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STATE-DEPENDENT STOCHASTIC NETWORKS. PART I:

APPROXIMATIONS AND APPLICATIONS WITH

CONTINUOUS DIFFUSION LIMITS

BY AVI MANDELBAUM AND GENNADY PATS

Technion

In a state-dependent queueing network, arrival and service rates, as

well as routing probabilities, depend on the vector of queue lengths. For

properly normalized such networks, we derive functional laws of large
Ž . Ž .numbers FLLNs and functional central limit theorems FCLTs . The

former support fluid approximations and the latter support diffusion

refinements.

The fluid limit in FLLN is the unique solution to a multidimensional

autonomous ordinary differential equation with state-dependent reflec-

tion. The diffusion limit in FCLT is the unique strong solution to a

stochastic differential equation with time-dependent reflection.

Examples are provided that demonstrate how such approximations

facilitate the design, analysis and optimization of various manufacturing,

service, communication and other systems.
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1. Introduction. The paper deals with state-dependent open
Ž .KM rM r1 queueing networks. These are exponential networks in whichj j

arrival and service rates, as well as routing probabilities, depend on the state

}the vector of queue lengths. For properly normalized queue-length pro-
Ž .cesses, we derive functional laws of large numbers FLLNs and functional

Ž .central limit theorems FCLTs . The former support fluid approximations and

the latter support diffusion refinements. This paper extends to a network
w xsetting our results 59 , where the focus is on a single station. Our model for

Ž .KM rM r1 is a state-dependent adaptation of that proposed by Massey andj j

w xWhitt 60 for time-dependent networks.

Stationary analysis of state-dependent networks started with the seminal
w x w x Žwork of Jackson 37 and culminated in the work of Serfozo 71 that also

.includes extensive references . We, on the other hand, are concerned with the
Ž .Ktransient evolution of M rM r1 networks. It is typically hard to analyze,j j

yet, it is often important. This is manifested in networks without stationary

behavior, such as critically loaded or overloaded networks, networks operat-

ing over a finite horizon or exhibiting a periodic evolution, large networks,

which often go through long relaxation phases, and more. For a variety of
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reasons, exact analysis of our networks, both transient and stationary, is

rarely possible. Hence developing different approximating schemes, for exam-

ple, fluid and diffusion, is a worthwhile undertaking.

A distinguishing feature of our models is state-dependent routing. Here,
w xwe extend the work of Krichagina 46 that covered networks with state-

independent routing. A consequence of this feature is that the characteriza-

tion of fluid and diffusion limits involves reflection problems with noncon-

stant directions of reflection, varying with either time or state. Such maps are
Žnot as well behaved as the usual multidimensional Skorokhod maps in

.particular, they need not be Lipschitz . Hence, we develop new tools to

establish convergence, existence and uniqueness of the limits. Our approach

to reflection problems with nonconstant directions of reflection is based on
w x w x Ž .Dupuis and Ishii 22 and 23 . See Appendix B.

Ž .FLLN Theorem 4.6 holds in probability. The fluid limit in FLLN is the

unique solution to a multidimensional autonomous ordinary differential
Ž .equation DE with state-dependent reflection. As a consequence, the fluid

limit of a network is an absolutely continuous function, each coordinate of
Žwhich can hit and leave zero through time. This is in contrast to the

w x .one-dimensional case 59 ; see Figure 2 that displays a periodic orbit. The

proof of FLLN is based on the Lipschitz property of time-dependent reflection

operator, established in Appendix B. Our original approach was based on
w xdifferential inclusions, as in 46 . The current treatment, however, is simpler

and was inspired by an anonymous referee.

Ž .The weak limit given in FCLT Theorem 7.2 is the unique strong solution
Ž .to a stochastic differential equation SDE with time-dependent reflection. In

general, our diffusion limits are Markov processes with discontinuous sample
Žpaths and weak convergence is with respect to Skorokhod’s M -topology see1

.Section 15 for more details . However, in this paper we prove a restricted

version of FCLT, which is still very useful in applications. This theorem gives

rise to continuous diffusion limits, in which case the convergence is with

respect to Skorokhod’s J -topology, which further reduces to U-convergence1

w x w x9 . Here, again, we develop ideas of Krichagina 46 , some of which were also
w x Ž .anticipated by Anulova 5 but without proofs . The extension to discontinu-

w xous diffusion limits can be found in Pats 65 and will appear in a future
w xpaper 64 .

The state-dependent model, proposed in Section 2, provides a flexible

framework for accommodating a wide variety of phenomena in queueing

networks. The results obtained support the design, analysis and optimization

of various manufacturing, service, communication and other systems. Some

examples, elaborated on in Sections 10 and 11, are manufacturing and

computer networks with congestion-dependent routing, services and possibly
w x w xalso various forms of breakdowns 84, 70, 75, 3 , learning systems 78 ,

w xepidemics models 36 , traffic assignment models and resource allocation
w x Ž .problems 20 . See Sections 10 and 11 for details. Moreover, in Section 11 we

demonstrate that our approximations are also useful for the analysis of
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various networks that do not fit exactly into our framework. In particular,

with an appropriate choice of parameters, our limit theorems lead to reason-

able approximations for closed networks, networks with large finite buffers,

networks governed by shortest-queue routing and more.

Our FLLN and FCLT also unify and generalize existing approximations for
w xmany particular models. Examples are state-independent networks 14, 15

w xand state-dependent overloaded networks 4 , both specialized to exponential
Žnetworks, and some time-dependent networks. See Sections 10, 11 and 15 for

.more references and examples.

The remainder of the paper is organized as follows. In Section 2, we
Ž .Kintroduce our model of the M rM r1 network. Section 3 presents a semi-j j

martingale representation of the queueing processes, which is the starting

point for our proofs of FLLN and FCLT. In Section 4 we formulate FLLN and

provide some guidelines to its proof. In Section 5 we add alternative charac-

terizations of fluid limits. These characterizations support the definition of

overloaded, critically loaded and underloaded regimes, provided in Section 6,

and they furnish insights into the nature of the fluid limits. The formulation

of our FCLT is presented in Section 7, again followed by a proof outline.

FLLN and FCLT for idle-time processes are given in Section 8. Refinements

are discussed in Section 9. Sections 10 and 11 are devoted to applications of

our results. In Section 12, we prove the semimartingale representation of the

queueing process. We prove FLLN and FCLT in Sections 13 and 14, respec-

tively. Section 5 contains a proof of the DE characterization of fluid limits.

Work in progress, covering discontinuous diffusion limits and time-dependent

networks, is motivated in Section 15. The Appendixes provide the technical

background for our limit theorems. In particular, Appendix B contains a

summary of some new results on the time-dependent reflection problem that
w xappeared elsewhere 57 . Our main notations are summarized in Appendix D.

( )K2. The model of the M rrrrr M rrrrr 1 network. We consider an openj j

queueing network that consists of K stations. Each station operates as a
w xsingle M rM r1 queue 59 . Transitions of customers between stations arej j

governed by a family of transition probability matrices. A distinguishing

feature of our model is that the transition probabilities, as well as the arrival

and service rates, depend on the state of the network, namely, the queue

lengths at the stations.

Formally, we analyze the R
K-valued stochastic queueing process Q sq

� Ž . 4Q t , t G 0 that satisfies the relations

2.1 Q t s Q 0 q A t q F t y D t ,Ž . Ž . Ž . Ž . Ž . Ž .

t
q2.2 A t s N l Q u du ,Ž . Ž . Ž .Ž .Hk k kž /

0

K
t

2.3 F t s 1 U S u g p Q uy dD u ,Ž . Ž . Ž . Ž . Ž .Ž .� 4Ý Hk j j jk j
0js1
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t
2.4 D t s 1 Q uy ) 0 dS u ,� 4Ž . Ž . Ž . Ž .Hk k k

0

t
y2.5 S t s N m Q u du ,Ž . Ž . Ž .Ž .Hk k kž /

0

Ž .T wwhere t G 0, k s 1, . . . , K, A s A , . . . , A and similarly for F and D. We1 K

Ž . Ž . xput Q 0y s Q 0 . Here, Q is constructed in terms of the following primi-
Ž . K � 4T � 4Ttives: Q 0 g R is a random vector; l s l , . . . , l , m s m , . . . , m :q 1 K 1 K

K K � w x4`R ª R are given measurable functions; U l , j s 1, . . . , K, are se-q q j ls0

w x q yquences of i.i.d. random variables, uniformly distributed on 0, 1 ; N , N ,k k

Ž . Ž .k s 1, . . . , K, are standard rate 1 , right-continuous with left-limits RCLL
K w x ŽPoisson processes; p : R ª EE 0, 1 , j, k s 1, . . . , K, are measurable Clarkejk q

w x .16 , page 111 set-valued functions, such that

2.6 p j l p j s B for all k / k , j g R
K

.Ž . Ž . Ž .jk jk 1 2 q1 2

Ž . Ž .All the random quantities in 2.1 ] 2.5 are defined on a common complete

probability space. Since Nq , Ny , k s 1, . . . , K, have RCLL sample paths byk k

Žassumption, we see that Q, A, F, D and S are RCLL as well. Note that
t .integrals H stand for H . A straightforward pathwise construction of0 w0, t x

Ž . Ž . Ž .2.1 ] 2.5 establishes the existence and uniqueness of Q up to a possible

explosion time. The simplicity of this construction is due to the pure-jump
Žcharacter of the primitives. One could also use the more general argument of

Žw x .Ethier and Kurtz 25 , Theorem 4.1, Chapter 6 , through which Q can be
.defined by a recurrent procedure.

The quantities involved in the construction have the following interpreta-
Ž . � Ž . 4 � Ž . 4tion: Q 0 is an initial queue vector; A s A t , t G 0 and F s F t , t G 0

Ž . Ž .are counting processes}the kth coordinates A t and F t represent thek k

cumulative number of exogenous and endogenous arrivals to station k during
w x � Ž . 4 � Ž . 40, t , respectively. Furthermore, D s D t , t G 0 and S s S t , t G 0 are

Ž .counting processes}D t represents the cumulative number of departuresk

w x Ž .from station k during 0, t , whereas S t counts potential departuresk

w xfrom station k; this potential is fully realized during intervals r, t over
Ž . w x Ž . Ž Ž . Ž ..T Ž .which Q s ) 0, s g r, t . Now, l Q s l Q , . . . , l Q and m Q sk 1 K

Ž Ž . Ž ..Tm Q , . . . , m Q are, respectively, vectors of instantaneous exogenous1 K

Ž .arrival and service rates at the state Q. Next, let p j denote the Lebesguejk

Ž . K Ž .measure of p j , j g R . From 2.6 it follows that the nonnegative matrix-jk q
K K=K Ž . w Ž .x Kvalued function P: R ª R , given by P ? s p ? , has the prop-q q jk j, ks1

Ž . Kerty that P j is substochastic for every j g R ; that is,q

K

0 F p ? F 1, j s 1, . . . , K .Ž .Ý jk

ks1

Ž .Thus, P Q is a matrix of instantaneous state-dependent transition probabili-
Ž .ties at state Q. Indeed, in view of 2.3 , a customer leaving station j at time u

Ž .at this moment S and D both jump is routed to station k for whichj j

2.7 U S u g p Q uy .Ž . Ž . Ž .Ž .j j jk
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Ž . Ž . Ž . Ž Ž ..Given S u and Q uy , the event 2.7 has probability p Q uy , andj jk

Ž .there exists at most one k for which it prevails. If 2.7 is violated for all k,

the customer leaves the network.

MAIN ASSUMPTIONS ON PRIMITIVES.

Ž . Ž . q y � w x4`M1 The random quantities Q 0 , N , N and U l , k s 1, . . . , K, arek k k ls0

assumed to be mutually independent.

Ž .M2 Assume that l, m satisfy a linear growth constraint. That is, there

exists a constant L ) 0 such that1

< < < < < < Kl j k m j F L 1 q j , j g R .Ž . Ž . Ž .` ` 1 q

Ž . Ž Ž .. Ž Ž ..KM3 Assume that the spectral radii r P ? satisfy sup r P j - 1.j g Rq

Ž . < Ž . <M4 Assume that E Q 0 - `.

REMARK 2.8. The queueing process Q constructed above is a Markov jump
Žw xprocess on the K-dimensional nonnegative integer lattice 25 , Theorem 4.1,

.Chapter 6 . It follows from Proposition 13.4 presented below that Assumption
Ž . KM2 ensures nonexplosion of Q. The sample paths of Q are R -valuedq

functions, which are RCLL and piecewise constant.

Ž . Ž .3. Martingale representation. We restate 2.1 ] 2.5 in a form that is
Ž . Ž .amenable to analysis. Specifically, 2.1 ] 2.5 are equivalent to

t
Q t s Q 0 q u Q u du q a tŽ . Ž . Ž . Ž .Ž .H

0
3.1Ž .

t
Tq I y P Q u dY u , t G 0,Ž . Ž .Ž .H

0

T3.2 u ? s l ? q P ? y I m ? ,Ž . Ž . Ž . Ž . Ž .

3.3 a s M a q M f y M d ,Ž .
?

3.4 Y ? s I Q u s 0 m Q u du,� 4Ž . Ž . Ž . Ž .Ž .H
0

a ˆ f ˆ d ˆ3.5 M s A y A , M s F y F , M s D y D ,Ž .

t
ˆ3.6 A t s l Q u du,Ž . Ž . Ž .Ž .H

0

t
Tˆ3.7 F t s P Q uy I Q uy ) 0 m Q u du,� 4Ž . Ž . Ž . Ž . Ž .Ž . Ž .H

0

t
ˆ3.8 D t s I Q uy ) 0 m Q u du.� 4Ž . Ž . Ž . Ž .Ž .H

0

Ž . Ž .Here A, F and D are given by 2.2 ] 2.5 .

The following technical lemma provides the mathematical framework for
ˆ ˆ ˆour proofs of FLLN and FCLT later on. We shall show that A, F and D are
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Ž w xthe compensators for A, F and D, respectively see, e.g., 11 , Theorem T8,
.Chapter 1 . The proof of this lemma is postponed to Section 12, as it has no

significance for the understanding of later development.

Ž .LEMMA 3.9. Let V, FF, PP denote the common complete probability space
Ž . Ž .on which the random quantities involved in 2.1 ] 2.5 are defined. Suppose

that the Main Assumptions in Section 2 are satisfied. Then there exists a
Ž . Žw x .filtration F on V, FF, PP , satisfying the ‘‘usual conditions’’ 40 , page 10 ,

a f d Ž .such that M , M and M given by 3.5 are vector-valued locally square
Žw x .integrable 69 , page 35 F-martingales.

Ž . Ž .REMARK 3.10. The representation 3.1 ] 3.4 of the queueing process has
Ž . Ž .the following interpretation. The function u Q in 3.1 describes the poten-

tial net flow rate through the networks, at state Q. Indeed, the coordinate uk

Ž .k s 1, . . . , K is given by

K

u Q s l Q q p Q m Q y m Q .Ž . Ž . Ž . Ž . Ž .Ýk k jk j k

js1

Here, the first term on the right-hand side is the rate of exogenous arrivals

to station k, the second term is the rate of potential endogenous arrivals to

station k from other stations, and the last term is the potential departure

rate at station k. The potential is fully realized if none of the stations is idle.

The discrepancy between the real and potential net flow is captured by Y
w Ž .xsee 3.4 . This discrepancy accumulates during idle periods in the network.

Ž .Finally, the martingale a in 3.1 encompasses the jumps of the queueing

process. As will be seen later, a is negligible on the fluid scale and gives rise

to the continuous martingale part on the diffusion scale.

( ) Ž n n .K4. Fluid approximations FLLN . Consider a sequence M rM r1 ,j j

Ž . Ž .n s 1, 2, . . . , of queueing networks, each of which is specified by 2.1 ] 2.5

and satisfies the Main Assumptions in Section 2.

A superscript n indicates that the corresponding quantity is related to
n � nŽ . 4the nth network. Introduce the rescaled processes q s q t , t G 0 , n s

1, 2, . . . , by

1
n n4.1 q t s Q t .Ž . Ž . Ž .

n

Ž . Ž . nIn view of 3.1 ] 3.8 , q has the representation

1 t
n n n n nq t s q 0 q u nq u du q a tŽ . Ž . Ž . Ž .Ž .H

n 0
4.2Ž .

t Tn n nq I y P nq u dy u , t G 0,Ž . Ž .Ž .H
0
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Tn n n n4.3 u ? s l ? q P ? y I m ? ,Ž . Ž . Ž . Ž . Ž .

1
n a , n f , n d , n4.4 a s M q M y M ,Ž . Ž .

n

?1
n n n n4.5 y ? s I q u s 0 m nq u du,� 4Ž . Ž . Ž . Ž .Ž .H

n 0

a , n n ˆn f , n n ˆn d , n n ˆnM s A y A , M s F y F , M s D y D ,

t
n q n nA t s N l nq u du ,Ž . Ž .Ž .Hk k kž /

0

K
t

n n n n n nF t s 1 U S u g p nq uy dD u ,Ž . Ž . Ž . Ž .Ž .� 4Ž .Ý Hk j j jk j
0js1

t
n n nD t s 1 q uy ) 0 dS u ,� 4Ž . Ž . Ž .Hk k k

0

t
n y n nS t s N m nq u du ,Ž . Ž .Ž .Hk k kž /

0

t
n n nÂ t s l nq u du,Ž . Ž .Ž .H

0

t Tn n n n n nF̂ t s P nq uy I q uy ) 0 m nq u du,� 4Ž . Ž . Ž . Ž .Ž . Ž .H
0

t
n n n nD̂ t s I q uy ) 0 m nq u du.� 4Ž . Ž . Ž .Ž .H

0

n n n nŽ .We list below the assumptions on the primitives l , m , P , and q 0 ,

which are used in the formulations and proofs of our theorems.

