
Vol.:(0123456789)

SN Applied Sciences (2020) 2:1928 | https://doi.org/10.1007/s42452-020-03649-3

Research Article

State Dependent Riccati Equation (SDRE) controller design for moving 
obstacle avoidance in mobile robot

Motahareh Asgari1 · Hoda Nokhbe Foghahayee2

Received: 1 June 2020 / Accepted: 7 October 2020 / Published online: 30 October 2020 
© Springer Nature Switzerland AG 2020

Abstract

In this paper, a new navigating method for a non-holonomic wheeled moving robot in a dynamic environment with 
the moving obstacles is proposed. This method is indeed the combination of the nonlinear optimal controller based on 
State-Dependent Riccati Equation (SDRE) and an obstacle avoidance algorithm named arti�cial potential �eld (APF). The 
corresponding cost function of the SDRE is obtained of APF algorithm. APF algorithm forces the robot to approach the 
target as an attracting (low-potential) point and to get away from the obstacle as a repulsing (high-potential) point. This 
method calculates the best path from origin to destination which also implicitly guaranties the stability. The obtained 
path is the best according to the both amount of traveled distance and input energy. Moreover, this approach not 
only avoid both �xed and moving obstacle, but also create a smooth path in presence of them. Keeping the nonlinear 
structure of the system instead of eliminating them during the linearization process is the advantage of SDRE method. 
Here, the robot navigation is done in the presence of the three di�erent movements of obstacle: (1) �xed speed, (2) 
�xed acceleration and (3) non-uniform circular. The represented simulation results indicate a suitable performance of 
the proposed algorithm.

Keywords Mobile robots · Optimal control · SDRE method · Moving obstacle avoidance · Path planning

1 Introduction

Todays, the robot control problem is an important chal-
lenging issue due to the increase in the applications of 
robots in industries. The robots have more superiority over 
human beings in working under dangerous and di�cult 
conditions, higher iteration capability, and high accuracy 
and speed. The robot control contains both navigation 
and obstacle avoidance. In the robot control problem, the 
di�erent aspects are considered such as: (a) the kinds of 
environment, targets and obstacles, (b) the algorithms of 
tracking and obstacles avoidance.

The robot environment is divided into two categories: 
(1) known environment (2) unknown environment. In the 

known environment, all required information about the 
environment is available. Therefore, the rout design is o�-
line and globally optimal. However, in the unknown envi-
ronment, the information is instantly given to the robot 
by the sensors, which causes the on-line locally optimal 
route design.

Obstacles are also divided into two categories: (1) �xed 
obstacles; and (2) moving obstacles. The number of obsta-
cles and being animate (like human beings and animals) or 
inanimate (like objects or other co-worker robots) will be 
a�ective on the employing avoidance methods.

The route design and obstacle avoidance algorithms 
are selected based on the proper route (the shortest route 
with minimum time and cost) and the kind of environment 
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and obstacles. There are several obstacle avoidance meth-
ods such as simple algorithm BUG [1] and its improve-
ments [2, 3]; Vector Field Histogram(VFH) [4]; Follow the 
Gap Method (FGM) [5]; Arti�cial Potential Field (APF) [6] 
and some other methods which operate based on the 
notion of obstacle speed [7, 8].

In this paper, a non-holonomic wheeled moving robot 
in an unknown environment in the presence of moving 
obstacles is considered. An optimal path is then designed 
by employing the SDRE nonlinear optimal controller. The 
existence of nonlinearity of states and state dependent 
weight matrices in the controller structure make it useful 
as well as �exible. The main idea of this method is to factor 
nonlinear dynamics as multiplying the state vector. This is 
done by a matrix which is a function of the system states. 
In this method, at every moment, the Riccati Equation with 
the State Dependent Coe�cients (SDCs) is solved [9].

This method was �rst introduced by Pearson [10] and 
was then developed by Wernli and Cook [11]. Cloutier et al. 
showed that the feedback law based on SDRE in cases of 
nonlinear optimal controls on the multi-variable in�nite 
horizon was locally asymptotically stable [12, 13]. They also 
discussed about the using of weighting matrices on the 
control and on the state [14]. In [9], the formulating and 
applying of SDRE, non-uniqueness of parameters, the suf-
�cient and necessary conditions for the existence of the 
solution, stability, optimality, capacities, limitations of this 
method and how to resolve such limitations are fully dis-
cussed. Some research has also been done on SDRE for 
non-a�ne systems [15]. One of the most important advan-
tages of SDRE is its capability of combining with other 
algorithms such as obstacles avoiding algorithms. There-
fore, it is used in di�erent industries including auto-pilot 
[16], controlling spacecraft and satellites [17, 18], robotics 
[19–21] and etc.

