accumbens (a region of the BASAL 

GANGLIA that is crucial for linking motivation to 
action) induces both anti-nociception109 and con-
sumption of sweet and rich foods and ethanol110.
So, instinctive as well as learned motivational states

BASAL GANGLIA

A group of interconnected
subcortical nuclei in the
forebrain and midbrain that
includes the striatum (putamen
and caudate nucleus), globus
pallidus, subthalamic nucleus,
ventral tegmental area and
substantia nigra.

Box 1 | Serotonergic neurons and pain modulation

There is little doubt that serotonin (5-hydroxytryptamine, 5-HT) contributes to
brainstem control of nociceptive transmission at spinal levels61,126,127. However, the
weight of evidence indicates that rostral ventromedial medulla (RVM) serotonergic
neurons are part of a pathway that is anatomically coextensive and that interacts with,
but is functionally distinct from, the opioid-mediated pain-modulatory circuit. In
adult rodents, about 20% of RVM neurons are serotonergic, and most project through
the dorsolateral funiculus to innervate the dorsal horn. However, cytochemical studies
of physiologically identified RVM neurons have clearly shown that serotonergic
neurons in the RVM are neither on nor off cells; the response of serotonergic RVM
neurons to noxious stimulation is weak and variable128. Furthermore, in vivo studies in
adult animals indicate that serotonergic RVM neurons are not robustly affected by
either PAG stimulation or morphine at doses that are sufficient to inhibit nociceptive
transmission61. By contrast, in vitro studies of spinally projecting serotonergic RVM
neurons in young rats have shown postsynaptic inhibition by µ-opioid receptor
(MOR)- and κ-opioid receptor (KOR)-selective agonists129, and MOR-mediated
presynaptic inhibition of both glutamate and GABA (γ-aminobutyric acid)
transmission72. Serotonin has both excitatory and inhibitory synaptic actions on
nociceptive dorsal horn neurons130,131, and spinally administered 5-HT receptor
antagonists reduce both the pain-facilitating and inhibiting-effects of RVM
stimulation132–135. The discharge patterns of serotonergic RVM neurons have been
studied in anaesthetized cats. Their activity closely tracks periodic shifts in the
sleep–wake cycle, being highest during waking, lower during slow-wave sleep and
lowest during paradoxical sleep. In summary, serotonergic RVM neurons provide a
state-dependent and potentially bidirectional modulatory channel that is parallel to,
but operationally distinct from, the controls exerted by on and off cells. In vitro studies
indicate that the serotonergic channel might be subject to opioid control under certain,
as yet unspecified, conditions. The three channels converge at the level of the dorsal
horn. The dynamic interplay between serotonin and the action of on and off cells
represents an important field for future research.
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Conclusions
As outlined above, our knowledge of the biological 
significance of opioid receptors and endogenous opioid
peptides has leaned heavily on the use of opioid antago-
nists.Although the pain inhibition that is associated with
conditioned fear is primarily a MOR-mediated effect,
most published work has used non-selective opioid
antagonists such as naloxone and naltrexone, so the func-
tion of endogenous agonists for the other opioid receptor
classes is currently obscure.Addressing their contribution
to motivational control will require the use of selective
antagonists and some ingenuity to determine the behav-
ioural conditions that are required to activate circuits that
release endogenous ligands for DOR, KOR and ORL1.

It is noteworthy that the increase in activity in these
areas occurred prior to noxious stimulation. This 
probably represents anticipation or expectation of pain
relief. Placebo administration activates areas of the ACC
that are also activated by reward expectancy in
humans122 and primates123. The ACC also projects 
to the nucleus accumbens124, which, as noted above,
is crucial for linking motivation to action. It is note-
worthy that activity in the human nucleus accumbens
occurs rapidly following noxious stimulation and 
precedes activation of cortical areas that have been impli-
cated in pain perception125. This activity might reflect
neural processing that underlies the ‘decision’ to either
respond to or suppress ascending nociceptive pathways.
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