ASSUMPTIONS A.

Ž .A1 Assume that

1 1
n nl nj ª l j , m nj ª m j ,Ž . Ž . Ž . Ž .

n n

P n nj ª P j , u.o.c.,Ž . Ž .
as n­`, where l, m and P are given vector- and matrix-valued locally

Ž Ž ..KLipschitz functions and, moreover, sup r P j - 1.j g Rq

Ž . < nŽ . < < nŽ . < Ž < <. KA2 Assume that l nj k m nj F nL 1 q j , j g R , where n s` ` 1 q

1, 2, . . . and L is a given positive constant.1

Ž . nŽ . Ž . Ž . KA3 Assume that q 0 ª q 0 , as n­`, where q 0 g R is a given deter-p q

� < nŽ . <4ministic vector and the sequence E q 0 is bounded uniformly in n.

� n4The asymptotic behavior of q is described by the following theorem, the

proof of which is postponed to Section 13.

Ž .THEOREM 4.6 FLLN . Suppose that Assumptions A are satisfied. Then
� n4 w .q converges, u.o.c. over 0, ` in probability, as n­`, to a deterministic
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absolutely continuous function q. This q is the unique solution to the following

DE with state-dependent reflection:

t¡
q t s q 0 q u q u duŽ . Ž . Ž .Ž .H

0
t

Tq I y P q u dy u G 0, t G 0,Ž . Ž .Ž .H~ 04.7Ž .
y is nondecreasing in each coordinate, y 0 s 0,Ž .

`
T1 q t ) 0 dy t s 0,Ž . Ž .H¢

0

where
T4.8 u ? s l ? q P ? y I m ? .Ž . Ž . Ž . Ž . Ž .

In what follows, q will be referred to as the fluid limit associated with the

network sequence under consideration. To gain insight into the form of q,
Ž . Ž . ncompare 4.2 with 4.7 , in view of Assumptions A: a turns out to be

negligible and all other terms are easily matched. Existence and uniqueness
Ž . w xof the solution to 4.7 follow from 23 , due to the Lipschitz properties of l, m

Ž . w Ž .xand P and the uniform boundedness of r P see Assumption A1 .

Ž .REMARK 4.9. The special case of 4.7 when P ' const is widely covered in
Ž w x w x w x .the literature. See 31 , 54 , 22 and references therein. This particular

w xcase is known as a differential equation with oblique reflection 31 .

T w xRecall the following geometric interpretation of I y P 54 . The kth

column r k of I y PT, k s 1, . . . , K, is the direction in which q is reflected

when it hits the hyperplane j s 0. Moreover, if q hits a point at whichk

several facets j s 0 intersect, then the direction of reflection belongs to somek

cone. This cone is generated by the corresponding vectors r k
. Thus, in the

Ž .case P ' const, the directions of reflection are constant. By contrast, in 4.7 ,

the directions of reflection vary from point to point on the boundary. In line
Ž .with this, the reflection problem 4.7 is called state-dependent. This is in

contrast to time-dependent problems in which the directions of reflection are

allowed to vary with time only. Time-dependent reflection problems provide
Ž .the mathematical framework for our FCLT see Section 7 and Appendix B is

devoted to them.

5. An alternative representation of the fluid limit. In this section
Ž .we provide a characterization of the fluid limit q, defined by 4.7 , as the

Ž . Žunique solution to a state-dependent projected DE see Appendix A . For the
w xnotion of a projected DE within the context of normal reflection, see 6 , page

.266. This characterization provides an explicit algorithm for the construction

of q and exposes distinctions between fluid approximations for networks and
Žfor single stations. We employ this algorithm in the example at the end of

.this section, which exhibits a two-station network with a periodic fluid limit.

Moreover, this DE characterization will be used in Section 6 to help introduce

the notion of traffic intensities.
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K Ž . Ž .From now on, denote SS J R . Further, let N x and T x be, respec-q SS SS

Žtively, the tangent and normal cones to SS at x g SS . Recall the definitions of
.the normal and tangent cones from Appendix D. Clearly,

N x s z g R
K: z s 0 if k f II x ,Ž . Ž .� 4SS y k 0

5.1Ž .
T x s z g R

K : z G 0 whenever k g II x .Ž . Ž .� 4SS k 0

Ž .THEOREM 5.2. The solution q to 4.7 is the unique solution to the projected

DE

5.3 q ? s P FFŽqŽ ? .. u q ? , FF ? s T ? , P ? ,� 4Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .˙ SS

Ž .with the initial condition q 0 .

PROOF. In view of the definition of the state-dependent projection P
Ž .Definition A.1 , this theorem actually states that there exists a function m̃

such that the following conditions are satisfied for almost every t:

T5.4 q t s u q t q I y P q t m t ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .˙ ˜

5.5 q t g T q t , ym t g N q t ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .˙ ˜SS SS

T
5.6 q t ? m t s 0.Ž . Ž . Ž .˙ ˜

Ž . Ž . Ž .First, we prove that any solution to 5.4 ] 5.6 satisfies 4.7 . To this end, let
Ž . ? Ž . Ž .y ? s H m s ds. Then the first equation in 4.7 is satisfied. Next, from the˜0

Ž .second inclusion in 5.5 , it follows that y is nondecreasing and the comple-
Ž . Ž . Ž . Ž Ž ..mentarity last condition in 4.7 holds. Moreover, since q t g T q t , we˙ SS

Ž .T Ž Ž .. Ž .obtain that q t ? n F 0 for all n g N q t for almost every t and thus˙ SS

Ž .q ? g SS .

Ž . Ž . Ž .Now we show that the solution q to 4.7 satisfies 5.4 ] 5.6 . Indeed, let
Ž . Ž .m s y. Evidently, 5.4 and the second inclusion in 5.5 are satisfied. Further,˜ ˙

Ž . Ž .T Ž Ž .. Žsince q ? g SS , we have that q t ? n s 0 for all n g N q t for almost all˙ SS

. Ž . Ž Ž .. Ž .T Ž .t . In particular, q t g T q t and q t ? m t s 0. The proof is thus˙ ˙ ˜SS

complete. I

REMARK 5.7. Theorem 5.2 indicates that the fluid limit for a network is a

solution to some multidimensional DE with a discontinuous right-hand side
Ž w x . Ž . Ž . Ž . 0cf. 6 , page 266 . Indeed, it follows from 5.4 ] 5.6 that when q ? g SS , the

Ž . Ž . Ž .projection P in 5.3 is an identity mapping. Therefore, q ? s u ? . If, at an˙

Ž . Ž .instant t, q hits ­ SS at a point x , q t becomes the oblique projection of u x˙

Ž .onto T x .
SS

An appropriate framework for investigating DEs with discontinuous
w Ž .x Ž w x w x.right-hand sides such as 5.3 is differential inclusions see 6 and 26 .

w xKrichagina 46 was the first to apply the martingale approach within the

context of differential inclusions to derive FLLN for networks with state-

independent routing.

w xIt was explained in 59 that the fluid limit for a single station is a

monotone absolutely continuous function, which absorbs at zero if it ever
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Žreaches it. The reason for this is that the fluid limit for a single station is

closely related to the unique solution of an autonomous first-order ordinary

differential equation. It is known that this solution is a strictly monotone or
w x .constant function 28 , page 40. The following corollary points to the fact

that, for networks, the origin of the coordinates is the absorbing point for

fluid limits. It is an immediate consequence of the uniqueness of the solution
Ž .to 5.3 .

Ž . Ž .COROLLARY 5.8. If q t s 0 for some t ) 0, then q t ' 0 for all t G t .0 0 0

In contrast to a single station, fluid limits for networks are, in general,

nonmonotone functions; each coordinate can hit and leave zero. To illustrate

this, we present an example with a periodic fluid limit, in which one of the

coordinates hits and leaves zero periodically. The example also provides
Ž . Ž .insight into the nature of representations 4.7 and 5.3 . This example can be

Žskipped without loss of reading continuity. A comprehensive analysis of

trajectories of fluid limits as solutions to DEs with discontinuous right-hand

sides is beyond the scope of our paper. For this issue, refer to the book by
w x .Filippov 26 , Chapter 4.

EXAMPLE. Consider the two-station tandem network depicted in Figure 1,

with the primitives

6n , if 0 F Q , Q F n ,¡ 1 2

q
6n q 20 Q y n , if Q ) n ,Ž .1 1~l Q sŽ . q1 q

Q2y
6n y 5 Q y n y 1 , otherwise,Ž .1¢ ž /ž /n

3n , if 0 F Q , Q F n ,¡ 1 2

q q~6n q 20 Q y n q 4 Q y n , if Q ) n ,Ž . Ž .m Q sŽ . 1 2 21
q¢6n q 20 Q y n , otherwise,Ž .1

0 1
l s 0, m s 5n , P ? s ,Ž .2 2 0 0

Ž .for some n g ZZ . Here, Q s Q , Q , where Q and Q are values of theq 1 2 1 2

queues at the first and the second station, respectively.

FIG. 1. A two-station tandem network with a periodic fluid limit.
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Ž .By Theorem 4.6, the fluid limit for this network is a solution to 4.7 with

6, if 0 F j , j F 1,¡ 1 2

q~6 q 20 j y 1 , if j ) 1,Ž .5.9 l j s 1 1Ž . Ž .1
qy q¢ 6 y 5 j y 1 j y 1 , otherwise,Ž . Ž .Ž .1 2

3, if j , j F 1,¡ 1 2

q q~6 q 20 j y 1 q 4 j y 1 , if j ) 1,Ž . Ž .5.10 m j sŽ . Ž . 1 2 21
q¢6 q 20 j y 1 , otherwise,Ž .1

0 1
5.11 l s 0, m s 5, P ? s ,Ž . Ž .2 2 0 0

Ž . Ž . Ž . Ž .where j , j G 0. Assume that Q 0 s Q 0 s 2n; that is, q 0 s q 0 s 2.1 2 1 2 1 2

ŽThe form of the fluid limit is sensitive to the initial state. Points other than
Ž . Ž . .Q 0 s Q 0 s 2n need not give rise to periodic orbits. The fluid limit for1 2

this network is depicted in Figure 2a and b. The path goes into a periodic

orbit, and q , q evolve as periodic functions after the initial transient phase.1 2

Ž . Ž .These graphs are obtained by numerical integration of 5.4 ] 5.6 .

Constructing the trajectory of the fluid limit. Below, we discuss how the
Ž . Ž .parameters of the network, given by 5.9 ] 5.11 , give rise to the fluid limit

Ž . Ž . Ž .depicted in Figure 2a and b. Substituting 5.9 ] 5.11 into 4.8 yields the

expression for u . The vector field generated by u is illustrated in Figure 2c.

w T xThis vector field, together with the reflection matrix I y P , defines q and,˙

w Ž . Ž . xeventually, q. See 5.4 ] 5.6 . Namely, when q , q ) 0, the trajectory of q1 2

Ž . 2 w T xevolves according to u see Remark 5.7 . Further, when q hits ­ R , I y Pq
comes into play. Specifically, recall from Remark 4.9 that the columns of
w T x 1 w x 2 w xI y P , r s 1, y1 9 and r s 0, 1 9 constitute the directions in which q

is reflected when it hits the boundary x s 0 or x s 0, respectively. For1 2

example, consider point in time t9 s 2.24. At that instant, q hits the bound-
w x Ž . wary x s 0 at point 0, 4.4 . Calculations give that u 0, 4.4 s y16.4,1

x Ž . Ž . w T Ž Ž ..x w x11.4 . Now, 5.4 ] 5.6 yield that g J I y P q t9 m s 16.4, y16.4 and˜

Ž . Ž Ž .. w x 1q t9q s u q t9 q g s 0, y5 . Note that g is colinear to r , as it must be.˙

w x Ž .These calculations are illustrated in Figure 2d. According to q t9q , q˙

starts moving downward along the axis x s 0 and keeps this direction until1

entering the region in which u points toward the interior of R
2

. At thatq
Ž w x.instant around the point 0, 1.33 , q leaves the boundary and follows the

periodic orbit, as depicted in Figure 2a.

6. Local traffic intensities. This section sets the stage for our FCLT

presented in Section 7. We prove additional details on the issue of character-

izing traffic intensities in Section 15, within the context of M -convergence.1

Introduce the function m,

y1T FFŽ j .m j s I y P j P u j y u j ,� 4Ž . Ž . Ž . Ž .Ž .
6.1Ž .

FF ? s T ? , P ? ,Ž . Ž . Ž .Ž .SS
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Ž .FIG. 2. Fluid limit for the two-station tandem network. a Path of the fluid limit, which starts
Ž . Ž .from point 2, 2 at t s 0 and follows the arrows. b Trajectories of the fluid limit. The solid line

Ž .is q , the dashed line is q . c The vector field generated by u . The broken lines divide the plane1 2

Ž . Ž . Ž . Ž .into the different regions, which are computed by 4.8 and 5.9 ] 5.11 . d Oblique reflection:

Ž Ž .. w TŽ Ž ..x Ž . Ž .relative position of u q t9 , g s I y P q t9 y t9q and q t9q at time t9 s 2.3.˙ ˙
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FIG. 2. Continued.
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where j g R
K
. In view of Theorems 4.6 and 5.2,q

m q t s y t s m t , for almost every t ) 0,Ž . Ž . Ž .Ž . ˙ ˜

Ž . Ž . Ž .where y and m are defined by 4.7 and 5.4 ] 5.6 , respectively. Henceforth,˜

w x Ž . Ž Ž ..we assume that m is defined for all t g 0, T and is given by m ? s m q ? .˜ ˜
qŽ . yŽ . 0Ž .At each moment t, define the sets J t , J t and J t of overloaded,

Ž w x w x w x.underloaded and critically loaded stations, respectively cf. 46 , 14 and 55

by

Jq t s j: q t ) 0 ,Ž . Ž .� 4j

Jy t s j: q t s 0, m q t ) 0 ,Ž . Ž . Ž .Ž .� 4j j6.2Ž .

J 0 t s j: q t s 0, m q t s 0 .Ž . Ž . Ž .Ž .� 4j j

During its evolution, each station of the network can alternate between

overloaded, underloaded and critically loaded phases. To underline that these

phases are determined by the fluid limit, we also refer to them as overloaded,
Ž w x.critically loaded and underloaded asymptotic regions cf. 55 . Our FCLT

presented in the next station reveals that each asymptotic region has its

distinctive type of diffusion limit. Specifically, the diffusion limits for over-

loaded, critically loaded and underloaded stations are diffusion, reflected

diffusion and zero processes, respectively.

( )7. Diffusion approximations FCLT . Introduce the sequence of sto-
n � nŽ . 4chastic processes V s V t , t G 0 , n s 1, 2, . . . , by

n n'7.1 V t s n q t y q t .Ž . Ž . Ž . Ž .Ž .

This sequence represents amplified deviations of the rescaled queueing pro-
n � n4cesses q from their fluid limit q. The asymptotic behavior of V is given by

FCLT that will be presented momentarily.

Let us start with a brief discussion on the issue of continuity of diffusion
Ž .limits. Simple analysis of 7.1 reveals that our diffusion limits could, in

Ž . qŽ . yŽ .general, be discontinuous. Indeed, recall the definition 6.2 of J t , J t
0Ž . q y Žand J t . If, for example, k g J for t - t and k g J for t G t for some0 0

. � n4t ) 0 , then the limit of V has a jump at t , with positive probability.0 k 0
n n' � 4Since the jumps of V are of size 1r n , V cannot converge in the usualk

ŽSkorokhod J -topology the ‘‘largest jump’’ functional is J -continuous; see,1 1

w x.e.g., 67 . We assert that, in fact, the convergence holds in the Skorokhod
Ž .M -topology. See Section 15 for a more detailed discussion on this issue.1

In this paper, we prove a simplified version of FCLT, which is yet very

useful in applications. Namely, Theorem 7.2 is formulated for an interval
w x q y 00, T , over which J , J and J do not depend on time. In this case the

limit process is continuous and the convergence holds with respect to the
ŽJ -topology. Actually, the convergence to a continuous limit holds with1

w x .respect to the U-topology 9 . Such a version, though simplified, still gives

rise to the general form of the diffusion limits, while avoiding the issue of

convergence near discontinuity points of the limit. General versions of FCLT,
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w xcovering cases of discontinuous limits, appear in Pats 65 and will be
w x Žpresented in a future paper 64 . The main idea of those versions is to divide

w xthe time interval 0, T into open subintervals, each of which does not contain

points of discontinuities, and to apply Theorem 7.2 separately to each of the

subintervals. The diffusion processes thus obtained are joined together in a
.way that possibly gives rise to discontinuities of the final diffusion limit.

Ž . Ž .THEOREM 7.2 FCLT . Let the conditions of FLLN Theorem 4.6 be

satisfied. Assume in addition that

n nl nj m njŽ . Ž .
' 'n y l j ª f j , n y m j ª f j ,Ž . Ž . Ž . Ž .l mž / ž /n n7.3Ž .

n'n P nj y P j ª f j , u.o.c.,Ž . Ž . Ž .Ž . P

as n `, where f , f and f are given vector- and matrix-valued functions,­ l m P

which are bounded and continuous. Finally, suppose that:

Ž .i l, m and P are differentiable with continuous bounded derivatives;
Ž . qŽ . yŽ . 0Ž . w xii J ? , J ? and J ? are constant during 0, T ;
Ž . nŽ . Ž . Ž . Ž .iii V 0 ª V 0 , where V 0 is a given random vector with V 0 s 0 ford k

all k g Jy
.