There are various researches for navigating and avoid-
ing obstacles for a moving robot [22, 23] or other vehi-
cles [4, 24–28]. In the all these works, the moving obstacle 
avoidance problem was tackled as a path planning prob-
lem. In other words, the robot was considered as a position 
point without time variable and any dynamics. Therefore, 
neither internal and/or external stability of robot nor con-
trol input cost were not considered. In [29], the authors 
proposed an algorithm which deals with the obstacle 
avoidance using APF and selected tra�c rules. The poten-
tial �eld method is improved by a decentralized market-
based optimization (MBO) for multi-robot system. In [30, 
31], the route design problem of the robot is deliberated 
on a control problem by considering the robot dynamics. 
In order to do that, an SDRE controller combined with an 
arti�cial potential function was proposed for �xed obstacle 
avoidance. Although the proposed algorithm works for the 
�xed obstacle, it makes instability in the present of moving 

obstacles. It is worth mentioning that there are a few 
papers which use the combination of SDRE and APF but 
with di�erent applications [20, 21]. However, the position 
of APF term in [20, 21] is also similar to [30, 31]. It means 
that the APF term had been located in the cost function 
directly, while in our proposed method the inverse of APF 
term has been added to the cost function.

In our proposed method, a stabilizing optimal control 
is design by combination of the SDRE with a new cost 
function and the obstacle avoidance algorithm, APF. The 
two levels of control both moving obstacle avoidance and 
dynamic stabilization are done simultaneously due to the 
proposed controller.

In this paper, three kinds of obstacles have been con-
sidered including �xed speed, �xed acceleration and non-
uniform circular moving obstacles. The paper is innovative 
in terms of dealing with moving obstacles and de�ning 
a new function for the cost function in the SDRE con-
troller. The advantage of this method is in the situations 
where the obstacle is near to the target, whereas the other 
methods mentioning above cannot avoid from hitting the 
obstacle when it is near the target.

In the next section, SDRE method, APF algorithm and 
robot dynamic equations are summarized. The proposed 
algorithm which is the combination of SDRE controller and 
APF algorithm is applied to the robot dynamics in section 
three. In fourth and �fth sections the simulation results 
are represented and the paper is concluded, respectively.

2  Preliminaries

2.1  SDRE methodology

Consider the following a�ne nonlinear system.

where x ∈ R
n and u ∈ R

m are the state and input vec-
tor respectively. Assume that the function f ∶ Rn → Rn 
is continuous nonlinear and f (0) = 0 , f (.) ∈ C1(Rn) and 
B ∶ Rn → Rn×m , B(x) ≠ 0∀x. In order to use SDRE method, 
it should write f (x) = A(x)x by employing a suitable factor 
of f (x) . Here A ∶ R

n
→ R

n×n , and is non-unique for n > 1 . By 
inserting A(x) in the Eq. (1), the nonlinear structure of the 
system becomes as

A(x) and B(x) are called as matrices of SDC 
parameter-making.

The cost function which should be minimized is

(1)ẋ(t) = f (x) + B(x)u(t), x0 = x(0)

(2)ẋ(t) = A(x)x(t) + B(x)u(t), x(0) = x0
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where R
m×m

> 0,Qn×n ≥ 0 are some diagonal and symmet-
ric matrices. These matrices are called control and state 
matrices, respectively.

The structure of the control input which minimizes the 
cost function (3) is

where P(x) is a symmetrical positive de�nite solution to 
the following algebraic Riccati equation [9].

The necessary and su�cient condition for the existence 
of P(x) is the controllability of the pair {A(x),B(x)} which 
needs to be taken into account in SDC parameter-making. 
System (2) is controllable if rank 

(

M
c(x)

)

= n,∀x ∈ R
n for 

the following matrix [9].

Furthermore, the condition of the controllability in 
these systems is a su�cient condition not necessary and 
su�cient one [32]. Thus, according to [9], “the presence 
or lack of controllability of this pair, {A(x),B(x)}, need not 
have any implication on the controllability of the original 
dynamics”.

In this case since Riccati equation is dependent on the 
state variables, the solution P(x) is dependent on state 
variables too.

2.2  APF algorithm

APF is an obstacle avoidance algorithm which works based 
on attractive �eld around the target and repulsive �eld 
around the obstacle. Thus, the target has a positive force 
to attract the robot and the obstacle has a negative force 
to repel it. Finally, direction is done by result of all forces 
toward the target and avoiding from obstacle. Therefore, 
the arti�cial potential �eld, U(q) , and the arti�cial force, 
F(q) are obtained as follows

where q = (x, y)T is the position of robot, Uatt(q) , Urep(q) 
are the attractive and repulsive potential �eld and Fatt(q) , 
Frep(q) are the attractive and repulsive forces respectively 

(3)J =
1

2

∞

∫
0

[

xT (t)Q(x)x(t) + uT (t)R(x)u(t)
]

dt

(4)u = −R−1
(x)B

T
(x)P(x)x(t)

(5)
P(x)A(x) + A

T (x)P(x) − P(x)B(x)R
−1
(x)B

T
(x)P(x) + Q(x) = 0

(6)M
c(x) =

[
B(x)

|
|
|
A(x)B(x)

|
|
|
…

||
|
A
n−1 (x)B(x)

]

(7)U(q) = Uatt(q) + Urep(q)

(8)
F(q) = −∇U(q) = −∇Uatt(q) − ∇Urep(q) = Fatt(q) + Frep(q)

[33]. Now in order to attract the robot toward the goal, the 
attractive potential �eld and force is computed as:

where k is a positive coe�cient, qg =
(

xg, yg
)T

 is the posi-
tion of the target and �goal(q) = ||q − qg|| [33]. Similarly, in 
order to prevent the robot from hitting the obstacle, the 
repulsive potential �eld and force are calculated as:

where qc =
(

xc , yc
)

 is the position of obstacle, � is the posi-
tive scaling factor, and �

0
 is the largest distance between 

robot and obstacle, �(q) = ||q − qc||, and ∇�(q) = q−qc

||q−qc ||
 

[33].
In this way, the robot which is affected by artificial 

potential field can find the safe path toward the tar-
get without collision with the obstacle. The safe path is 
de�ned based on the sum of all repulsive and attractive 
forces in the arti�cial �eld.

2.3  Robot dynamics

The kinematic model of the robot is:

where x and y are the positions of the robot in a two-
dimensional x − y plane, � is the movement angle against 
the horizontal axis, v is the linear speed of the robot, � is 
the angle between wheels and the movement direction 
(steering angle) and �, a are the control variables [30]. 
Moreover, the constant L shows the distance between the 
front wheels of the moving robot and its back wheels [34] 
(also see Fig. 1).

In the �rst structure of the underlying system v and � 
are the input variables as are given below

(9)Uatt =
1

2
k
(

q − qg
)2

=
1

2
k�2

goal
(q)

(10)Fatt(q) = −∇Uatt(q) = −
1

2
k∇�2

goal
(q) = −k

(

q − qgoal
)

(11)Urep(q) =

{

0, �(q) ≥ �0

1

2
�

(

1

�(q)
−

1

�0

)2

, �(q) ≤ �0

}

(12)

Frep(q) = −∇Urep(q) =

{

0, �(q) ≥ �0

�

(

1

�(q)
−

1

�0

)(

1

�2(q)

)

∇�(q), �(q) ≤ �0

}

(13)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ẋ

ẏ

�̇

v̇

�̇

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

vcos(�)

vsin(�)

v∕L(tan (�))

a

�

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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In such a structure, sudden changes in � and v may 
practically be impossible due to physical constraints of 
some robots. Therefore, in order to smooth the parameters 
� and v, two new control inputs �, a are de�ned. In this 
way, � and v are also regarded as state variables. Thus, the 
“acceleration” variable which is made of force turns into a 
control variable, while the parameter of “speed” is taken as 
a new input to the system.

As a result, in the end, the robot movement equations 
will be in the form of (13) and a and � are labeled as linear 
acceleration and angular speed, respectively.

3  Proposed SDRE‑APF algorithm

In order to apply the SDRE controller on the robot dynam-
ics, there is a need to determine the matrices A(x) and 
B(x) of that. Notice that the SDC parameterization process 
should be done in a way that the pair {A(x),B(x)} becomes 
controllable [9]. For this purpose, the following procedure 
is done.

Since A(x) is obtained from mathematical factor, it will 
not be unique for n > 1 [9]. The underlying system ẋ = f (x) , 
can be rewritten as

(14)x =

⎡
⎢⎢⎣

x

y

�

⎤
⎥⎥⎦
, u =

�
v

�

�

(15)x =

⎡
⎢⎢⎢⎢⎢⎣

x

y

�

�

�

⎤
⎥⎥⎥⎥⎥⎦

, u =

�
a

�

�

(16)ẋ = f (x) = �f (x) + (1 − �)f (x) = A(x, �)x

w h e r e  A(x, �) = �A1(x) + (1 − �)A2(x)  a n d 
� =

[

�
1
… �

n

]T
. This procedure provides an additional 

degree of freedom.
Dynamic Eq. (13) based on (16) becomes

and then by adding and subtracting �
1
v and using some 

mathematical manipulation becomes

Therefore, matrices A(x) and B(x) are

where

The controllability matrix M
c(x) of the system matrices 

(A(x), B(x)) is

ẋ = v cos � = �
1

[

v

(

cos �

�

)]

� +
(

1 − �
1

)

(cos �)v

ẋ = v cos � = �
1

(

v
cos �

�

)

� − �
1
v +

[(

1 − �
1

)

(v cos �) + �
1
v
]

= �
1
v

[

cos �

�
−

1

�

]

� +
[(

1 − �
1

)

cos � −
(

1 − �
1

)

+ 1
]

v

= �
1
v

[

cos � − 1

�

]

� +
[(

1 − �
1

)

(cos � − 1) + 1
]

v

(17)ẏ = v sin � = �
2

[

v
(

sin�

�

)]

� +
(

1 − �
2

)

(sin �)v

�̇ =
v

l
tan� = �

3

[

v

l

(

tan�

�

)]

� +

(

1 − �
3

)