� n4 w xThen the sequence V converges weakly over 0, T to a continuous Markov
Ž .process V. The process V is the unique strong solution to the SDE with

w Ž .xtime-dependent reflection see B.6 ,

?
R y y1˜w x7.4 V s F I y I R t dX t ,Ž . Ž . Ž .HG ž /

0

dX t s f q t dt y f T q t dy t q ­u q t V t dtŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .u P

y ­ PT q t ( V t dy tŽ . Ž . Ž .Ž .7.5Ž .
1r2 w xqS q t dW t , t g 0, T ,Ž . Ž .Ž .

Ž . Ž . Ž .with the initial condition X 0 s V 0 . Here q, y and u are given by 4.7 and
Ž . K4.8 , respectively, W is a standard R -valued Brownian motion and

7.6 G s j g R
K : j G 0, ;k g Jyj J 0 ,Ž . � 4k

T7.7 R ? s I y P q ? ,Ž . Ž . Ž .Ž .

T y˜7.8 R ? s I y P q ? I ,Ž . Ž . Ž .Ž .

7.9 f s f q PT f y f q f Tm ,Ž . u l m m P

� 4 � 4 TS s diag l q diag m y m q diag P m y m� 4Ž .
7.10Ž .

T � 4 � 4y P diag m y m y diag m y m P ,

Ž .where m is given by 6.1 .
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In what follows, V will be referred to as the diffusion limit associated with

the network sequence under consideration.

Ž .REMARK. We assume for convenience that X 0y s 0. Hence,

y1y T yw xV 0 s I y I I y P q 0 I X 0 s X 0 ,Ž . Ž . Ž . Ž .Ž .

Ž tas it must be. To verify these equalities, recall that all integrals H stand for0

.H and see Remark B.3.w0, t x

Ž .REMARK 7.11. From the definition of ( see Appendix D it follows that
Ž . T Ž Ž .. Ž .the matrix-valued function E ? J ­ P q ? ( V ? satisfies

K ­ Pk j w xE t s q t V t , j, k s 1, . . . , K , t g 0, T .Ž . Ž . Ž .Ž .Ýjk i
­j iis1

REMARK. Our FLLN and FCLT can be adapted to cover some cases when

l, m and P have piecewise continuous derivatives. We address this issue in

Section 9.

The proof of Theorem 7.2 is postponed to Section 14. Here, we content

ourselves with

Ž . Ž . Ž .OUTLINE OF PROOF. In view of 13.2 , 13.3 and 7.1 , we can write

1
n R n R'7.12 V s n F x q X y F x ,Ž . Ž .SSSSS SSSSSž /'n

where

7.13 X n s V n 0 q f n y f n q B n y B n q M n ,Ž . Ž . u P u P

? 1
n n n n'7.14 f ? s n u nq u y u q u du,Ž . Ž . Ž . Ž .Ž . Ž .Hu ½ 5n0

?1 Tn n n T nf ? s P nq uy y P q uŽ . Ž . Ž .Ž . Ž .HP 'n 07.15Ž .

=I q n u s 0 mn nqn u du,� 4Ž . Ž .Ž .
?

n n'7.16 B ? s n u q u y u q u du,� 4Ž . Ž . Ž . Ž .Ž . Ž .Hu
0

?1
n T n TB ? s P q u y P q uŽ . Ž . Ž .Ž . Ž .HP 'n 07.17Ž .

=I q n u s 0 mn nqn u du,� 4Ž . Ž .Ž .
n n'7.18 M s n a .Ž .

Ž . Ž . � n4 ŽStraightforward analysis of 7.13 ] 7.18 reveals that X is C-tight see
. � n4Lemma 14.13 . Let X be any weak limit of X . Then we may and do assume
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� n4 nthat X converges u.o.c., a.s., to X. Next, rewrite V in the following way:

1
n R R n'7.19 V s n F x q X y F x q e ,Ž . Ž .SSSSS SSSSSž /'n

1 1
n R n R'7.20 e s n F x q X y F x q X .Ž . SSSSS SSSSSž / ž /' 'n n

� n4Observe that e converges to zero u.o.c., a.s. Indeed, in view of the Lipschitz
Ž .property of time-dependent reflection see Theorem B.1 , we have

5 n 5 5 n 5e F L X y XT T

� n4for some L ) 0. The limit of V can be interpreted as some form of a

directional derivative of F
R , at the point x in the direction of X. Theorem
SSSSS

� n4B.2 provides an expression for this derivative. By that theorem, V con-
Ž .verges u.o.c., a.s., to a process V, which is given by 7.4 . Actually, it leads to

� n4 � n4the conclusion that V is C-tight, provided that X is C-tight. To complete
Ž . Ž .the proof of the theorem, we must show, first, that 7.4 and 7.5 possess a

Ž . Ž .unique strong solution see Lemma 14.8 and, second, that X is given by 7.5
Ž .see Lemma 14.14 .

We conclude the outline of the proof with an explanation of the correspon-
Ž . Ž .dence between 7.5 and 7.13 . The first and the second terms on the
Ž . � n4 � n4 wright-hand side of 7.5 are the limits of f and f , respectively. This is au P

Ž . xconsequence of 7.3 and FLLN. Further, applying the mean value theorem
Ž . Ž . � n4 � n4and FLLN to 7.16 and 7.17 reveals that B and B give rise in the limitu P

Ž .to the third and fourth terms, respectively see Lemma 14.14 . Finally,
Ž . � n4 Žthe last martingale term arises from the martingale sequence M see

.Lemma 14.9 . I

8. Approximations for idle-time processes. A straightforward modi-
Žfication of arguments used in the proofs of FLLN and FCLT Theorems 4.6

.and 7.2, respectively leads to a corresponding limit theorem for the sequence
� n4y , given by

?1
n n n n n ny s Y , Y ? s I q u s 0 m nq u du, n s 1, 2, . . . .� 4Ž . Ž . Ž .Ž .H

n 0

This sequence represents a rescaled discrepancy between real and potential

departures, which arises during idle periods in the stations. Note that if at

some station k, the service rate depends on the value of queue at that station
w nŽ n. nŽ n.xonly that is, m Q s m Q , thenk k k

8.1 Y n s mn 0 I n ,Ž . Ž .k k k

nŽ . ? � nŽ . 4where I ? s H 1 q u s 0 du is the idle-time process at station k.k 0 k

� n4The following proposition constitutes the FLLN and FCLT for y :

PROPOSITION 8.2. Assume that the conditions of Theorem 4.6 are satisfied.

� n4 w .Then y converges, u.o.c. over 0, ` in probability, as n­`, to a determinis-
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Ž .tic absolutely continuous function y given by 4.7 . Assume further that the
� n4conditions of Theorem 7.2 are satisfied. Then the sequence H , given by

n n'H s n y y y , n s 1, 2, . . . ,Ž .

converges weakly to the continuous Markov process

?
y1˜8.3 H ? s R t d V t y X t ,� 4Ž . Ž . Ž . Ž . Ž .H

0

˜ Ž . Ž . Ž .where V, X and R are characterized by 7.4 , 7.5 and 7.8 , respectively.

9. Discontinuous derivatives ­­­­­ l , ­­­­­m and ­­­­­P. In this section we

discuss an extension of FCLT, covering some cases when l, m and P have

piecewise continuous derivatives. In the one-dimensional case, a general
w xstatement was given by Theorem 4.3 in 59 . We provided there a condition on

the discontinuities of l and m, under which FCLT holds without any changes.

We also derived a modified FCLT, covering cases when that condition is not

satisfied. The case of networks with piecewise continuous derivatives of
w xprimitives is treated in 58 , where, in particular, queues with reneging,

preemptive priorities, finite population and finite number of servers are

covered.

In this paper, we present a simple modification of the FCLT which is

sufficient for our applications. This version characterizes some cases when
Ž .FCLT Theorem 7.2 holds without changes.

PROPOSITION 9.1. Suppose that all the conditions of Theorem 7.2 are

satisfied with the following modification: there exists « ) 0 such that the

derivatives ­l, ­m and ­ P are Lipschitz continuous in the set

9.2 B q t , « ,Ž . Ž .D
w xtg 0, T

w xwhere B j , « is a Euclidean ball with center j and radius « . Out of this set,

we allow ­l, ­m and ­ P to be piecewise continuous functions with a finite

number of discontinuities in each compact subset of R
K
. Then Theorem 7.2q

applies without any changes.

The proof is omitted because of its similarity to the proof of Theorem 7.2.

10. Applications. In this section, we demonstrate that our state-depen-

dent networks are natural models of various real systems. Specifically, our
Ž . Ž .examples show that the model 2.1 ] 2.5 fits a wide variety of queueing

networks, phenomena and forms of control. In most examples, we do not

provide explicit expressions for fluid and diffusion limits, due to space limits.

In each case, we can write down these expressions by substituting the
Ž . Ž . Ž .parameters of the models into the general equations 4.7 , 7.4 and 8.3 .

Note, however, that even for small-size models, such as those considered
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below, the corresponding DEs and SDEs often allow only numerical solutions.

This motivates the additional numerical examples in Section 11.

10.1. Special regimes of operation. We start with particular cases in
Ž . Ž . Ž . Ž .which the fluid and diffusion limits, given by 4.7 , 7.4 , 7.5 and 8.3 ,

substantially simplify. These cases will be used in our examples later on in

this and the next section.

Networks without underloaded stations. In this case Jy
' B and we have

Ž . Ž . Ž .q s u q , where u is given by 4.8 . Further, V is the unique strong solution˙

to the following SDE with time-dependent reflection:

?¡
TV ? s X ? q I y P q t dY t ,Ž . Ž . Ž . Ž .Ž .H

0
0V G 0, k g J ;k

~Y is nondecreasing in each coordinate, Y 0 s 0;Ž .10.1Ž .

qY ' 0, k g J ;k

?

01 V t ) 0 dY t ' 0, k g J .� 4Ž . Ž .H¢ k k
0

Here X is defined by

dX t s f q t dt q ­u q t V t dt q S1r2 q t dW t , t G 0,Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .u

Ž . Ž .and f and S are given by 7.9 and 7.10 , respectively. Finally,u

10.2 H s Y .Ž .

Overloaded networks. This is a special case of the previous one, in which
0 Ž q � 4. Ž . Ž . Ž .J s B that is, J ' 1, . . . , K . Then, again, q s u q , 10.1 and 10.2˙

imply that H ' 0 and

dV t s f q t dt q ­u q t V t dt q S1r2 q t dW t , t G 0.Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .u

Ž .Note that V is a Gaussian process, provided V 0 is a normal random vari-

able, for example, independent of W.

Further, introduce the mean vector and covariance matrix functions

T
a ? J EV ? , b ? J Cov V ? s E V ? y a ? V ? y a ? .Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .

Ž w x.Then see 40 a and b satisfy the DEs

a t s f q t q ­u q t a t ,Ž . Ž . Ž . Ž .Ž . Ž .˙ u

T
ḃ t s ­u q t b t q b t ­u q t q S q t , t G 0.Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .

10.3Ž .

y � 4Underloaded networks. In this case, J ' 1, . . . , K and we have

q ' 0, V ' 0;

y1T T 1r2H s y I y P 0 f 0 y f 0 m t q S 0 W t , t G 0.Ž . Ž . Ž . Ž . Ž .� 4Ž .u P
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wHere, f , f and S are the same as in Theorem 7.2 and m s y I yu P
T Ž .xy1 Ž .P 0 u 0 .

10.2. Special models. Here is a list of particular models that are covered
Ž .by our FLLN and FCLT Theorems 4.6 and 7.2 and Propositions 9.1 and 8.2 .

Networks with state-independent routing. For such models, fluid and

diffusion limits are solutions to DEs and SDEs, with reflection in constant
w xdirections. For this case, we extend the results of Krichagina 46 to un-

bounded arrival and service rates, and we develop a framework for a rigorous
w x w x Ž w xanalysis of M -convergence, to appear in 56 and 64 see also 59 and1

.Section 15 .

Networks with finite population, multiserver stations and state-indepen-

dent routing. In such models, rates of arrivals and services are given by
Ž w xpiecewise linear functions. See Sections 5.4]5.8 in 59 for single-station

.examples. In line with this, fluid limits are solutions to autonomous linear
Ž .DEs with reflection, while diffusion limits are reflecting diffusion processes

of the Ornstein]Uhlenbeck type. Our theorems here generalize the corre-
w x w xsponding results of Kogan, Liptser and Smorodinskii 45 , Prisgrove 68 and

w xKogan and Liptser 44 .

It is of interest that, for some of these networks, our fluid and diffusion

approximations provide exact expressions for mean values and covariances of

the queueing processes. For illustration, consider a sequence of single sta-

tions with primitives

ln Qn s l ? n y Qn , mn Qn s mQn ,Ž . Ž . Ž .
10.4Ž . nQ 0 s nq 0 , n s 1, 2, . . . ,Ž . Ž .

Ž . � 4where l, m g R and q 0 g 0, 1, . . . , n . By FLLN and FCLT and in view ofq

Ž .10.3 we have

l l
yŽ lqm .t10.5 q t s y e y q 0 , a s EV ' 0,Ž . Ž . Ž .

l q m l q m

b t s Var V tŽ . Ž .

1
yŽ lqm .t 2 2s lm y e l m y l y q 0 m y lŽ . Ž .� Ž .2

l q mŽ .
10.6Ž .

y2 Žlqm .t 2 2 2y e l q q 0 m y l , t G 0.Ž . 4Ž .

On the other hand, standard calculations with probability generating func-

tions yield

10.7 EQn s nq, Var Qn s nb, n s 1, 2, . . . ,Ž .

Ž . Ž . Ž w x w x.where q and b are given by 10.5 and 10.6 see 74 and 27 . Observe that
Ž . Ž .10.7 is precisely the expression that we obtain by combining 10.5 and

n 'Ž .10.6 with the formal relation suggested by FCLT: Q ; nq q n V. Roughlyd
nŽ .speaking, the following facts give rise to such instances. Since m 0 s 0, the

reflection phenomena do not arise in the original system, as well as in the
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fluid and diffusion limits. Furthermore, with linear arrival and service rates,
Ž .taking expectations in 3.1 provides a linear DE for EQ. Finally, the intrinsic

structure of the system at hand results in EQn and Var Qn being linear in n
w Ž .x Ž . Ž .see 10.7 . Then our rescalings 4.1 and 7.1 degenerate when applied to

the corresponding mean values and variances.

State-independent networks. For such models, fluid limits are piecewise

linear nonnegative functions; diffusion limits are combinations of Brownian,

reflected Brownian diffusions and zero processes. Each station is perma-

nently overloaded, critically loaded or underloaded, but with a possible initial

transient phase. In this case, our results complement those of Chen and
w xMandelbaum 14, 15 .

10.3. Congestion-dependent dynamics in manufacturing and communica-

tion. The queueing networks in this subsection are small-size versions of

some well-known models. Our main concern is the transient behavior of

queueing processes, while the papers from which our models originate fo-

cused on the stationary distributions of the corresponding birth and death

processes. Further, we use these restricted models to explain a physical

meaning of state-dependent arrival and service rates, and, especially, state-

dependent routing policies. Our analysis is complemented by numerical

examples in Section 11.1.

Flexible manufacturing systems. Examples 1 and 2 are drawn from Buza-
w x w xcott and Yao 12, 84, 85 and Serfozo 70 .

EXAMPLE 1. An appropriate model for various flexible manufacturing

systems is a queueing network with a finite population, where customers
Ž .parts follow a probabilistic shortest-queue routing scheme. For example,

consider the three-station network depicted in Figure 3, with the primitives

q
l Q s l ? na y Q y Q y Q , l ? s l ? ' 0,Ž . Ž . Ž . Ž .1 1 2 3 2 3

m ? ' nm , k s 1, 2, 3;Ž .k k

0 p ? p ?Ž . Ž .12 13

P ? s ,Ž .10.8Ž . 0 0 0
0 0 0

q
nb y QŽ .k k

p Q s , k s 2, 3,Ž .1k
n b q bŽ .2 3

for some positive l, m , m , m , a, b , b and some n g ZZ .1 2 3 1 2 q

REMARK. In this model, arrivals are generated by na independent sources,

each of which operates at rate l. Hence, na is the maximal number of
Ž . Ž .customers in the systems the size of the population . Such forms of l ?1
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FIG. 3. A three-station model with state-dependent routing.

Ž w x w x.arise, for example, in repairman problems see, e.g., 35 and 34 . Further-
Ž .more, according to 10.8 , customers leaving state 1 are routed with a higher

Ž .probability to the station 2 or 3 with the largest currently available waiting
Žroom. The parameters b and b specify the maximal number of customers2 3

. Ž .at station 2 and 3, respectively. Note that, with probability 1 y p y p ,12 13

customers leave the network after station 1.

It is known that finite-population models with appropriate parameters
Ž w xmay provide reasonable approximations for closed networks. See 79 and

.numerical examples in Section 11.1. In this case, the total number of
Ž .customers in the network is approximately constant. Then 1 y p y p12 13

can be interpreted as the probability that a customer, after service at sta-

tion 1, remains at this station due to saturation of stations 2 and 3.

Our FLLN and FCLT give fluid and diffusion limits for this network, as
Ž .n­` that is, approximations as the population and waiting rooms grow .

Ž . Ž . Ž .These limits are solutions to 4.7 , 7.4 and 8.3 , with

q
l j s l ? a y j y j y j , l ? s l ? ' 0;Ž . Ž . Ž . Ž .1 1 2 3 2 3

0 p ? p ?Ž . Ž .12 13

m ? ' m , k s 1, 2, 3; P ? s ,Ž . Ž .k k 0 0 0
0 0 0

q
b y jŽ .k k

p j s , k s 2, 3; j , j , j G 0.Ž .1k 1 2 3
b q b1 2

EXAMPLE 2. Another useful model for various manufacturing systems is a

star network with workstations linked by a material handling system and
Ž .governed by reversible probabilistic shortest-queue routing. To be specific,

Žconsider a network consisting of K stations, with station 1 as the center see
. Ž . Ž .T Ž .Figure 4 . Assume that l ? s n l, 0, . . . , 0 and m ? s nm, for some l ) 0,
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FIG. 4. A star network with state-dependent routing.

positive vector m and some n g ZZ . Further letq

0 p ? ??? p ?Ž . Ž .12 1 K

1 0 ??? 0
P ? s ,Ž .