(

tan�

l

)

v

v̇ = a

�̇ = �

(18)A(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 �13 �14 0

0 0 �23 �24 0

0 0 0 �34 �35

0 0 0 0 0

0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, B(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0

0 0

0 0

1 0

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(19)

�13 =
�1v(cos � − 1)

�
, �14 =

(

1 − �1
)

(cos � − 1) + 1

�23 = �2v

(

sin �

�

)

, �24 =
(

1 − �2
)

sin �

�34 =
(

1 − �3
) tan�

l
, �35 = �3

(

v

l

)

(

tan�

�

)

(20)M
c(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 �
14

0 �
13
�
34

�
13
�
35

0 0 0 0

0 0 �
24

0 �
23
�
34

�
23
�
35

0 0 0 0

0 0 �
34

�
35

0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 1  The kinematic model of a wheeled moving robot [34]
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The matrix M
c(x) is full rank for every arbitrary 

�1 ≠ �2 and �3 ≠ 0 . According to these conditions the 
underlying system is fully controllable.

Since the robot should reach a target 
(

xd , yd
)

 , the error 
signals are de�ned as

Therefore the error system becomes

Fortunately the matrices A(x) and B(x) are not changed. 
Furthermore, the cost function (3) is rewritten as:

w h e r e  m a t r i c e s  R(e)  a n d 
Q(e)

(

Q(e) = diag
(

Qx ,Qy ,Q� ,Qv ,Q�

))

 are defined based 
on the APF algorithm. In this algorithm, potential func-
tion is de�ned based on the positions of the target and 

(21)ex = x − xd , ey = y − yd , e� = �, ev = v, e� = �

(22)

ėx = ev cos e� = �
1

[

ev

(

cos e�

e�

)]

e� +
(

1 − �
1

)(

cos e�
)

ev

ėy = ev sin e� = �
2

[

ev

(

sine�

e�

)]

e� +
(

1 − �
2

)(

sin e�
)

ev

ė� =
ev

l
tan e� = �

3

[

ev

l

(

tan e�

e�

)]

e� +

(

1 − �
3

)

(

tan e�

l

)

ev

ėv = a

ė� = �

(23)J = 1∕2

∞

∫
0

[

eT (t)Q(e)e(t) + uT (t)R(e)u(t)
]

dt

the obstacles. The target is like a low-potential valley with 
an attractive force, and the obstacle is like a high-potential 
mountain peak with a force of repulsion [35]. The quanti-
ties of these forces of attraction and repulsion are propor-
tionate to the distance between the target and the obsta-
cle. Therefore, APF leads the robot to approach the target 
or get away from the obstacles respectively (see Fig. 2).

According to the APF algorithm, when the robot is 
moving toward the target, the potential function should 
be decreased and when it is approaching the obstacle, it 
should be increased. Consequently, a suitable candidate 
for the potential function is

where (x, y) and 
(

xob, yob
)

 indicate the current position of 
the robot and the moving obstacle respectively. Here, s is 
the reliability coe�cient, rob is appropriated distance from 
obstacle and w represents the weighting coe�cient to 
realize the distance from the robot to the obstacle when-
ever it passes. Knowing that the objective of an optimal 
control such as SDRE controller is to decrease a cost func-
tion, the inverse of de�ned obstacle avoidance term (24) 
is added to the cost function (23) as follows

(24)PPF = w

⎛
⎜⎜⎜⎝

�
ex
�2

+

�
ey
�2

rob + s
��

x − xob
�2

+

�
y − yob

�2�
⎞⎟⎟⎟⎠

Fig. 2  An instance of route 
production based on the 
Potential Field Methodology 
[35]
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Therefore, the matrix Q becomes as:

Notice that the inverse of function PPF increase if the 
robot approaches the target or gets away from the obsta-
cle and causes the system to continue its behavior in that 
manner. Notice that the increment in the inverse of PPF is 
equal to increase the value of matrix Q than matrix R . This 
in turn allows the input signal to increase. Here are four 
critical situations for robot control based on robot posi-
tion. The robot could be:

1. Near the target, far from the obstacle.
2. Near the both target and obstacle.
3. Far from both target and obstacle.
4. Far from the target and near the obstacle.

It can be shown that the PPF function in our proposed 
method works if the robot approaches the target. In other 
words, when the robot is far from the target, PPF term has 
a small e�ect on the control signal than Qx and Qy like case 
3.

Consequently, according to the new de�nitions, the 
SDRE controller produces a control signal that minimizes 
the cost function (25). According to the cost function (25) 
and matrix Q in (26) the robot’s approaching the target 
results in a decrease of the costs while approaching the 
obstacle leads to an increase of the costs. In other words, 
the robot starts moving from the start point towards the 
target; when approaches the obstacle, the ‘PPF’ potential 
function increases and then causes decrease of matrix Q . 
This allows the robot to increases its distance from the tar-
get and so allows itself to avoid the obstacle by circling 
round it. In such way, the navigation is done without hit-
ting the obstacle.