. . .

. . .

. . .

10.9Ž . 1 0 ??? 0
q

nb y QŽ .k k
p Q s , k s 2, . . . , K ,Ž .1k KnÝ bjs1 j

for some b ) 0, k s 1, . . . , K, and some n g ZZ . Then the fluid and diffusionk q

Ž . Ž . Ž . Ž .limits for this network are solutions to 4.7 , 7.4 and 8.3 , where l ? s
Ž .T Ž . Ž . Ž .l, 0, . . . , 0 , m ? s m and P ? as in 10.9 , with

q
b y jŽ .k k Kp j s , k s 2, . . . , K , j g R .Ž .1k qKÝ bjs1 j

Computer communication networks. Models with adaptive routing and

adaptive rates of processing are useful in optimization and performance

evaluation of computer networks. Examples 3 and 4 below are representative
Ž w x w x w x w x w x w x.of such models see 75 , 47 , 10 , 77 and also 12 and 84 . Example 5 is

w x w xtaken from 33 and 62 .

Ž .EXAMPLE 3. Consider a three-station network see Figure 3 , with the
Ž . Ž . Ž .primitives l ? , m ? and P ? as in Example 1, except that

q
nb y QŽ .k k

10.10 p Q s , k s 2, 3;Ž . Ž .1k
n b q b y Q y QŽ .2 3 2 3

for some b , b , a ) 0.2 3
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REMARK 10.11. When the above model is used to model computer net-

works, the first station can be interpreted as a central processor, and the

second and third stations are interpreted as peripheral devices. The meaning
Ž .of parameters n, a, b , b is similar to that in Example 1, and 10.101 2

describes a probabilistic shortest-queue policy. However, in contrast to Exam-
Ž .ple 1, if Q q Q - n b q b , then p q p s 1. That is, as long as b and2 3 2 3 12 13 2

Ž .b are sufficiently large e.g., b q b ) a , our model describes a network3 2 3

without losses. Reducing b and b introduces losses. We analyze numeri-2 3

cally both of these cases in Section 11.

Ž . Ž .Fluid and diffusion limits for this network are given by 4.7 , 7.4 and
Ž . Ž . Ž . Ž .8.3 , with l ? , m ? and P ? as in Example 1, except that

q

b y jŽ .k k
p j s , k s 2, 3; j , j , j G 0.Ž .1k 1 2 3

b q b y j y j2 3 2 3

EXAMPLE 4. Consider the tandem three-station network in Figure 5, with
Ž . Ž .primitives l ? and m ? as in Example 1, and

p ? 0 0Ž .1 Q q Q2 3
P ? s , p Q s ,Ž . Ž .0 p ? 0Ž . 12 nb1

0 0 010.12Ž .
Q3

p Q s ,Ž .2
nb2

for some b , b ) a ) 0. Here, the effective service rates at stations 1 and 21 2

Ždecrease as the saturation of downstream stations increases. The model can

be easily recast as a network with state-dependent service rates and state-
.independent routing.

Ž . Ž . Ž .The fluid and diffusion limits are solutions to 4.7 , 7.4 and 8.3 , with
Ž . Ž . Ž . Ž .l ? and m ? as in Example 1, P ? as in 10.12 and

j q j j2 3 3
p j s , p j s ; j G 0, k s 1, 2, 3.Ž . Ž .1 2 k

b b1 2

FIG. 5. A tandem network with adaptive feedback.
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EXAMPLE 5. Another useful model is a general K-station network with

state-independent arrival rates and routing, and with service rates given by

nmQ
n10.13 m Q s ; a s na , k s 1, . . . , K ,Ž . Ž .k k kna q Qk

for some nonnegative a , k s 1, . . . , K, and some n g ZZ . In this case,k q

mj
Km j s , k s 1, . . . , K , j g R .Ž .k q

a q jk

n n 'Ž .It is notable that, in 10.13 , alternatively setting a s a or a s n a leadsk k k k

Žw x w x . Žto the systems studied by Yamada 82 and 83 , respectively . For an

extended discussion on this issue, see Section 11.3 and also Sections 4.6 and
w x.5.9 in 59 .

Ž10.4. Learning systems. A manufacturing system with learning improve-
.ment is a system in which the time necessary to complete an operation is

reduced as it is repeated over and over. The relationship that expresses this
Ž w x .increase in service rate is called a learning curve. See, e.g., 78 , page 280.

We now describe a simple state-dependent network, which can be used as a

basis for models of learning. Consider a two-station tandem network, as that

depicted in Figure 1, but with primitives

Q2
l ? ' nl, l ? ' 0; m Q s nm ,Ž . Ž . Ž .1 2 1 ž /n

0 1
m ? ' 0; P ? sŽ . Ž .2 0 1

for some n g ZZ , l ) 0 and an increasing positive function m. The firstq

station is a system with learning, and m is the corresponding learning curve.

Ž . Ž .aIn practice, the learning curve is typically of the form m j s c 1 q j , c )

Ž .0, a g 0, 1 .

w xThe model presented above animates the one in 78 as a state-dependent
Ž w xnetworks. In 78 , learning systems are characterized by the forward equa-

.tions for the corresponding birth and death processes.

The fluid and diffusion limits arise as n­`, that is, when arrival and
Ž . Ž . Ž .service rates become large. These limits are solutions to 4.7 , 7.4 and 8.3 ,

with

l ? ' l, l ? ' 0; m j s m j , m ? ' 0;Ž . Ž . Ž . Ž . Ž .1 2 1 2 2

0 1
P ? s , j , j G 0.Ž . 1 20 0

Some practically interesting problems that arise within the context of

learning models are listed:

1. Investigating the stabilizing effect of learning on systems subject to large

constant, increasing, periodic or other time-inhomogeneous arrival process
Ž .representing, for example, an unexpected surge of demands.
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w x2. Studying multiserver systems governed by a machine-release policy 78 :

machines are released from the system when, due to learning, processing

is fast enough so that utilization falls below some predetermined thresh-

old.

w xSuch examples will be presented in 56 , devoted to time-dependent networks.

ŽSee also Section 15, where we relate time- and state-dependent queueing
.networks.

10.5. Epidemic models. Another interesting field of applications is epi-

demics, namely, spreads of infections. A simple model of a stochastic epidemic
Ž w x.can be described as follows see 36 . A population is subdivided into three

Ž .classes groups : those who are susceptible to the infection, those who are

infected and those who have recovered and are immune to reinfection. The

class of infectives is further subdivided into subclasses according to stages of

the incubation period and the progress of disease. Infections occur at a rate

proportional to the current number of individuals in the classes of both

susceptibles and infectives. This model of stochastic epidemic can be repre-
Ž .sented as a K-station tandem network see Figure 6 with the primitives

l ? s ??? s l ? s m ? ' 0,Ž . Ž . Ž .1 K K

b Q q ??? qb Q2 2 Ky1 Ky1
m Q s aQ ? ,Ž .1 1

n

m Q s c Q , k s 2, . . . , K y 1,Ž .k k k

1, j s 1, . . . , K y 1, k s j q 1,
p Q sŽ .jk ½ 0, otherwise,

for some positive a, b , c , k s 1, . . . , K, and some n g ZZ . According to thek k q

description above, Q is the current number of individuals susceptible to1

the infection, Q , . . . , Q are the numbers of individuals in the K y 22 Ky1

subclasses of the group of infectives and Q is the number immune to re-K

infection.

Ž . Ž .The fluid and diffusion limits for this network are solutions to 4.7 , 7.4
Ž .and 8.3 , with

l ? s ??? s l ? s m ? ' 0,Ž . Ž . Ž .1 K K

m j s aj ? b j q ??? qb j ,Ž . Ž .1 1 2 2 Ky1 Ky1

m j s c j , k s 2, . . . , K y 1,Ž .k k k

1, j s 1, . . . , K y 1, k s j q 1; Kp j s j g R .Ž .jk q½ 0, otherwise,

FIG. 6. A queueing model of epidemics.
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Note that we can easily incorporate various sources of heterogeneity between

individuals by adding a new station for each homogeneous group.

w xIsham 36 analyzed several stochastic epidemic models. In particular,

using Gaussian diffusion approximations, she estimated the first two mo-

ments of processes of interest. Our approximations lead exactly to the same
Žresults. We perform similar calculations, applied to other models, in Section

. w x11. The theoretical justification for 36 is the FCLTs presented, for example,
w x w x w xin 7 , 48 and 49 . Note that, in epidemic models, limits do not involve the

reflection phenomenon, and therefore the corresponding limit theorems are a

particular case of our FLLN and FCLT.

10.6. Data networks with bursty sources. The model we now describe was
w xstudied from various viewpoints by Anick, Mitra and Sondhi 3 , Knessl and

w x w xMorrison 43 and Kushner and Martins 52 .

Consider a data-transmission system, which receives messages from n

independent sources. The sources alternate between on and off states and

create messages during the on periods. Assume that the duration of each on
Ž . Ž .off period is exponentially distributed with mean value 1rh 1rn . During

an on period, each source sends messages according to a Poisson process with

rate l. The service time of the transmission system is exponentially dis-

tributed with mean value 1rnm. This model can be represented as a queueing

network that consists of two nonlinked stations, with parameters
q

l Q s l ? Q , l Q s n ? n y Q ; m ? ' nm ,Ž . Ž . Ž . Ž .1 2 2 2 1

m Q s h ? Q n n ; P ? ' 0.Ž . Ž . Ž .2 2

The first station represents the data-transmission system, while the second

station is introduced to model on and off periods of the sources: being at

station 2 corresponds to being off.

The fluid and diffusion limits arise as n­`; that is, as the number of
Ž .sources and the rate of service become large. The limits are solutions to 4.7 ,

Ž . Ž .7.4 and 8.3 , with
q

l j s l ? j , l j s n ? 1 y j ; m ? ' m ,Ž . Ž . Ž . Ž .1 2 2 2 1

m j s h ? j n 1 ; P ? ' 0; j , j G 0.Ž . Ž . Ž .2 2 1 2

Ž . w Ž .xT Ž .For example, if q 0 s 0, nr n q h and m s lnr n q h , then we get the
w xexpressions in 52 :

q ' q 0 ,Ž .

ln
dV t s lV t dt q 2 dW t q dY t ,Ž . Ž . Ž . Ž .1 2 1( n q h

hn
dV t s y n q h V t dt q 2 dW t .Ž . Ž . Ž . Ž .2 2 2( n q h

10.7. Multiprocessor systems with breakdowns. By analogy with Section
Ž .10.6, we can construct a multiserver multiprocessor system, where each of
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the servers is subject to independent random breakdowns and repairs. Such a
w xsystem was considered by Mitrani and Puhalskii 63 .

To be specific, assume that there are n identical independent parallel

processors. The processors alternate between on and off and they are opera-

tive during the on periods. Further, suppose that the duration of each on
Ž .respectively, off period is exponentially distributed with mean value 1rh
Ž .respectively 1rn . Jobs arrive to the system according to a Poisson process

with the rate nl. The service time is exponentially distributed with mean

value 1rm. This model can be represented as a queueing network that

consists of two nonlinked stations and has the following parameters:
q

l ? ' nl, l Q s n ? n y Q , m Q s m ? Q n Q ,Ž . Ž . Ž . Ž . Ž .1 2 2 1 1 2

m Q s h ? Q n n ; P ? ' 0.Ž . Ž . Ž .2 2

As in Section 10.6, the first station is actually the multiprocessor system,

while the second station models on and off periods of the processors. This
w xmodel animates the birth and death processes from 63 as a state-dependent

queueing network.

The fluid and diffusion limits arise as n­`; that is, as the number of

processors and the rate of service become large. These limits are solutions to
Ž . Ž . Ž .4.7 , 7.4 and 8.3 , with

q
l j s l, l j s n ? 1 y j ; m j s m ? j n j ,Ž . Ž . Ž . Ž . Ž .1 2 2 1 1 2

m j s h ? j n 1 ; P ? ' 0; j , j G 0.Ž . Ž . Ž .2 2 1 2

Ž . Ž . Ž xREMARK. Setting m Q s h ? Q n cn , for some c g 0, 1 , leads to a2 2

more general system, in which processors may be forced to wait in queue for

repair.

10.8. Multiserver systems with breakdowns and blocking. Consider a

two-station tandem system. Each station is a multiprocessor system with
Ž .breakdowns of processors as in Section 10.7 . A distinguishing feature of this

system is that the buffer at the second station has a finite capacity. The

service rate of the first station is adapted to the buffer content of the second

by having fewer servers work when buffer content is high. In particular,
wwhen the buffer is full, all the servers at the first station stop serving. See

Ž . xm ? below. An appropriate model for this system is a four-station queueing1

network with the primitives
q

l ? ' nl, l ? ' 0, l Q s n ? a n y Q ,Ž . Ž . Ž . Ž .1 2 3 3 3 3

q
l Q s n ? a n y Q ;Ž . Ž .4 4 4 4

q
w xm Q s m ? Q n bn y Q n Q , m Q s m ? Q n Q ,Ž . Ž . Ž . ˆ1 1 2 3 2 2 4

m Q s h ? Q n c n , m Q s h ? Q n c n ;Ž . Ž . Ž . Ž .3 3 3 3 4 4 4 4

1, j s 1, k s 2,
p Q sŽ .jk ½ 0, otherwise,
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for some positive l, m, m, b, n , h , c , k s 3, 4, and some n g ZZ . In thisˆ k k k q

model, stations 1 and 2 are the multiprocessor systems. Stations 3 and 4

model breakdowns of processors at stations 1 and 2, respectively.

Ž . Ž .The fluid and diffusion limits for this network are solutions to 4.7 , 7.4
Ž .and 8.3 , with

q
l ? ' l, l ? ' 0, l j s n ? a y j ,Ž . Ž . Ž . Ž .1 2 3 3 3 3

q
l j s n ? a y j ;Ž . Ž .4 4 4 4

q
w xm j s m ? j n b y j n j , m j s m ? j n j ,Ž . Ž . Ž . ˆ1 1 2 3 2 2 4

m j s h ? j n c , m j s h ? j n c ;Ž . Ž . Ž . Ž .3 3 3 3 4 4 4 4

1, j s 1, k s 2,
p j s j G 0, k s 1, . . . , 4.Ž .jk k½ 0, otherwise,

w xThe system described above is analogous to that considered by Mitra 61 ,

but our blocking mechanism is different. Specifically, we change m gradually1

w xwith Q , while in 61 , rates change in an abrupt fashion only when buffers2

are either full or empty. We can incorporate the latter blocking mechanism in

our state-dependent framework by using piecewise linear service rates, simi-

lar to those used in Section 11.2, to model finite buffers.

10.9. Stochastic traffic assignment models. We can show that various
w xstochastic traffic assignment models, as in Davis and Nihan 20 , can be

modeled by a queueing network with state-dependent routing probabilities

exp yc Q aŽ .Ž .jk
p Q s ;Ž .jk KÝ exp yc Q aŽ .Ž .is1 ji

b 1 Q q ??? qb K Qjk 1 jk K
c Q s , j, k s 1, . . . , K ,Ž .jk

n

for some nonnegative a , b i , j, k, i s 1, . . . , K, and some n g ZZ . It is shownjk q

w xin 20 that, as the number of individual travelers becomes large, the net-

work’s traffic volumes can be approximated by the sum of a nonlinear

deterministic function and a time-varying linear Gaussian process. These

approximations correspond to our fluid and diffusion limits.

10.10. Human-service systems. Many queues that are encountered in our

life are state- and time-dependent. Some examples are public service centers,

telephone systems, banks, hospitals and others. In these systems, customers

react to state changes: they typically prefer short queues, jockey, renege and

so on. State-dependent queueing networks provide, therefore, a natural

framework for design, performance analysis and optimization of service

systems. An example of using state-dependent queues for approximate analy-
w xsis of service was given by Worthington 81 , who applied models of queues

Ž w x.with reneging see Section 5.8 in 59 to the hospital waiting-list problem.
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w x w x Ž w x.Other examples are 80 and 39 see also 76 . They considered the problem

of finding the right number of servers in multiserver service systems, so as to
w xkeep the probability of delay under some predetermined level. In 80 , the

staffing problem was solved by infinite-server approximations for a system

with a time-homogeneous arrival process. In contrast, the arrival process in
w x39 is time-inhomogeneous; hence, the ‘‘right’’ number of servers s becomes

Ž .time-dependent as well. In other words, when there are s t servers in the
Ž . Ž Ž ..system, the service rate is m Q, t s m ? Q n s t and the problem thus is to
Ž .choose the right function s t . Actually, such a system is representative of

queues, which are both state- and time-dependent. Approximating such
Ž .systems is important for future research see also Section 15 .

11. Numerical examples. The numerical examples in this section con-

stitute an attempt to demonstrate the quality of our fluid and diffusion

approximations and to demonstrate their use in facilitating the analysis of

various queueing networks. Section 11.1 is devoted to a three-station network
Ž .see Figure 3 governed by various routing policies. In Section 11.2, we show

that our approximations also fit systems with large finite buffers despite the

fact that they are derived for networks with infinite buffers. In Section 11.3,

we compare different rescaling procedures, by applying them to a multiserver

queue.