(25)

J = 1∕2

∞

∫
0

([

eT (t)Q(e)e(t) + uT (t)R(e)u(t)
]

+ PPF
−1
)

dt

(26)

Q = diag

(

Qx +
1

e2
x
× PPF

,Qy +
1

e2
y
× PPF

,Qv ,Q� ,Q�

)

Remark 1 In [30], a combination of SDRE controller and 
APF has already been shown. There, the potential function, 
matrix Q and cost function are in the forms of (27)–(29) 
respectively.

According to (27) when the robot approaches the obsta-
cle, the potential function ‘obs’ increases which increase 
the matrix Q given in (28). Note that the increasing of Q 
makes stronger forces to decrease the error. Consequently, 
it makes the robot approaches the target, while it may not 
avoid the obstacle which is in its neighborhood. Moreo-
ver, in this research, coe�cient "w" is initialized as 1000. 
The high value of w leads to a high-gain control which 
obviously is not applicable because of the huge amount 
of control cost. According to the simulations which are 
done by the authors, cost function (29) with (28) is not 
only capable of route design in the presence of moving 
obstacles but also makes instability in some cases. Based 
on Eqs. (27) and (28) when the obstacle moves near the 
target, the huge amount of Q (because of "obs" term) 
makes a huge peak on the control input which gets robot 
away from the target. This behavior often causes instabil-
ity too. It is clear that this method not only cannot work 
in the presence of the moving obstacles but also cannot 
have a good performance when the �xed obstacle is near 
the target.

Remark 2 The de�ned cost function in [31] is too similar 
to [30]. However, the potential function, "OBS", is a little 
di�erent.

(27)obs = w

⎛
⎜⎜⎜⎜⎝

�
x − xd

�2
+

�
y − yd

�2

rob +

���
x − xob

�2
+

�
y − yob

�2�

⎞⎟⎟⎟⎟⎠

(28)Q = diag

(

1

e2
x

(obs),
1

e2
y

(obs), 1, 1, 1

)

(29)J = 1∕2

∞

∫
0

[

eT (t)Q(e)e(t) + uT (t)R(e)u(t)
]

dt

(30)

Rat =

√

(

x − xd
)2

+
(

y − yd
)2
, Rrep =

√

(

x − xob
)2

+
(

y − yob
)2
, obsa = m

(

Rz
at

Rz
rep

+ 0.1

)

,

obsb =

(

R
(z−1)
at

Rz
rep

+ 0.1

)

, OBS = obsa + obsb, m = 5, z = 2
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The di�erence created in the potential function is not 
e�ective in solving the problem described in remark 1. 
Although the authors of [31] have claimed that their pro-
posed method can avoid the �xed obstacle with smaller 
"w" than that of [30], the simulations do not con�rm that. 
Actually, this cost function cannot work without high-gain 
control e�ectively especially when the obstacle is near the 
target.

When case 2 is occurred, Q function becomes big. 
The big Q allows the input signal to increase in order to 
decrease the error. However, the obstacle is near to the tar-
get, and the robot should move slowly with accuracy near 
the obstacle. In case 3, when the robot is far from both 
the target and obstacle, the input signal could increase in 
order to tend to the target, While here the small Q causes 
slow movement toward the target.

Remark 3 In comparison with the existing studies [30, 
31], the proposed methodology has the following main 
advantages:

1. It is applicable to avoid from moving obstacles, 
whereas the existing studies were only proposed to 
avoid from �xed obstacles.

2. It works in the presence of �xed or moving obstacles 
which are near the target. By contrast, the existing 
methods cannot avoid this types of obstacles and they 
lead to instability or collision with obstacles.

3. The produced input control signal in the proposed 
method is small as well as smooth to apply to practi-
cal cases.

For the better compare see the Table 1 and “Appendix 1”.

(31)Q = diag

(

1

e2
x

(obs),
1

e2
y

(obs), 1, 1, 1

)

(32)J = 1∕2

∞

∫
0

[

eT (t)Q(e)e(t) + uT (t)R(e)u(t)
]

dt

4  Simulations

In this section, the simulation method is presented within 
the context of MATLAB software. In order to explore the 
performance of this method, three different kinds of 
movements for the obstacles are considered:

1. Fixed speed.
2. Fixed acceleration.
3. Non-uniform circular.

Due to the mobility of the obstacle, two di�erent views 
by a three dimensional rotation of the graph are provided 
for each case so that the two dimensions of the robot’s 
avoidance of the obstacle can be shown in order to make 
comparisons.

It is clear that a major advantage of the SDRE control-
ler is not to ignore certain important states due to the 
no need for the linearization of a nonlinear system. So 
as to see this advantage better, there are the compari-
son between our proposed method and the LQR con-
troller for all three movements, one of which is indi-
cated in the simulations. The results for all three 
movements were the same. LQR controller is designed 
after linearization process around the working point 
(

� = 0.7 rad, V = 1.42
m

s
,� = 0.33 rad

)

. To do so, see 

Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 
21, 22, 23 24, 25 and 26.