Ž n n .KConsider a sequence M rM r1 , n s 1, 2, . . . , of state-dependent net-j j

Žworks, which satisfies the conditions of FLLN and FCLT Theorems 4.6 and
.7.2 and Proposition 8.2 . The theorems suggest that, for sufficiently large n,

d
n '11.1 Q ? ; nq ? q n V ? ,Ž . Ž . Ž . Ž .

n n'11.2 EQ ? ; nq ? q n EV ? , Cov Q ? ; n Cov V ? ,Ž . Ž . Ž . Ž . Ž . Ž .

d
n '11.3 Y ? ; ny ? q n H ? ,Ž . Ž . Ž . Ž .

n n'11.4 EY ? ; ny ? q n E H ? , Cov Y ? ; n Cov H ? .Ž . Ž . Ž . Ž . Ž . Ž .

These relations justify our methods below for approximating queueing and

idle-time processes by their corresponding fluid and diffusion limits.

Ž . Ž .REMARK. Equations 11.1 and 11.2 suggest, at least formally, that also

d
n 'Q ` ; nq ` q n V ` ,Ž . Ž . Ž .

n 'EQ ` ; nq ` q n EV ` ,Ž . Ž . Ž .11.5Ž .

Cov Qn ` ; n Cov V ` ,Ž . Ž .

assuming, of course, that the corresponding stationary values and distribu-
Ž .tions exist. A rigorous justification of 11.5 is not available to the best of our

knowledge. Examples of theorems that support such approximations are
w x w x w x w xgiven in 29 , 41 , 25 , Chapter 4, Section 9, and 53 . Since our focus is on

the transient behavior of networks, we do not pursue this further here.
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Our analysis combines the following tools:

Ž . Ž .1. Analytical solution of DEs fluid and SDEs diffusion whenever possible.

Ž w x.2. Numerical solution of DEs and SDEs as in 42 using MATLAB or cus-

tomized software.

w x3. Simulation of the original queueing systems using SIMANrARENA 66 .

11.1. Networks with state-dependent routing. This subsection is devoted

to analysis of the three-station network depicted in Figure 3 and described by

Examples 1 and 3 in Section 10.3. By means of fluid approximations, we
Ž . Ž .compare different routing strategies given by 10.8 , 10.10 and others. As

pointed out in Section 10.3, this model captures significant features of many
Ž w x w x w x.manufacturing and computer systems see 47 , 75 and 84 .

w x w x w xIn 47 , 75 and 84 , the focus is on the stationary phase and numerical

results pertain to a small number of customers in the network. In contrast,

our goal here is to analyze large systems in their transient phase. In addition,

we attempt to show the following results:

1. Our fluid limits provide reasonable approximations for queues in general

and for idle times of overloaded stations.

2. Our fluid approximations are useful for comparing different routing poli-

cies and aid in the identification of close-to-optimal modes of operation.

Ž .3. The state-dependent routing 10.10 can be used to approximate the short-
Ž .est-queue routing policy. The analysis of the latter is often intractable.

Moreover, using our state-dependent routing leads to improved perfor-

mance of the network.

4. Our open-network models can approximate closed networks.

Through our numerical experiments, we seek to improve or optimize a set

of performance measures. We now describe these measures, which arise from
Žinterpretation of the network as a computer or manufacturing systems see

.Section 10.3 and the references cited above :

Performance criteria.

Ž .Throughput: The potential of the two peripheral devices stations 2 and 3
Ž .should be fully realized they should be critically loaded or overloaded . Then

the system throughput is the total service rate at stations 2 and 3.

Queues: The magnitude of the queue at the central processor should be
Ž .relatively small station 1 should be underloaded or at most critically loaded .

Balance: The operation of stations 2 and 3 should be balanced, in the sense
Ž .of similar magnitudes of queues even though service rates may differ . The

queues at stations 2 and 3 should be bounded.

Blocking: If stations 2 and 3 have limited buffer capacities, then the
Žprobability of blocking should be low. In the model considered, customers

.blocked at station 1 leave the network and are considered lost.

Stability: If there exists a stationary distribution, then the transient phase

should be relatively short.
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As a start, consider the three-station network, of Example 3 in Section

10.3. Recall from Remark 10.11 that as long as b and b are sufficiently2 3

large, our model describes a network without losses. In contrast, reducing b2

and b introduces losses. We consider these cases in turn below.3

Networks without losses. Comparison of fluid approximations with simu-

lation: In Figure 7, we compare the queueing and idle-time processes com-

puted from 300 simulations and from numerical solution of DEs for fluid

approximations. The following parameters were chosen:

l s 5, a s 10, m s 10, m s 2,1 2
11.6Ž .

m s 7, b s b s 5, Q 0 s 0.Ž .3 2 3

Figure 7a and b exhibits data for EQn and E I n for n s 100; Figure 7c and d

exhibits data for EQn and E I n for n s 1000. A comparison between Figure

7a and b and c and d demonstrates that the quality of the fluid approximation

improves as n increases.

REMARK. Approximations for the idle-time processes by the fluid limits

are less satisfactory than those for the queueing processes. We can improve

these approximations through the second-order diffusion refinement in Prop-
w Ž . Ž .xosition 8.2 see 11.3 and 11.4 .

The fluid limit can produce even better approximations. Figure 8, demon-
Ž .strates this for the network with l, a, m , m , b , b and Q 0 taken as in1 2 2 3

Ž .11.6 , m s 2 and n s 100, where3

l s 5, a s 10, m s 10, m s m s 2,1 2 3
11.7Ž .

b s b s 5, Q 0 s 0, n s 100.Ž .2 3

The fit here is almost perfect. Based on empirical experience, we attribute

this to the symmetry m s m . In the sequel, we focus on asymmetric cases,2 3

w Ž .x w xwhen m ) m k m and m / m as in 11.6 . It is explained in 75 that1 2 3 2 3

such a combination of parameters is the most unfavorable, from the view-

point of the performance criteria described above. Hence, the advantages of

our state-dependent routing are the most pronounced. In particular, a com-

parison of Figure 7 with Figure 8 shows that in the latter symmetric network,

the operation is the same as that of a network with state-independent routing

p s p s 1r2, and the transient phase is relatively short.12 13

Analysis of Figure 7a and b leads to the following observations:

1. Station 1 is overloaded until t f 6.8 and underloaded thereafter; station 2

is permanently overloaded; station 3 is underloaded until t f 1.5 and

overloaded thereafter.

2. At t f 6.8, the network enters the stationary phase, in the sense that the

fluid approximation remains constant thereafter. The evolution during the

transient phase cannot be deduced from exact analysis. The following

calculations provide insight into the stationary behavior. Within the sta-
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FIG. 7. Fluid approximations versus simulation for the three-station network without losses;

Ž .parameters are as in 11.6 . The solid lines are computed from fluid approximations. The =-lines
Ž . n n n Ž n n n. Ž . n nare computed from simulations: a EQ , EQ , EQ , E Q q Q q Q ; n s 100; b E I , E I ,1 2 3 1 2 3 1 2

n Ž . n n n Ž n n n. Ž . n n n
E I ; n s 100; c EQ , EQ , EQ , E Q q Q q Q ; n s 1000; d E I , E I , E I ; n s 1000.3 1 2 3 1 2 3 1 2 3
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FIG. 7. Continued.
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FIG. 8. Fluid approximations versus simulation for the three-station network without losses; the
Ž .parameters are given by 11.7 . The solid lines are computed from fluid approximations. The

Ž . n n n Ž n n n. Ž . n
=-lines are computed from 300 simulations. a EQ , EQ , EQ , E Q q Q q Q ; b E I ,1 2 3 1 2 3 1

E I n, E I n
.2 3
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tionary phase, stations 2 and 3 are overloaded and, hence, the throughput
Ž .qof the network is m q m s 900. Since l s 5 ? 1000 y Q y Q y Q ,2 3 1 1 2 3

we have that during this phase Q q Q q Q s 820. Furthermore, the1 2 3

stationary value of the traffic intensity at station 1 is r s 900r1000 and,
Ž . Žhence, the stationary value of Q is rr 1 y r s 9. This small queue1

.corresponds to zero fluid approximation. Next, the fluid approximations

demonstrate that the stationary values of queues at stations 2 and 3 are
Ž .460 and 360, respectively. Therefore, by 10.10 , we have that p s 2r912

and p s 1r9 within the stationary phase; that is, p rp s m rm . This13 12 13 2 3

relation means that the faster service is loaded more. We analyze below

this routing policy and show that it is less effective than the state-depen-
Ž .dent routing 10.10 .

Comparison of different routing policies: Figure 9 compares four different
Ž . Ž .routing policies: a shortest-queue routing; b state-dependent routing, given

Ž . Ž .by 10.10 with b s b s 4.5; c state-independent routing with p s p s2 3 12 13

Ž . Ž0.5; d state-independent routing with p rp s m rm load the faster12 13 2 3

. Ž .server more . The other parameters are chosen as in 11.6 . Figure 9 yields

the following observations:

Ž . Ž .1. Policy a has the best performance measures: i The potential of stations

2 and 3 is fully realized. The stationary throughput is equal to 200 q 700
Ž .s 900. ii Operation of stations 2 and 3 is balanced in the sense of equal

queues, despite different service rates. The queues at these stations do not
Ž . Ž .exceed 400. iii The queue at station 1 is asymptotically for large t small.

Ž .Station 1 is asymptotically critically loaded.

Ž . Ž .2. Policy b achieves performance that is close to that of policy a . However,

our state-dependent routing is theoretically more tractable than the short-

est-queue policy.

Ž .3. Under policy c , the operation has the worst performances. The stationary
wthroughput of the system is as low as 410. The stationary value of

Ž .Q q Q q Q is approximately 916; hence, l s 5 ? 1000 y 916 s 420.1 2 3 1

xThe stationary throughput equals, therefore, 200 q 420r2 s 410. The

value of Q is very high, while stations 1 and 3 are underloaded.2

Ž . Ž . Ž .4. Policy d is better than policy c , but worse than policy b .

ŽNetworks with losses. Reducing b , b i.e., reducing the permissible2 3

.queues at stations 2 and 3 introduces losses into the system. We compare
Ž .performances under the following policies: a state-dependent routing, given

Ž . Ž .by 10.10 with b s b s 4; b finite buffer system with buffers b s b s 42 3 2 3

Ž .and p s p s 0.5; c finite buffer system, with buffers b s b s 4 and12 13 2 3

Ž . Ž .p rp s m rm ; d state-dependent routing given by 10.8 with b s b s12 13 2 3 2 3

Ž .4. We chose the same parameters as in 11.6 , except that b s b s 4, and2 3

we take n s 100. Figure 10 yields the following conclusions:

Ž . Ž .1. Policy a leads to the best performance: i The potential of stations 2 and

3 is fully utilized. The stationary throughput is equal to 200 q 700 s 900.
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FIG. 9. Comparing routing policies for the three-station model without losses: EQn, EQn, EQn,1 2 3

Ž n n n. Ž . Ž . Ž .E Q q Q q Q ; n s 100: a Shortest queue routing from simulations . b State-dependent1 2 3

Ž .routing, given by 10.10 with b s b s 4.5. The solid lines are computed from fluid approxima-2 3

Ž .tions. The =-lines are computed from simulations. c State-independent routing with p s12

Ž .p s 0.5; fluid approximations. d State-independent routing with p rp s m rm ; fluid13 12 13 2 3

approximations.
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FIG. 9. Continued.
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FIG. 10. Comparison of routing policies for the three-station network with losses: EQn, EQn,1 2
n Ž n n n. Ž . Ž .EQ , E Q q Q q Q ; n s 100. a State-dependent routing given by 10.10 with b s b s 4.3 1 2 3 2 3

Ž . Žb Systems with finite buffers b s b and state-independent routing p s p s 0.5 simula-2 3 12 13

. Ž .tion . c Systems with finite buffers b s b and state-independent routing with p rp s m rm2 3 12 13 2 3

Ž . Ž . Ž .simulation . d State-dependent routing given by 10.8 with b s b s 4.2 3
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FIG. 10. Continued.
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Ž .ii Operation of stations 2 and 3 is balanced in the sense of asymptotically

equal queues, despite different service rates. The queues at these stations
Ž .do not exceed 400. iii The queue at station 1 is asymptotically small.

Ž . Ž .This station is asymptotically critically loaded. iv The stationary proba-

bility of losses is as small as 0.08.

Ž . Ž .2. Other policies are inferior to policy a . In particular: i The stationary
Ž . Ž .throughput is 200 q 1000r2 s 700 under policies b and d , while the

Ž . Ž .first station is overloaded. ii Under policy c the throughput is 900, but
Ž .the first station is overloaded. iii The stationary probability of losses

approximately equals 0.3.

REMARK. Note that the total number of customers in the networks in both

Figures 9 and 10 stabilizes fast into a constant. This suggests that our

approximations for open networks can be used to approximate corresponding
w xclosed systems. The issue was addressed in detail by Whitt 79 .

11.2. Large finite buffers. The networks considered in this paper have

unlimited buffers. However, our results can be applied to approximate net-
Ž .works with large buffers of order n . Such models arise, for example, in large

human-service systems, communication networks and others, where waiting

rooms are made sufficiently large to assure that blocking rarely occurs.

Ž .We approximate a single station MrMr C q 1 whose arrival rate is l,

service rate m and buffer size C, where

11.8 l s 2n , m s n , C s nŽ .

for n s 1000. The approximation is a state-dependent single station with an

infinite buffer and parameters

qq
Q y C y n«Ž .

11.9 l Q s 2 ? n y , m s n; C s n ,Ž . Ž . ½ 5«

for n s 1000. We assert that, with an appropriate choice of « < Crn, the

fluid and diffusion limits for this model provide reasonable approximations

for the original system with finite buffer. The rationale for this approximation
Ž .is that l Q is constant up to Q s C y n« and it vanishes for Q G C. Thus,

Ž .when « < Crn, l Q is close to the rate of effective arrivals in the finite-buffer

model.
Ž .To be specific, let Q 0 s 0. Fluid and diffusion limits for the system

Ž . Ž . Ž . Ž .defined by 11.9 are given by 4.7 , 7.4 and 8.3 , with

qq
j y 1 y «Ž .

l j s 2 ? 1 y , m s 1, q 0 s 0.Ž . Ž .½ 5«

Analysis of Figure 11 reveals that our approximations provide good estima-
Ž . Ž .tors for EQ ? and Var Q ? during both the transient and the stationary

phases.
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FIG. 11. Finite buffer model. Fluid and diffusion approximations versus simulation results. The

solid lines are computed from fluid and diffusion approximations for the queueing system given by
Ž .11.9 , with « s 0.004 and n s 1000. The dashed lines are computed from 10,000 simulations of

Ž . Ž .the original finite buffer system with l s 2000, m s 1000 and C s 1000: a EQ; b sQ.
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The histograms in Figure 12 demonstrate that the distribution of Q is well

approximated by the normal distribution arising from our diffusion limit over

a wide range of t. In particular, chi-square and Kolmogorov]Smirnov tests

show that for t s 0.5 and t s 0.8, the empirical distributions fit the approxi-

mating normal distributions with a significance level of 0.95. However, for
Ž .larger t when the system operates within the stationary phase , we cannot

expect a good fit between the empirical distribution of Q and the approximat-

ing normal distribution provided by our diffusion approximations. Indeed,
w xeven for t s 0.9 see Figure 12d , the tail of the empirical density does not fit

the approximating normal density. To understand this phenomenon, note
Ž .that the discrete asymmetric stationary distribution of MrMr C q 1 is

given by

1 y r l
k11.10 p s r , r s , k s 0, . . . , C q 1;Ž . k Cq2 m1 y r

it is asymmetric, hence it cannot be approximated by a symmetric normal

distribution. A rough explanation for this bad fit is as follows. When the

system operates within the stationary phase, the free space in the buffer is no
Žlonger of order n. For our case, r s 2 and, hence, the buffer is almost full

.within the stationary phase; see Figure 11. To investigate queues with

smaller buffers, we must use models and, respectively, diffusion approxima-

tions with additional reflection boundary at j s C. This reflection boundary
Ž . Ž w xintroduces asymmetric distributions that would fit 11.10 . See, e.g., 32 and

w x .18 .

Figure 13 exhibits a comparison between the finite buffer queue given by
Ž . Ž .11.8 and the approximations for the state-dependent queue given by 11.9 ,

Žboth with n s 10. We can see that for relatively small buffers l s 20,
.m s 10 and C s 10 , our approximations are less satisfactory.

11.3. Numerical comparison of different rescaling procedures. The issue

of different rescaling procedures was addressed in detail by Mandelbaum and
w x w xPats 59 . A summary of 59 is required to motivate the numerical examples

Ž .presented below. Assume, instead of 7.3 , that for some a G 0,

n al n jŽ .
'n y l j ª f j ,Ž . Ž .lž /n

n am n jŽ .
'n y m j ª f j ,Ž . Ž .mž /n

11.11Ž .

n a'n P n j y P j ª f j , u.o.c.,Ž . Ž . Ž .Ž . P

when n­`. Our limit theorems correspond to a s 1. Alternative rescaling
w xprocedures were considered by Yamada: the case a s 0 was treated in 82 ,

where the diffusion limit is of a Bessel type with a negative drift; the case
w xa s 1r2 was considered in 83 , where the diffusion limit is a solution to a

Žstochastic differential equation with state-dependent coefficients while in our
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FIG. 12. Finite buffer model. Comparison of the empirical distribution of Q at different times,

computed from 10,000 simulations, with normal distributions provided by diffusion approxima-

Ž . Ž . Ž . Ž . Ž . Ž . Ž .tions: a t s 0.03, NN 31.6, 9.23 ; b t s 0.5, NN 502, 38.8 ; c t s 0.8, NN 802, 49 ; d t s 0.9, NN

Ž .901, 50.7 .
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FIG. 12. Continued.
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FIG. 13. Finite buffer model. Comparison of diffusion approximations and simulation results.

The solid lines are computed from fluid and diffusion approximations for the queueing system
Ž .with m s 1 and l given by 11.9 , with « s 0.004, n s 10. The dashed lines are computed from

Ž . Ž .10,000 simulations of the finite buffer system, with l s 20, m s 10 and C s 10: a EQ; b sQ.
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. w xcase, coefficients are time-dependent . The fluid limits vanish in both 82 and
w x83 .

To recapitulate, our approach leads to second-order approximations for

queueing processes: fluid limits provide approximations for the actual values

of queues, while diffusion limits provide approximations for their fluctuations
Žfrom the fluid limit. If fluid limits happen to vanish operating within the

.critically loaded region , then

d
n '11.12 Q r n ª VŽ .

and the three rescaling approaches above provide approximations for systems

in which arrival and service rates are sensitive to fluctuations of queues: to
w Ž y1r2 .x w Ž .xsmall a s 1, OO n V , medium a s 1r2, OO V or large fluctuations

w Ž 1r2 .xa s 0, OO n V .

We compare the three types of rescaling, a s 0, 1r2, 1, by applying them to

a single queueing system. Consider a sequence M nrM nr1, n s 1, 2, . . . , withj j

arrival and service rates given by

11.13 ln Qn s bn q cn ? Qn n d n , mn Qn s b n q g n ? Qn n d n ,Ž . Ž . Ž . Ž . Ž .

where bn, cn, d n, b n, g n are positive constants, cn F g n
. The following possi-
w xble interpretations for the nth system were proposed in 59 :

n Ž n.1. Service is provided simultaneously by d servers each at a rate g and
Ž n.by a processor-shared server at a rate b . The arrival process consists of

Ž n.exogenous arrivals rate b and served customers that leave for a while,
n n Žthen return for rework with probability c rg F 1. The time until their

return is assumed short enough that the queue does not change much, and
.long enough that they are independent of exogenous arrivals. This is a

possible model for some human-service systems.

2. Service is provided by a single server at a rate that increases with queue

length, but only up to an exhaustion level b n q g n ? d n
. Service rates,

which increase with queue length, arise naturally in systems with reneg-
Žing. These are queues in which a customer is lost when its sojourn time

w xreaches an individual random deadline 17 . In line with this interpreta-
n .tion, g is the reneging rate. Arrival rates which increase with queue

length describe a possible scenario where a long queue attracts customers

by being a source of information on service value.

Assume that Qn s 0. The following three examples exhibit different diffu-0

Ž .sion limits V for different choices of parameters in 11.13 :

n n n n n '1. a s 1: Let b s b s nb, c s g s c and d s nd . Then V s 2b W q Y.

n n n n n' ' '2. a s 1r2: Let b s nb, b s nb q n , c s n c, g s n c q 1 and d s
'n d . Then

1dV s y 1 q V n d dt q b q c V n d dW'Ž . Ž .t t t t

2q b q c V n d dW q dY .' Ž .t t t
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n n n n n'3. a s 0: Let b s b s nb, c s nc, g s nc q n and d s d . Then

'V s yd ? t q 2cd q 2b W q Y .t t t

1 2 Ž 1 2Here b, c, d ) 0, W, W , W are standard Brownian motions W and W are
.independent and Y is a normal reflection term. For all three examples, the

n 'fluid limit q ' 0 and Q r n ª V.d

In what follows, numerical estimations of the queueing and idle-time

processes in the three systems are provided. To approximate the idle-time
n ? n n n'Ž . � Ž . 4process I ? s H I Q s s 0 ds, we used the relation I ; n Yrb . It is0 d

Ž . Ž .a consequence of 8.1 , 11.3 and the fact that we deal with the critically
w Ž .xloaded regime see 10.2 .

The parameters chosen for these experiments are b s c s 0.25, d s 1, and

n s 100.

CASE 1. a s 1. Figure 14 exhibits data for mean values and variances of

the queueing and the idle-time processes. The distributions, expectations and
w x w x w xstandard deviations of V and Y are taken from 30 , 1 and 2 :

yz
P V t F z s P Y t F z s 1 y 2F , z G 0,� 4 � 4Ž . Ž . ž /'2bt

'EV t s EY t s 2 btrp ,Ž . Ž .
11.14Ž .

'sV t s sY t s 2bt 1 y 2rp , t G 0.Ž . Ž . Ž .

n 'Ž .In Figure 15, we compare the empirical distribution of Q 2 r n , calculated
Ž .from simulations, with the approximating distribution given by 11.14 . As

expected, the larger n gets, the better is the quality of the diffusion approxi-

mations. However, the results above demonstrate that our diffusion approxi-

mations also give reasonable estimations for relatively small queues when

applied to critically loaded systems. Specifically, the relative error at t s 3 is

4.5% for EQn, 4% for sQn, 3.6% for E I n and 9% for s I n
.

CASE 2. a s 1r2. Figure 16 depicts mean values and variances of the

queueing and idle-time processes. In Figure 17, we compare the empirical
n 'Ž .distribution of Q 2 r n , calculated from simulations, with the approximat-

ing distribution obtained by numerical integration of the SDE for V. The

relative error at t s 2.5 is 1.6% for EQn, 15.8% for sQn, 0.8% for E I n and

8.6% for s I n
.

CASE 3. a s 0. Figure 18 exhibits data for mean values and variances of

the queueing process Qn for n s 100 and for n s 10,000. The diffusion
Ž w x w x.approximations are computed from the equations taken from 1 and 2

y1 ' ' 'EV t s 2 y t q 1 1 y F t q t f t ,Ž . Ž . Ž . Ž .
11.15Ž .

2 y1 2 ' ' 'EV t s 2 y 1 y 2 t y t 1 y F t q t 1 q t f t ,Ž . Ž . Ž .Ž . Ž .



A. MANDELBAUM AND G. PATS618

FIG. 14. a s 1. Diffusion approximations versus simulation results. The solid lines represent
Ž . ndiffusion approximations. The dashed lines are computed from 10,000 simulations: a EQ ,

n Ž . n n
sQ ; b E I , s I .
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n 'FIG. 15. a s 1. Comparison of the empirical distribution of Q r n at t s 2 computed from
Ž . Ž .10,000 simulations with the theoretical distribution of RBM given by 11.14 : a density of

n n' 'Ž . Ž . Ž .Q 2 r n ; b distribution of Q 2 r n .
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FIG. 16. a s 1r2. Diffusion approximations versus simulation results. The solid lines are

computed from 40,000 numerical integrations of the corresponding SDE with step D s 0.0001.

Ž . n n Ž . n nThe dashed lines are computed from 100,000 simulations: a EQ , sQ ; b E I , s I .



STATE-DEPENDENT STOCHASTIC NETWORKS 621

n 'FIG. 17. a s 1r2. Comparison of the empirical distribution of Q r n at t s 2 computed from

100,000 simulations with the theoretical distribution of V computed from 40,000 integrations of
n n' 'Ž . Ž . Ž . Ž .the SDE with step D s 0.0001: a density of Q 2 r n ; b distribution of Q 2 r n .
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FIG. 18. a s 0. Comparison of diffusion approximations with simulation results for different n.

w Ž .xThe solid lines represent diffusion approximations according to 11.15 . The dashed lines are
Ž . n n Ž . Ž . n ncomputed from simulations: a EQ , sQ ; n s 100 10,000 simulations ; b EQ , sQ ;

Ž .n s 10,000 5000 simulations .
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where f and F are the standard normal density and distribution function,

respectively. Comparison of Figure 18a and b demonstrates the quality

improvement of fluid approximation as n increases. Figure 19 shows data for

mean values and variances of the idle-time processes computed from simula-

tions.

We conclude this example with some observations:

1. Analysis of Figures 14b, 16b and 19a reveals that our FCLT provides

reasonable approximations for systems which operate under nonheavy

traffic conditions. Specifically, the idle time permanently increases and

comprises about 13, 36 and 31% of the total operation time in the first,

second and third cases, respectively. Furthermore, queues in the systems

considered above are relatively small.

2. Different rescaling procedures and the corresponding diffusion approxima-

tions can facilitate the design and analysis of queueing systems. For
n Ž .instance, recall the interpretation of m in 11.13 as the service rate in a

multiserver queue. Then, the examples above mainly differ by the number
' ' ' 'of servers relative to the queue size, which are n: n , n : n and 1 : n in

'wexamples 1, 2 and 3 respectively the queue size is always of order n

Ž .xaccording to 11.12 . Note that a comparison between these systems is

meaningful in the sense that the potential arrival rates b
n q c

nd n and the

total potential service rate b n q g nd n are of order n in all three cases.

Thus, the examples above present three different ways to allocate service

capacity, n in total, among several servers. Analysis through Figures
Ž .14]19 gives rise to the following evaluation: i the magnitude of the

Ž .queues is largest in Case 1 and smallest in Case 2; ii the coefficients of

variations of queues are smallest in Case 1 and increase in the other two
Ž .cases; iii the stationary distributions for queues exists in Cases 2 and 3,

Ž .but not in Case 1; iv idle times reach the largest values in Case 1 and the

smallest in Case 3.

12. Proof of the martingale representation. This section is devoted

to the proof of Lemma 3.9.

Our arguments, based on a multiparameter time change, are a straightfor-
w xward adaptation of those given in Ethier and Kurtz 25 , Chapter 6, Section

w x w x2, Kurtz 51 and Massey and Whitt 60 , Lemma 2.2. Therefore, we omit

some technical details.

To simplify the presentation, we carry out the proof under stronger condi-
Ž .tions than Main Assumption M2 in Section 2. Namely, we assume that l

and m are bounded: there exists a constant L such that1

< < < < Kl j k m j - L , j g R .Ž . Ž .` ` 1 q

To cover the general case, we can easily modify our arguments, taking into
w Ž .xaccount Proposition 13.4 specifically, inequality 13.5 and Main Assumption

Ž .M2 .
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n n Ž .FIG. 19. a s 0. Simulation. The solid line is E I and the dashed line is s I : a n s 100,

Ž .b n s 10,000.
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PROVING THE MARTINGALE PROPERTY OF M a
AND M d

. Introduce the follow-

ing collection of s-fields, for k s 1, . . . , K, t G 0:

HH
q t s s Nq u , 0 F u F t , HH

y t s s Ny u , 0 F u F t ,Ž . Ž . Ž . Ž .Ž . Ž .k k k k

y
GG t s s U l n N t , l s 0, 1, . . . ; k s 1, . . . , K , t G 0.Ž . Ž .Ž .k k k

Ž . w .2 K Ž .For each s s s , s , . . . , s g 0, ` , let HH s denote the s-field given by1 2 2 K

K
q y

HH s s HH s k HH s k GG s k s NN ,Ž . Ž . Ž . Ž . Ž .E k 2 ky1 k 2 k k 2 k

ks1

where NN is the collection of all null sets in I. Finally, without loss of
� Ž . K 4generality, assume that HH s HH s , s g R is right continuous.q

w xRepeating the arguments of Theorem 2.2 in 25 , Section 2, Chapter 6,
Ž . Ž .which are based on the uniqueness of the solution to 2.1 ] 2.5 , leads to the

Ž qŽ . yŽ .following assertion: for all t G 0, the random vector t s t t , t t , . . . ,1 1
qŽ . yŽ ..t t , t t , withK K

t t
q yt t s l Q s ds, t t s m Q s ds,Ž . Ž . Ž . Ž .Ž . Ž .H Hk k k k

0 0

Žw x .is a multiparameter HH-stopping point 25 , Section 8, Chapter 2 .

Ž . Ž Ž .. � Ž . 4Put FF t s HH t t and F s FF t , t G 0 . In view of Main Assumption
Ž .M1 in Section 2, we infer that

Nq s y s , Ny s y s , . . . , Nq s y s , Ny s y sŽ . Ž . Ž . Ž .Ž .1 1 1 1 2 2 K 2 Ky1 2 ky1 K 2 K 2 K

is a multiparameter martingale with respect to HH. Then the optional sam-
Žw x . apling theorem 25 , Theorem 8.7, Chapter 2 implies that M is a vector-

valued F-martingale, being a multiparameter time change of a multiparame-

ter martingale. Moreover, M a is also locally square integrable, because l is
w xbounded 69 .

We proceed with the proof of the martingale property for M d
. For the same

reasons as presented above, the process M s, given by

t
s ˆ ˆM s S y S, S t s m Q u du, t G 0,Ž . Ž .Ž .H

0

Ž . Ž . Ž . Ž .is a vector-valued F-martingale. Returning to 2.1 ] 2.5 , we have Q t g FF t .

Ž . dTherefore, the integrand in 2.4 is a predictable process and thus M is a
Ž . Ž w xlocally square integrable F-martingale see the integration theorem in 11 ,

.Theorem T8, page 27 .

PROVING THE MARTINGALE PROPERTY OF M . Introduce the processes M l sf jk

� l Ž . 4M t , t G 0 , l s 1, 2, 3, byjk

t t
1M t s p Q uy dS u y p Q uy m Q u du,Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .H Hjk jk j jk

0 0

t
2M t s 1 U S u g p Q uy dS uŽ . Ž . Ž . Ž .Ž .� 4Hjk j j jk j

0

t
y p Q uy m Q u du,Ž . Ž .Ž . Ž .H jk

0



A. MANDELBAUM AND G. PATS626

t
3M t s 1 U S u g p Q uy dS uŽ . Ž . Ž . Ž .Ž .� 4Hjk j j jk j

0

t
y p Q uy dS u , j, k s 1, . . . , K .Ž . Ž .Ž .H jk j

0

w x 1Again, the integration theorem 11 implies, first, that M is a martingalejk

Ž . ffor all j, k and, second, that to prove the martingale property for M , it is

sufficient to show that M 2 , j, k s 1, . . . , K, are martingales. Since M 2 sjk jk

M 1 q M 3 , we can see that the following lemma completes the proof:jk jk

LEMMA 12.1. The processes M 3 , j, k s 1, . . . , K, are F-martingales.jk

w xPROOF. Our proof is similar to that of Lemma 2.2 in 60 . Fix any j, k and
˜ w xt, t such that t ) t G 0. Denote by S l the moment of the l-jump of S ,0 0 j j

Ž . Ž . 3 Ž . Ž .l s 1, 2, . . . . From 2.1 ] 2.5 it follows that M t g FF t . Thenjk

3 3<E M t FF t s M t q E 1 U S u g p Q uyŽ . Ž . Ž . Ž . Ž .Ž .� 4Hjk 0 jk 0 j j jk
Ž xt , t0

<yp Q uy dS u FF tŽ . Ž . Ž .Ž .jk j 0

`

3s M t q E 1 U S t q l g p Q s yŽ . Ž . Ž .� 4Ž .Ýjk 0 j j 0 jk l j

ls1

<yp Q s y 1 s F t FF t� 4Ž . Ž .Ž .jk l j l j 0

s M 3 t ,Ž .jk 0

˜ w Ž . xwhere s J S S t q l . The last equality is a consequence of the followingl j j j 0

statements, which are easily verified:

Ž . w Ž . x Ž .i The random variable U S t q l is independent of FF t for allj j 0 0

l G 1 and t G 0.0

Ž . w Ž . xii The random variables U S t q l and s are independent for allj j 0 l j

l G 1 and t G 0.0

Ž . w Ž . x Ž .iii The random variables U S t q l and Q s y are independent forj j 0 l j

all l G 1 and t G 0.0

The proof of Lemma 3.9 is now complete. I

REMARK 12.2. The same arguments as above, which are based on a

multiparameter time change and the optional sampling theorem, yield that

M aM d , k , l s 1, . . . , K ,k l

Ž .are all purely discontinuous locally square integrable martingales. Hence,
a d Žnone of the processes M and M , k, l s 1, . . . , K, jump simultaneously seek l

w x . a53 , Theorem 1, page 49 . A similar assertion is valid for any pair M andk

M a with k / l, k, l s 1, . . . , K.l
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13. Proof of FLLN. To simplify the presentation we first carry out this

proof under Assumptions B, presented momentarily, which are stronger than

Assumptions A in Section 4. Commentary on the general case is provided in

Section 13.1.

ASSUMPTIONS B.

Ž .B1 Assume that

1 1
n n nl nj s l j , m nj s m j , P nj s P j , u.o.c.,Ž . Ž . Ž . Ž . Ž . Ž .

n n

for all n s 1, 2, . . . , where l, m and P are given vector- and matrix-
Ž Ž ..Kvalued globally Lipschitz bounded functions and sup r P j - 1.j g Rq

Ž . nŽ . Ž . Ž . KB2 Assume that q 0 ª q 0 , where q 0 g R is a given deterministicp q

vector.

13.1. Proofs under Assumptions B. Existence and uniqueness for the
Ž . Žw xsolution to 4.7 follow from results in Dupuis and Ishii 23 , Section 5;

.specifically, see Theorem 5.1 and Corollary 5.2 . It turns out that in the case

when P is constant, the proof of uniqueness for DEs with reflection amounts

to combining Gronwall’s inequality with the Lipschitz property of the oblique
w xreflection operator 13, 46 . However, Example 4.1 and Proposition 4.1 from

w x22 show that, when P is state-dependent, the corresponding reflection
Žoperator need not be Lipschitz continuous. For the notion of reflection

.operators, see Remark B.2. This suggests that many of the standard tools
Ž .cannot be used to establish existence and uniqueness for 4.7 . Appropriate

w xmethods for treating existence and uniqueness have been developed in 21 ,

motivated by nonlinear partial DEs.