As it is obvious in the �gures, in the system with the 
control of the SDRE controller, there has been no accident 
between the robot and the obstacle. In this case, whenever 
the robot approaches the obstacle, it immediately gets 
away from it and avoids it through increasing the cost. 
By using the LQR controller, the robot’s navigation is also 
done without any collisions. However, there is a great dif-
ference between SDRE controller and LQR controller. The 
LQR is capable of being applied in a limited number of 
working points. Therefore, changes of the working point, 
which the system has been linearized, make the LQR con-
troller ine�cient.

Table 1  Display the di�erent results by using three method in presence of �xed obstacle (for case 2)

Used method Type of obstacle Hit Approach 
time (s)

Travelled distance Smooth 
response

Admissi-
ble input

Maximum of 
input vari-
able

Proposed method by [30] Fixed Yes 2.5 11.0775 No No 67.6391

Proposed method by [31] Fixed No 12 9.7525 No No 5.8929

Proposed method by this paper Fixed No 5 10.6445 Yes Yes 14.7482
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The SDRE controller’s reaction, however, is not a�ected 
by such changes, and this is the most important advantage 
of this controller. Furthermore, the state and input vari-
ables through the SDRE controller are smoother and with-
out severe �uctuations in comparison with LQR controller.

It is worth mentioning that under all three di�erent 
movements for obstacle, for any changes in the robot’s 
and the obstacle’s initial conditions, the performance of 
our proposed methodology without any changes in the 
SDRE controller’s conditions was assessed and it was con-
cluded that the performance of the method in all cases 
had been desirable.

4.1  Fixed speed

In this state, the robot starts moving from the point 
(

x0, y0
)

= (−3, 3) , while the target is to get to the point 
(

xd , yd
)

= (3, 1). The obstacle also starts moving with a 
�xed speed of − 0.2 m/s along ‘x’ and ‘y’ from the point 

Fig. 3  Robot’s route (green line), moving obstacle (red line) -SDRE 
controller Fig. 4  Robot’s route (green line), moving obstacle (red line)-LQR 

controller

Fig. 5  The route travelled by the robot, SDRE controller
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(

xob, yob
)

= (0, 2) (Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14), 
Qx = 50 (1∕m)2,Qy = 50 (1∕m)2,Q

�
= 1 (1∕rad)

2
,Qv = 1

(s∕m)2,Q
�
= 30(1∕rad)

2, R
a
= 5

(

s2∕m
)2
, R

�
= 5 (s∕rad)

2.

Fig. 6  The route travelled by the robot, LQR controller

Fig. 7  Behavior of variable x SDRE controller

Fig. 8  Behavior of variable x LQR controller

Fig. 9  Behavior of variable y SDRE controller
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4.2  Fixed acceleration

In this state, the robot is located at the start point of 
(

x0, y0
)

= (2, 2) and the target is specified at the point 
(

xd , yd
)

= (−4, 1) . The obstacle starts moving from the point 
(

xob, yob
)

= (−1, 1) with an initial speed of 0.1 m/s along ‘x’ 
and 0.1 m/s along ‘y’ with a �xed acceleration of + 0.3 m/s2 
along ‘x’ and − 0.2 m/s2 along ‘y’ (Figs. 15, 16, 17, 18, 19, 20), 
Qx = 50(1∕m)2,Qy = 50(1∕m)2,Q

�
= 1(1∕rad)

2
,Qv = 1

(s∕m)2,Q
�
= 1(1∕rad)

2
, Ra = 20

(

s2∕m
)2
, R

�
= 5(s∕rad)

2.

4.3  Non‑uniform circular

In this state, the robot is located at the start point of 
(

x0, y0
)

= (2, 2) and the target is specified at the point 
(

xd , yd
)

= (−4, 1) . The obstacle, on the other hand, 
starts moving from the point 

(

xob, yob
)

= (−3, 2) with an 
angular frequency of 2 rad/s (Figs. 21, 22, 23, 24, 25, 26). 
Qx = 50(1∕m)2,Qy = 50(1∕m)2,Q

�
= 1(1∕rad)

2
,Qv = 1

(s∕m)2,Q
�
= 20(1∕rad)

2
, Ra = 10

(

s2∕m
)2
, R

�
= 5(s∕rad)

2.
As it is given in remark 3 and simulations, the proposed 

method not only can avoid from the �xed obstacle but also 
has a good ability to avoid from the moving obstacle due 
to the new cost function. Moreover, the smooth response 
is observed and input variables are gained which can be 
applied to real systems.The most important advantage is 
the ability to avoid from the obstacle near the target in 

comparison with the two other methods, and the ability 
to respond to all the working points in comparison with 
LQR (see Tables 2, 3, 4 and “Appendix 2”).

Response means the behavior of all the variables of 
system.