Convergence of q n is based on the following

� n4 Ž . 5 n 5LEMMA 13.1. The sequence a given by 4.4 satisfies P-lim a s 0.Tn­`

PROOF. It is sufficient to show that

5 n 5P s lim a s 0, k s 1, . . . , K .Tk
n­`

a, n d, n f , n ŽBy Lemma 3.9, M , M and M are locally square integrable purelyk k k

ˆn ˆn ˆn.discontinuous martingales. Since A , D and F are continuous, we havek k k

Žw x .53 , Problem 3, page 60

a , n ˆn d , n ˆn f , n ˆn² : ² : ² :M s A , M s D , M s F .k k k k k k

Žw x.Now Doob’s inequality 53, Section 9, Chapter 1 implies that, for all « ) 0,

1
a , n a , n5 5 5 5P M G « s P M G n«� 4T Tk k½ 5n

1 1 T
a , n n² :F E M T s E l q u du,Ž . Ž .Ž .Hk2 2 2n « n« 0
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5 d, n 5 5 f , n 5and that similar inequalities hold for M and M . The proof ofT Tk k

Lemma 13.1 is thus complete, in view of the boundedness of l and m. I

Ž . Ž . Ž . Ž .Next, note that one can recast 4.2 ] 4.5 and 4.7 and 4.8 in the form of
w Ž . xa time-dependent reflection problem. See Definition B.1 and B.6 . Specifi-

cally, given existence and uniqueness of the solutions, we have

q n s F
R x n ,Ž .SSSSS

?1
n n n nx ? s q 0 q u nq u duŽ . Ž . Ž .Ž .H

n 0
13.2Ž .

?1 Tn n Ty P nq uy y P q uŽ . Ž .Ž . Ž .H
n 0

=I q n u s 0 mn nqn u du q a n
?� 4Ž . Ž . Ž .Ž .

and

?
R13.3 q s F x , x ? s q 0 q u q u du,Ž . Ž . Ž . Ž . Ž .Ž .HSSSSS

0

K Ž . w T Ž Ž ..xwhere SS J R and R ? s I y P q ? .q
Ž . nNow, subtracting the equation for q in 13.3 from the equation for q in

Ž . Ž13.2 and using the Lipschitz properties of the time-dependent reflection see
.Theorem B.1 , u and P, we obtain

t
n n n n5 5 < < 5 5 5 5 w xq y q F L q 0 y q 0 q a q q y q du , t g 0, T ,Ž . Ž .t t H uT ž /

0

for all T ) 0 and for some L ) 0. Thus, the assertion of the theorem followsT

Ž . Žw xfrom Assumption B2 , Lemma 13.1 and Gronwall’s inequality 25 , page
.428 .

13.2. Proofs under Assumptions A. To prove Theorem 4.6 under Assump-

tions A in Section 4, the proof above can be redone, taking into account the

following proposition.

PROPOSITION 13.4. Let Assumptions A be satisfied. Then there exist a
n� 4sequence L of positive random variable and deterministic constants L G 1,0

g ) 0, such that

n n g t< <q t F L e y 1, t G 0, n s 1, 2, . . . ,Ž . 1

L0n� 4P L ) l F ,
l

13.5Ž .

< n < g t
E q t F L e y 1, t G 0, n s 1, 2, . . . .Ž . 1 0

PROOF. The proof can be carried out by repeating the arguments in Kurtz
Žw x .50 , Theorem 2.1 . I
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Roughly speaking, this lemma establishes probabilistic bounds on q n, and
nŽ n. nŽ n. whence on l q rn and m q rn, n s 1, 2, . . . , as well due to Assumption

Ž . xA2 in Section 4 . These bounds allow replication of our proof for bounded

rates under only minor modifications.

w x14. Proof of FCLT. Here, we extend and generalize Krichagina 46 to

cover networks with state-dependent routing. To simplify the representation,

we write down the proof of a weaker version of Theorem 7.2. Namely, we
� n4establish the convergence of V under the following conditions:

1. Assumptions B in Section 13 are satisfied.

2. l, m and P are continuously differentiable with globally Lipschitz deriva-

tives.
qŽ . yŽ . 0Ž . w x3. J ? , J ? and J ? are constant during 0, T .
nŽ . Ž . Ž . Ž .4. V 0 ª V 0 , where V 0 is a given random vector with V 0 s 0 for alld k

k g Jy
.

Ž .In this case, f , f and f in 7.3 vanish. Then V is a solution to thel m P

following SDE with time-dependent reflection:

?
R y y1˜w x14.1 V s F I y I R t dX t ,Ž . Ž . Ž .HG ž /

0

? ?
TX ? s V 0 q ­u q t V t dt y ­ P q t ( V t dy tŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .H H

0 0
14.2Ž .

?
1r2q S q t dW t .Ž . Ž .Ž .H

0

Ž . Ž .Further, in view of Assumptions B, 7.12 ] 7.18 take the form

1
n R n R'14.3 V s n F x q X y F x ,Ž . Ž .SSSSS SSSSSž /'n

where

14.4 X n
? s V n 0 q B n

? y B n
? q M n

? ,Ž . Ž . Ž . Ž . Ž . Ž .u P

?
n n'14.5 B ? s n u q u y u q u du,� 4Ž . Ž . Ž . Ž .Ž . Ž .Hu

0

?
n T n T n n'14.6 B ? s n P q u y P q u I q u s 0 m q u du,� 4Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .HP

0

n n'14.7 M s n a .Ž .

To prove FCLT in the general case, one can use Proposition 13.4 and a
Ž . Žw x w xstandard cutoff or localization argument 73 , Section 11.1; see also 72 for

.technical aspects of this argument .

14.1. The main steps. We describe below the main steps of the proof.

Proofs are provided in Section 14.2.
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Ž . Ž .LEMMA 14.8. There exists a unique strong solution V to 14.1 and 14.2 .

The process V is continuous and Markovian.

� n4 Ž .LEMMA 14.9. For sequence M in 14.7 ,

d
n ˜14.10 M ª W ,Ž .

?
1r2˜14.11 W ? s S q t dW t .Ž . Ž . Ž . Ž .Ž .H

0

Ž . Ž .Here q and S are given by 4.7 and 7.10 , respectively, and W is a standard

R
K-valued Brownian motion.

� n4LEMMA 14.12. The sequence V adheres to the compact containment

condition

5 n 5� 4lim lim sup P V ) l s 0.T
l­` n

Ž n n n n n.LEMMA 14.13. The sequence V , X , B , B , M is C-tight.u P

˜ n n nŽ . ŽLEMMA 14.14. Let V, X, B , B , W be any weak limit of V , X , B ,u P u
n n. Ž .B , M . Then X satisfies 14.2 .P

14.2. Proofs.

Ž . Ž . Ž w x.PROOF OF LEMMA 14.8. Rewrite 14.1 and 14.2 in the form t g 0, T

R y ˜ ˜ ˜y1w xV s F I y I X , X 0 s R 0 V 0 ,Ž . Ž . Ž .Ž .G

y1 R y˜ ˜ ˜w xdX t s R t g q t , F I y I X t dtŽ . Ž . Ž . Ž .Ž .½ G
14.15Ž .

qS1r2 q t dW t ,Ž . Ž .Ž . 5
where

w x T K Kg j , x s ­u j x y ­ P j (x ? m j , j g R , x g R .Ž . Ž . Ž . q

Ž Ž .. RNote that S q ? is a Lipschitz function. Now, since F is nonanticipating
G

Ž . Ž .and Lipschitz Theorem B.1 , there exists a unique strong solution to 14.15
Ž . Ž .and hence to 14.1 and 14.2 as well. Moreover, the continuity and Marko-

vian property of V immediately follow, in view of Propositions B.1 and B.2.

Actually, weak existence follows from our proof of the FCLT, where it is
Ž . Ž .shown that limit points of some C-tight sequence satisfy 14.1 and 14.2 . I

� n4PROOF OF LEMMA 14.9. Recall that M is a sequence of locally square
w Ž . Ž .xintegrable martingales see Lemma 3.9, 4.4 and 14.7 . By Theorem 4 of
Žw x . Ž .Liptser and Shiryayev 53 , page 567 , to establish 14.10 it is sufficient to

show that

p t
n² : w x14.16 M t ª S q u du, t g 0, T .Ž . Ž . Ž .Ž .H

0
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Ž . Ž .We now proceed with the proof of 14.16 . It follows from 7.10 that

?

S q u duŽ .Ž .H
0

1 2 3, ns diag c ? q diag c ? q diag c ?14.17 � 4 � 4 � 4Ž . Ž . Ž .Ž .
? ?

T 2 2y P q u d diag c u y d diag c u P q u ,� 4 � 4Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .H H
0 0

? ?

1 2c ? s l q u du, c ? s m q u y m q u du,� 4Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .H H
0 0

14.18Ž .
?

3 Tc ? s P q u m q u y m q u du.� 4Ž . Ž . Ž . Ž .Ž . Ž . Ž .H
0

Ž . Ž .Next, in view of 3.3 and 14.7 , we have

1
n a , n a , n f , n a , n d , n² : ² : ² : ² :wM s M q M , M y M , M

n

² f , n a , n: ² f , n: ² f , n d , n:q M , M q M y M , M

² d , n a , n: ² d , n f , n: ² d , n:xy M , M y M , M q M .

a, n f , n d, n ŽNote that M , M and M are purely discontinuous martingales see
w x .Theorem 3 in 53 , page 41 . Recall that for two purely discontinuous mar-

1 2 ² 1 2:tingales M and M , M , M coincides with the compensator of
?1Ž . 2Ž . Ž w x w xÝ D M u D M u . See, e.g., 53 , Theorem 3, page 41, and 24 , TheoremuF ?

.9.40. Then Remark 12.2 immediately implies that

1
n a , n f , n d , n f , n d , n d , n f , n² : ² : ² : ² : ² : ² :w xM s M q M q M y M , M y M , M .

n

Continuing computations, one can easily obtain that

² n: 1, n 2, n 3, nM ? s diag c ? q diag c ? q diag c ?� 4 � 4 � 4Ž . Ž . Ž . Ž .

?

T n 2, ny P q u d diag c u� 4Ž . Ž .Ž . Ž .H
014.19Ž .

?

2, n ny d diag c u P q u ,� 4Ž . Ž .Ž .Ž .H
0

?

1, n nc ? s l q u du,Ž . Ž .Ž .H
0

?

2, n n nc ? s I q uy ) 0 m q u du,� 4Ž . Ž . Ž .Ž .H
0

14.20Ž .

?

3, n T n n nc ? s P q u I q uy ) 0 m q u du.� 4Ž . Ž . Ž . Ž .Ž . Ž .H
0

Ž .The proof of 14.10 is complete once we show that each of the five terms on
Ž . w xthe right-hand side of 14.19 converges uniformly over 0, T in probability to
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Ž .the corresponding term on the right-hand side of 14.17 . To establish this

convergence, it is sufficient to show that, for i s 1, 2, 3,

p
i , n i14.21 c ? ª c ? , n­`.Ž . Ž . Ž .

� 1, n4 Ž .First, since l is Lipschitz, c converges by FLLN. Now, 13.2 and As-

sumptions B imply

?
n R n n n n n nq s F x , x ? s q 0 q u q u du y e ? q a ? ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .HSSSSS

0

where

?
n T n T ne ? s P q uy y P q u dy ,Ž . Ž . Ž .Ž . Ž .H

0
14.22Ž .

?
n n ny ? s I q u s 0 m q u du.� 4Ž . Ž . Ž .Ž .H

0

By properties of the Stiltjes integral, FLLN implies that e n ª 0 u.o.c. Then,p

by Lemma 13.1 and by the Lipschitz property of time-dependent reflection,

we have

pt t
T n TI y P q u dy u ª I y P q u dy u ,Ž . Ž . Ž . Ž .Ž . Ž .H H

0 0

Ž . Ž .where y is given by 4.7 . In view of C.2 , simple arguments from calculus

imply that
p

n14.23 y ª y.Ž .

Ž .Then the convergence in 14.21 for i s 2, 3 follows. I

PROOF OF LEMMA 14.12. During this proof we use positive constants C ,i
i s 1, 2, 3. Explicit expressions for these constants are of no significance and

therefore are not given.

R Ž .By the Lipschitz property of F , it follows from 14.3 that
SSSSS

5 n 5 5 n 5 w xV F C X , t g 0, T .t t1

Ž . Ž .Using Lipschitz properties of u and P, we infer from 14.4 ] 14.7 that

t
n n n n5 5 < < 5 5 5 5 w xX F V 0 q M q C V du, t g 0, T .Ž .t t H u2

0

w xCombining the two inequalities above with Gronwall’s lemma 25 implies:

5 n 5 < n < 5 n 5V F C V 0 q M exp C T .Ž . Ž .Ž .T T1 3

� nŽ .4 � n4Now, V 0 and M converge weakly by conditions of this theorem and by

Lemma 14.9, respectively. The proof of this lemma is thus complete. I

Ž . Ž .PROOF OF LEMMA 14.13. Recall 7.19 , 7.20 and considerations thereafter.

It was explained there that the assertion of Lemma 14.13 would follow if
� n4C-tightness of X is established. In view of Lemma 14.9, it suffices to show
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� n4 � n4 Ž . Ž .that B and B , given by 14.5 and 14.6 , respectively, are tight in
u P

K w x � n4 � n4C 0, T . We restrict our attention to B , since a proof of tightness for B
u P

Ž .is completely analogous. Since u is Lipschitz, 14.5 yields

< n n < 5 n 5B t y B s F C V t y s , 0 F t F s F T ,Ž . Ž . Ž .Tu u

� n4 Žfor some C ) 0. Hence, tightness of B follows from Lemma 14.12 see, e.g.,
u

w x .38 , Proposition VI.3.26 . I

PROOF OF LEMMA 14.14. In view of Lemma 14.9, it suffices to show that

? ?d d
n n T14.24 B ª ­u q t V t dt , B ª ­ P q t ( V t dy t .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .H Hu P

0 0

Ž .To prove the first limiting relation in 14.24 , note that

? u1
n n n n nB ? s f t V t dt , f ? s ­u q ? q V ? du.Ž . Ž . Ž . Ž . Ž . Ž .H Hu u u ž /'n0 0

Thus, combining FLLN, the bounded convergence theorem and the continu-
� n4ous mapping theorem implies the convergence for B . Analogously,

u

? u1
n n n n n T nB ? s f t ( V t dy t , f ? s ­P q ? q V ? du,Ž . Ž . Ž . Ž . Ž . Ž . Ž .H HP P P ž /'n0 0

n Ž . Ž .where y is given by 14.22 . The proof is thus complete by 14.23 and by

properties of the Stiltjes integral. I

15. Future research. Our efforts are currently directed toward covering

discontinuous diffusion limits and approximating networks which are both

state- and time-dependent. We outline below these two directions.

15.1. M -convergence. Discontinuous limits arise when the conditions of1

Ž .FCLT Theorem 7.2 are relaxed. We describe below the general state of
w xaffairs. Formulations and proofs can be found in 65 and will appear in a

w xcomplete form in a future paper 64 . As already pointed out, convergence to

discontinuous limits holds in the M -topology. Within the context of a single1

w xstation, this issue is considered in 59 .

Recall that at each moment t, every station of the network belongs to one
qŽ . yŽ . 0Ž .of the sets J t , J t or J t ; namely, it is overloaded, underloaded or

w Ž .xcritically loaded, respectively see 6.2 . Theorem 7.2 reveals that diffusion

limits for stations in Jq are general diffusion processes, in J 0 they are

reflected diffusions and for stations in Jy they vanish. It is explained in

Section 7 that a diffusion limit can jump with positive probability only at

those times when the corresponding fluid limit switches from one region to
Ž .another. We say that there are phase transitions at those times. To be more

w xspecific, we appeal to Mandelbaum and Massey 55 , where a single time-

dependent station is treated. The following observation is behind the similar-
w xity between the cases arising here and in 55 . Let q be the fluid limit for a
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Ž .given state-dependent network: q is the unique solution to 4.7 . Define

˜ Tl t J l q t q P q t m q t ,Ž . Ž . Ž . Ž .Ž . Ž . Ž .

m t J m q t q PT q t m q t , t G 0,Ž . Ž . Ž . Ž .Ž . Ž . Ž .˜

Ž .where m is given by 6.1 . Then q is the unique solution to the normal

reflection problem

t
˜q t s q 0 q l u y m u du q y t G 0, t G 0,Ž . Ž . Ž . Ž . Ž .˜Ž .H

0

y is nondecreasing in each coordinate, y 0 s 0,Ž .
`

T1 q t ) 0 dy t s 0.Ž . Ž .H
0

This equation has the form of a fluid approximation for a single time-depen-
w xdent station. Now the results of 55 imply that the diffusion limit is discon-

Ž .tinuous at t with positive probability exactly in the following cases:0

Ž . qŽ . w . qŽ . Ž .CASE 1. t ) 0. i k g J t , t g t y « , t , k f J t ; ii there exist0 0 0 0
n ˜nsequences t ­ t and t x t such that, for some k and « ) 0,0 0

q 0 wk g J t j J t , t g t y « , t andŽ . Ž . .0 0

0 n y ˜nk g J t , k g J t , n­`.Ž . Ž .

yŽ . w . Ž .CASE 2. t s 0. k g J t , t g 0, « , V 0 k 0, for some k and « ) 0.0 k

It turns out that even if only some coordinates of the fluid limit undergo

phase transition, then discontinuities can arise at all coordinates of the

diffusion limit.

The main idea of our FCLTs with discontinuous diffusion limits is to
n Žanalyze V on different time scales slowly varying time scale near points of

.phase transitions. This random time change enables us to pick up the
� n4behavior of V during short phases, which shrink under rescaling and give

Ž w x .rise to the discontinuities. For additional details, see 59 , Section 4.5.

15.2. Time-dependent networks. The results obtained in this paper pro-

vide insight into the nature of fluid and diffusion approximations for net-

works, which are state- and time-dependent simultaneously. For simplicity of

presentation, we focus below on purely time-dependent networks. The gen-

eral case can be treated similarly.