5  Conclusion

In this study, a new controller was proposed for navigating 
a non-holonomic wheeled moving robot within a dynamic 
environment in the presence of a moving obstacle. The 
proposed controller was constructed of two parts; the 
nonlinear optimal controller and the obstacle avoidance 
algorithm. Indeed, the control rule extracted from the 
SDRE (nonlinear optimal controller) in combination with 
the APF algorithm (obstacle avoidance algorithm). The 
APF algorithm operated based on de�ning the potential 

Fig. 10  Behavior of variable y LQR controller

Fig. 11  Behavior of variables θ, v and � , SDRE controller
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function over the target and obstacle position. This poten-
tial function was employed in the cost function of SDRE. 
Any changes in the positions of the target or the obsta-
cle change the potential function and the cost function 
respectively. Therefore, when the robot approached the 
obstacle, it �rst avoided the obstacle by increasing the 
distance from the target and cost function and then man-
aged to �nd its route by decreasing the cost function in 
the presence of the obstacle. In this paper, route design 
was done in the presence of the obstacles with three dif-
ferent movements (i.e. moving with ‘a �xed speed’, ‘a �xed 
acceleration’ and ‘a non-uniform circular’ movement). 
It should also be added that the method applied in this 
study has more advantages than the LQR controller since 
the SDRE methodology is not restricted by working points. 
Hence, it results in a better navigation and an obviously 
smoother response.
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Appendix 1 Simulation results for Table 1

Case 2: Near the both target and obstacle

Results of proposed method by [30]:
In this case robot starts moving from the point 

(

x0, y0
)

= (−2,−2) and the target is to get the point 
(

xd , yd
)

= (5, 5) . The obstacle, also, is located in the point 
(

xob, yob
)

= (4.5, 5) . All the design parameters are the same 
for all methods (Figs. 27, 28, 29, 30, 31).

Results of proposed method by [31]:
See Figs. 32, 33, 34, 35, 36.
Results of proposed method by this paper:
In this case robot should approach the target which is 

located near the obstacle.
According to the Figs. 27, 28, 29, 30, 31 and 32, the 

method proposed by [31] is not able to reach the target 
in the time defined in the controllers as the methods 
proposed by this paper and [30] (the robot get the point 
about (2.2, 2.4) in that time). So there is a compulsory for 
us to increase the time, and it can be seen that after almost 
12 s, when the robot is approaching the target located 
near the obstacle, the input variables are not smooth. 

Fig. 12  Behavior of variables � , v and � , LQR controller

Fig. 13  Behavior of variables a and ω, SDRE controller
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In other words, the input variables do not have suitable 
behavior from t = 12 s when the robot is near to both the 
target and obstacle (see Fig. 36). Via the other method pro-
posed by [30], the robot has a collision with obstacle, and 
its input variables are not smooth. As shown in Fig. 31, not 
only the control inputs have very large values but they also 
behave inappropriately. This inadmissible behavior of the 
input variables happen from t = 3 s when the robot is near 
to both the target and obstacle. Through the proposed 
method by this paper, the robot not only can avoid hitting 
the obstacle but also get to the target in optimal time and 
distance (Fig. 37). Furthermore, the control input signal is 
admissible and smooth, and this distinction is on the basis 
of new cost function (Figs. 37, 38, 39, 40, 41).

Case 4: Far from the target and near the obstacle

Results of proposed method by [30, 31] and this method:
In this case robot starts moving from the point 

(

x0, y0
)

= (−2,−2) and the target is to get the point 
(

xd , yd
)

= (5, 5) . The obstacle, also, is located in the point 
(

xob, yob
)

= (−1.5,−1.5) . All the design parameters are the 
same for all methods.

Results of proposed method by [30]:
See Figs. 42, 43, 44, 45 and 46.
Results of proposed method by [31]:
See Figs. 47, 48, 49, 50 and 51.

Results of proposed method by this paper:
In this case robot should move toward the target which 

is located far from the obstacle (Figs. 52, 53, 54, 55, 56).
According to the Figs. 42, 43, 44, 45 and 46, through 

the proposed method by [30], the robot reach the point 
(6, 5) and the input variables are too big. Via the method 
proposed by [31], the robot pass the target and reach the 
point about (8, 5) (see Fig. 47). Also, the input variables 
especially w is not smooth (see Fig. 51). Via the proposed 
method by this paper, the robot reach the target without 
collision and has a smooth and admissible input variables 
(see Figs. 52, 53, 54, 55, 56).

Appendix 2 Simulation results for LQR 
in other movements (Tables 3 and 4)

Fixed acceleration

In this state, the robot is located at the start point 
of 

(

x0, y0
)

= (2, 2) and the target is specified at the 
point 

(

xd , yd
)

= (−4, 1) . The obstacle starts moving 
from the point 

(

xob, yob
)

= (−1, 1) with an initial speed 
of 0.1  m/s along ‘x’ and 0.1  m/s along ‘y’ with a fixed 

Fig. 14  Behavior of variables a and ω, LQR controller

Fig. 15  Robot’s route (green line), moving obstacle (red line)
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acceleration of + 0.3 m/s2 along ‘x’ and − 0.2 m/s2 along ‘y’ 

( Qx = 50(1∕m)2,Qy = 50(1∕m)2,Q
�
= 1(1∕rad)

2
,Qv = 1(s∕m)2,

Q
�
= 1(1∕rad)

2
, Ra = 20

(

s2∕m
)2
, R

�
= 5(s∕rad)

2 (Figs. 57, 58, 
59, 60, 61, 62).

Non‑uniform circular

In this state, the robot is located at the start 
point of 

(

x0, y0
)

= (2, 2) and the target is speci-
fied at the point 

(

xd , yd
)

= (−4, 1) .  The obstacle, 
on the other hand, starts moving from the point 
(

xob, yob
)

= (−3, 2) with an angular frequency of 2 rad/s. 
Qx = 50(1∕m)2,Qy = 50(1∕m)2,Q

�
= 1(1∕rad)

2
,Qv = 1(s∕m)2,

Q
�
= 20(1∕rad)

2
, Ra = 10

(

s2∕m
)2
, R

�
= 5(s∕rad)

2 (Figs. 63, 64, 
65, 66, 67, 68).

Fig. 16  Behavior of variables � , v and �

Fig. 17  The route travelled by the robot

Fig. 18  Behavior of variables a and ω 
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Fig. 19  Behavior of variable x 

Fig. 20  Behavior of variable y 

Fig. 21  Robot’s route (green line), moving obstacle (red line)
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Fig. 22  Behavior of variables � , v and �

Fig. 23  The route travelled by the robot

Fig. 24  Behavior of variables a and �

Fig. 25  Behavior of variable x 
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Fig. 26  Behavior of variable y 

Table 2  Display the results from proposed method and LQR in presence of moving obstacle

Used method Type of obstacle Hit Approach time 
(s)

Travelled dis-
tance (m)

Smooth 
response

Admissible 
input

Maximum of 
input vari-
able

LQR Moving (�xed speed) No 6 9.0182 No No 9.5182

Proposed method 
by this paper

Moving (�xed speed) No 4 7.0324 Yes Yes 23.1876

Table 3  Display the results from proposed method and LQR in presence of moving obstacle

Used method Type of obstacle Hit Approach 
time (s)

Travelled 
distance (m)

Smooth 
response

Admissible 
input

Maximum of 
input vari-
able

LQR Moving (�xed acceleration) No 5 6.7076 No No 18.3214

Proposed method 
by this paper

Moving (�xed acceleration) No 5 6.6585 Yes Yes 2.1236

Table 4  Display the results from proposed method and LQR in presence of moving obstacle

Used method Type of obstacle Hit Approach 
time (s)

Travelled 
distance (m)

Smooth 
response

Admissible 
input

Maximum of 
input vari-
able

LQR Moving (non-uniform circular) No 5 6.7630 No No 16.8362

Proposed method 
by this paper

Moving (non-uniform circular) No 4 6.7745 Yes Yes 4.6076
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Fig. 27  The rout travelled by robot

Fig. 28  Behavior of variable x 

Fig. 29  Behavior of variable y 

Fig. 30  Behavior of variables � , v,�
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Fig. 31  Behavior of variables a and ω 

Fig. 32  The rout travelled by robot

Fig. 33  Behavior of variable y 

Fig. 34  Behavior of variable x 
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Fig. 35  Behavior of variables � , v,�

Fig. 36  Behavior of variables a and ω 

Fig. 37  The rout travelled by robot

Fig. 38  Behavior of variable x 
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Fig. 39  Behavior of variable y 

Fig. 40  Behavior of variables � , v,�

Fig. 41  Behavior of variables a and ω 

Fig. 42  The rout travelled by robot
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Fig. 43  Behavior of variable y 

Fig. 44  Behavior of variables � , v,�

Fig. 45  Behavior of variable x 

Fig. 46  Behavior of variables a and ω 
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Fig. 47  The rout travelled by robot

Fig. 48  Behavior of variable y 

Fig. 49  Behavior of variables � , v,�

Fig. 50  Behavior of variable x 
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Fig. 51  Behavior of variables a and ω 

Fig. 52  The rout travelled by robot

Fig. 53  Behavior of variable x 

Fig. 54  Behavior of variables � , v,�
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Fig. 55  Behavior of variable y 

Fig. 56  Behavior of variables a and ω 

Fig. 57  Robot’s routing (green line), moving obstacle (red line)—LQR controller
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Fig. 58  The route travelled by the robot, LQR controller

Fig. 59  Behavior of variable x LQR controller

Fig. 60  Behavior of variable y LQR controller

Fig. 61  Behavior of variables � , v and � LQR controller
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Fig. 62  Behavior of variables a and ω, LQR controller

Fig. 63  Robot’s routing (green line), moving obstacle (red line)—LQR controller

Fig. 64  Behavior of variable x LQR controller
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Fig. 65  Behavior of variable y LQR controller

Fig. 66  The route travelled by the robot, LQR controller

Fig. 67  Behavior of variables θ, v and � , LQR controller
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