Ž . Ž .Consider a K-station network given by 2.1 ] 2.5 . Append to this network
Ž .an additional station K q 1 , which is disconnected from all other stations,

q Žand assume that l ' 1 and m ' 0. Clearly, Q s N standardKq1 Kq1 Kq1 Kq1

.Poisson . Next, suppose that the arrival and service rates at stations 1, . . . , K,

as well as the routing probabilities, depend only on Q .Kq1

wNow, FLLN for Poisson processes implies that, under our rescaling As-
Ž . x Ž . Ž .sumption A1 in Section 4 , the fluid limit for K q 1 th station is q t sKq1
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Ž .t, t G 0. This suggests that 4.7 , which defines the fluid limit q for the

original network, reduces to a time-dependent reflection problem of the type

? ?

Tq ? s q 0 q u t du q I y P t dy t .Ž . Ž . Ž . Ž . Ž .H H
0 0

Similarly, the diffusion limit would be a solution of the time-dependent

reflection problem

?

TV ? s X ? q I y P t dY t ,Ž . Ž . Ž . Ž .H
0

? y1y T yw xX ? s V 0 q I y I I y P t IŽ . Ž . Ž .H
0

= yf T t dy t q S1r2 t dW t .Ž . Ž . Ž . Ž .Ž .P

We can thus deduce results for time-dependent networks from the corre-

sponding results for state-dependent networks by introducing an auxiliary
Ž . Žcoordinate additional station in the manner outlined above. The technique

is similar to the way a differential equation is reduced to an autonomous
.equation. However, this approach is restricted because it requires unneces-

Žsarily strong assumptions on rates and routing in particular, Lipschitz
.continuity . We can, alternatively, pursue a direct approach that covers

networks with discontinuous parameters. Such features are important in
w xapplications and are currently under study 56 .

APPENDIX A

Projected differential equations. In what follows, we introduce state-

dependent oblique projections. This notion is used in Section 5 to help

characterize fluid limits. We begin with the following lemma:

LEMMA A.1. Fix an arbitrary x g SS s R
K
. For any j g R

K, there exists aq

Ž . K Kunique pair z, v g R = R such that

Tz s j q I y P x v ,Ž .

A.1Ž . z g T x , yv g N x ,Ž . Ž .SS SS

Tz ? v s 0,

Ž . Ž .where T x and N x are, respectively, the tangent and normal cones to SS
SS SS

at x .

Ž .REMARK. In the mathematical programming literature, A.1 is known as
Ž w x .the linear complementarity problem over cones see, e.g., 19 , page 31 . The

lemma can be derived from general results on the linear complementarity
Ž .problem. However, to gain insight into the nature of A.1 , we provide a

simple independent proof by relating the linear complementarity problem
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Ž .A.1 to the oblique reflection problem; that is, to the dynamic complementar-
Ž .ity problem see Remark B.1 .

Ž . Ž .PROOF OF LEMMA A.1. Recall the expressions for T x and N x from
SS SS

Ž .5.1 . Pick an arbitrary t ) 0. For a given x and j , introduce the piecewise0

linear function x,
q

A.2 x t s x q j t y t , t G 0.Ž . Ž . Ž .0

w x Ž .By Theorem 1 in Harrison and Reiman 31 , there exists a unique pair q, y

of continuous functions satisfying

Tq t s x t q I y P x y t G 0, t G 0,Ž . Ž . Ž . Ž .

A.3 y is nondecreasing in each coordinate, y 0 s 0,Ž . Ž .
`

T1 q t ) 0 dy t s 0.Ž . Ž .H
0

Ž . ŽMoreover, for x given by A.2 , q and y are piecewise linear see the proof of
w x. Ž . KTheorem 5.2 in 14 . In particular, there exist t g t , ` and b, c g R such1 0

that
q q

w xA.4 q t s x q b t y t , y t s c t y t , t g 0, t .Ž . Ž . Ž . Ž . Ž .0 0 1

Ž . Ž . Ž .Substituting A.2 and A.4 into A.3 shows that

Tb s j q I y P x c,Ž .

b G 0 whenever x s 0,i i
A.5Ž .

Kc g R and c s 0 whenever x ) 0,q i i

Tb ? c s 0.

Ž .Finally, let z s b and v s c. From A.5 it follows that these z and v satisfy
Ž . Ž .A.1 , and thus existence of the solution to A.1 is established. The unique-

Ž . Ž .ness for A.1 can be derived from uniqueness of the solution to A.3 by

applying the foregoing arguments in reverse order. I

REMARK. Roughly speaking, our proof illustrates that two piecewise lin-

ear functions satisfy the dynamic complementarity problem if and only if
Žtheir slopes satisfy the linear complementarity problem over cones. We can

establish a similar relation for absolutely continuous functions, as well as for
.the jumps of step functions.

Lemma A.1 supports the following definition:

DEFINITION A.1. Fix an arbitrary x g SS and j g R
K

. Call the vector z
Ž . Ž .satisfying A.1 the state-dependent oblique projection of j onto T x with

SS

w T Ž .xrespect to I y P x and denote it by

FFŽ x .� 4P j ,

Ž . Ž Ž . Ž ..where FF x s T x , P x .

SS
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APPENDIX B

Time-dependent reflection problems. We outline some new results on
w xtime-dependent reflection problems. Proofs are given in 57 .

B.1. Formulation of the problem and main properties. Fix an arbitrary
� 4T ) 0. Let J be a given subset of 1, 2, . . . , K and

B.1 G s j g R
K : j G 0 for all k g J .Ž . � 4J k

Throughout this Appendix, denote G J G , for simplicity of notation.J

Ž . w Ž .x KLet P ? s p ? be a given nonnegative matrix-valued function,jk j, ks1

w x K=KP: 0, T ª R , which is RCLL. Assume that P has the following proper-q
Ž . w xties: first, P t is substochastic for every t g 0, T ,

K

B.2 p ? F 1, j s 1, . . . , K ;Ž . Ž .Ý jk

ks1

Ž Ž ..second, the spectral radii r P ? satisfy

B.3 sup r P t - 1.Ž . Ž .Ž .
w xtg 0, T

Ž . K w xDEFINITION B.1 Time-dependent reflection problem . Let j g D 0, T .0

Ž . 2 K w xThen f, c g D 0, T is a solution to the time-dependent reflection prob-
Ž .lem for j with respect to G and R if

¡f t s j t q c t ,Ž . Ž . Ž .

w xf t g G , t g 0, T ;Ž .
?

K w xthere exists y g D 0, T such that c ? s R u dy u ,Ž . Ž . Ž .H
0~B.4Ž .

y is nondecreasing in each coordinate, y 0 s 0, y ' 0Ž . k

for all k f J ,

T
1 f t ) 0 dy t s 0, k g J ,� 4Ž . Ž .H k k¢

0

Ž . w T Ž .xwhere R ? J I y P ? .

REMARK B.1. The special case when R ' const is known as the oblique
w x w xreflection problem 31 or the dynamic complementarity problem 54 . For the

geometric interpretation of R as the matrix of directions of reflection, see

Remark 4.9.

The following theorem plays a pivotal role in the proof of our FLLN and

FCLT.

Ž .THEOREM B.1 Existence, uniqueness and Lipschitz property . Let G s GJ

Ž . Ž . Ž .be defined by B.1 and let P satisfy B.2 and B.3 . Assume also that P is
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absolutely continuous and

˙ d5 5B.5 P s L - `.Ž . T T

K w x Ž . 2 K w xThen for each j g D 0, T there exists a unique pair f, c g D 0, T0

Ž .such that B.4 is satisfied.
1 2 K w x Ž 1 1. Ž 2 2 .Furthermore, let j , j g D 0, T , and let f , c and f , c be the0

Ž . 1 2solutions to B.4 for j and j , respectively. Then there exists L - ` such

that

5 1 2 5 5 1 2 5 5 1 2 5 5 1 2 5f y f F L j y j , c y c F L j y j .T T T T

Moreover, this L depends solely on K, T, Ld and L` , whereT T

y1` TL J sup I y P tŽ .T `
w xtg 0, T

Ž .is finite, by C.2 . Finally, the functions f and c are nonanticipating with

respect to the data j .

REMARK. Our proofs of existence and uniqueness are based on fixed-point

theorems. Proof of the Lipschitz property develops ideas of Dupuis and Ishii
w x23 . This theorem can be generalized to the case when P is of bounded

variation. However, the above partial results, covering absolutely continuous

P, suffice for our purposes.

REMARK B.2. Based on Theorem B.1, we introduce two well-defined time-

dependent reflection operators F
R and C

R by
G G

B.6 F
R j s f , C

R j s c .Ž . Ž . Ž .G G

Both F
R and C

R are Lipschitz in the uniform metric and
G G

5 R 5 5 5 5 R 5 5 5F j F L j , C j F L j .Ž . Ž .T T T TG G

It is natural to introduce the notion of state-dependent reflection operators.

These are associated with a corresponding state-dependent reflection prob-

lem. Here P and j may depend on the state f. In particular, the reflection
Ž .term c in B.4 is given by

?
Tc ? s I y P f u dy u .Ž . Ž . Ž .Ž .H

0

Ž .We have no direct use of this concepts, but an example is 4.7 . See also

Remark 4.9.

PROPOSITION B.1. Let G and P satisfy the conditions of Theorem B.1. If j
Ž . Ž . R Ris continuous absolutely continuous , with j 0 G 0, k g J, then F , Ck G G

Ž . Ž .and y in B.4 are continuous absolutely continuous as well.

Ž . Ž .PROPOSITION B.2. Let f, c be a solution to B.4 for a given continuous j
Ž . Ž .with respect to some G and P. Fix an arbitrary t g 0, T . Then f*, c * ,
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given by

w xf* t s f t q t , c * t s c t q t y c t , t g 0, T y t ,Ž . Ž . Ž . Ž . Ž .
Ž . Ž . Ž . Ž . Ž .is a solution to B.4 for j * t s f t q x t q t y x t , with respect to G and

Ž . Ž . w xP* t s P t q t , where t g 0, T y t .

B.2. Derivatives of time-dependent reflection operators. Our goal here is
� n4to investigate the convergence of the sequence V given by

1
n R R'B.7 V s n F x q X y F x , n s 1, 2, . . . ,Ž . Ž .SSSSS SSSSSž /'n

K � n4where SS J R . The limit of V can be interpreted as some form of a di-q

rectional derivative of F
R , at the point x in the direction of X. The corre-
SSSSS

sponding one-dimensional problem is treated by Mandelbaum and Massey
w x55 .

� n4In this paper we consider only cases when V converges u.o.c. to a

continuous limit. Treating discontinuous limits requires Skorokhod’s M -1

w xtopology. This issue was partially treated in 65 and will be addressed in a
w xfuture generalization of 57 . For simplicity of presentation, we restricted

ourselves to the smallest classes of functions x, X and P, which are sufficient

for our applications. Specifically, we impose on these functions the following

assumptions:

ASSUMPTIONS C.

Ž . Ž .C1 x is absolutely continuous, with x 0 G 0 and with Lipschitz derivative

u s x.̇

Ž . Ž . Ž .C2 X is continuous, with X 0 G 0 whenever x 0 s 0.k k

Ž . Ž . Ž . Ž . Ž .C3 P hence R is absolutely continuous, such that B.2 , B.3 and B.5 are

satisfied.

Next, denote

1
n R Rq J F x q X , q J F xŽ .SSSSS SSSSSž /'n

and let y n and y be the corresponding complementary functions given by
Ž .B.4 . Note that, by Proposition B.1, q and y are absolutely continuous.

Observe also that by the Lipschitz property of time-dependent reflection we
5 n 5have lim q y q s 0. Within the context of our limit theorems, x and XTn­`

play the following role: x is the driver of the fluid limit q, while X is the
w Ž .xdriver of the diffusion limit cf. 7.19 . In line with this interpretation, the

� n4 wlimit V of V , given by Theorem B.2, plays the role of the diffusion limit cf.
Ž .x7.19 .

PROPOSITION B.3. The function q is the unique solution to the projected DE
Ž .see Appendix A

q t s P FFŽ t . u t , FF t s T q t , P t , t G 0,� 4Ž . Ž . Ž . Ž . Ž .Ž .Ž .˙ SS

Ž .with the initial condition x 0 .
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The proof is similar to that of Theorem 5.2 and therefore is omitted.

This proposition implies, in particular, that the function m given by

y1T FFŽ t .m t s I y P t P u t y u t� 4Ž . Ž . Ž . Ž .Ž .

Ž . Ž .satisfies the following relation m t s y t , for almost every t ) 0.˙
qŽ . yŽ . 0Ž .For each moment t, define now the sets J t , J t and J t by

Jq t s j: q t ) 0 ,Ž . Ž .� 4j

Jy t s j: q t s 0, m t ) 0 ,Ž . Ž . Ž .� 4j j

J 0 t s j: q t s 0, m t s 0 .Ž . Ž . Ž .� 4j j

qŽ . yŽ . 0Ž .In our limit theorems, J t , J t and J t act as the sets of over-
w Ž .xloaded, underloaded and critically loaded stations cf. 6.2 . Finally, we set

Ž .X 0y s 0.

The following main theorem provides a deterministic framework for our

FCLT. In particular, the theorem demonstrates that the diffusion limits for

overloaded, critically loaded and underloaded stations are processes without

reflection, with reflection and the zero process, respectively.

THEOREM B.2. Assume the following statements:

Ž .i Assumptions C are satisfied.

Ž . qŽ . yŽ . 0Ž . w xii J ? , J ? and J ? are constant during 0, T .

Ž . Ž . yiii X 0 s 0 for all k g J .k

� n4 w xThen the sequence V converges uniformly over 0, T to a function V. This V

is the unique solution to the time-dependent reflection problem

?
R y y1˜w xV s F I y I R t dX t ,Ž . Ž .HG ž /

0

˜ T y K y 0R s I y P I , G s j g R : j G 0, ;k g J j J .� 4k

Ž . Ž . Ž .REMARK B.3. Note that V 0 s X 0 , as it must be according to 7 . In-
w xdeed, similarly to 15 , write

P P0 0 XB BN ByI s , P s , X 0 s .Ž .0 I P PN 0NB N

Simple calculations yield

y1T Ty1 I P I y Py T y B NB N Nw x w xI y I I y P I s .

0 0

Ž . w yxw T Ž . yxy1 Ž . Ž .Hence V 0 s I y I I y P 0 I X 0 s X 0 .
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APPENDIX C

Ž . w Ž .x KProperties of the routing matrix P. Let P ? s p ? be ajk j, ks1

given nonnegative matrix-valued function, P: TªR
K=K

. Here T denotesq
w x w . Kany one of 0, T , 0, ` or R . Suppose further that the following conditionsq

are satisfied:

K

p ? F 1, j s 1, . . . , K , and sup r P j - 1.Ž . Ž .Ž .Ý jk
jgTks1

w xBy the Perron]Frobenius theorem 8 , these conditions imply, in a straight-
w T Ž .xforwared manner, that the matrix I y P j is invertible for every j gT ,

and

C.1 inf det I y P j ) 0,Ž . Ž .
jgT

y1TC.2 sup I y P j - `,Ž . Ž .
jgT

C.3 max sup p j - 1.Ž . Ž .i i
1FiFK jgT

APPENDIX D

Notation.

Sets.

ZZ and R the sets of nonnegative integer and real num-q q

bers

R
K the K-dimensional Euclidean space

K � K 4SS J R j g R : j G 0, for all k s 1, . . . , Kq k

SS
0 the interior of SS
K � K 4R j g R : j F 0, for all k s 1, . . . , Ky k

R
K=K the set of K = K-dimensional matrices withq

nonnegative elements

R
K=K=K the set of K = K = K arrays with real ele-

ments
w x w xEE 0, 1 the set of all open subintervals of 0, 1

Vector and matrices.

aT transpose of a vector or a matrix
w x Ž .det P and r P the determinant and the spectral radius of a

matrix P

I and d the identity matrix and Kronecker’s symboljk

� 4 K � 4diag a , a g R the matrix diag a , . . . , a1 K

< <a Euclidean norm of a vector a
< <P operator norm of a matrix P with respect to

Euclidean vector norm
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< < < < K K < < < <a and a , a g R Ý a and max a1 ` ks1 k k k

< < K=K K < <P , P g R max Ý p` k js1 k j
K=K=K K w K x K

Q(a, Q g R , a g R Ý Q ais1 i jk i j, ks1

Derivatives of vector and matrix functions.

Ž . K K wŽ Ž .. x K­u j , u : R ª R ­u j r­jj k j, ks1

Ž . K K=K wŽ Ž .. x K­ P j , P: R ª R ­ P j r­jjk i i, j, ks1

Function spaces.

K w x K w x KD 0, T and C 0, T the set of RCLL and continuous R - valued
w xfunctions on 0, T

K w x K w x � K w x Ž . 4 � K wD 0, T and C 0, T jgD 0, T : j 0 G0, kgJ and jgC 0,0 0 k

x Ž . 4T : j 0 G 0, k g Jk

5 5 < Ž . <a sup a t , where a is a vector or a matrixT 0 F t F T

endowed with uniform topology

Convergence.

u.o.c. uniformly on compact

ª and ª , P y lim convergence in distribution and in prob-d p

ability

Stochastic processes.

RCLL right-continuous with left limits
² :M the predictable quadratic variation of a mar-

tingale M
² 1 2:M , M the predictable quadratic covariation of mar-

tingales M 1 and M 2

Miscellaneous.

� n4 na sequence a , n s 1, 2, . . .

k and n maximum and minimum
q y Ž .a sak0 and a sy an0 the positive and negative parts of a
Ž .f t s sup f the upper envelope of f0 F sF t s

� 41 S indicator function of a set S
� 4 � 4 K Ž � 4 � 4.T Ž � 41 j ) 0 and 1 j s 0 ; j g R 1 j ) 0 , . . . , 1 j ) 0 and 1 j s 0 ,1 K 1

� 4.T
. . . ,1 j s 0K

� 4 � 4 K � � 44 � � 44I j ) 0 and I j s 0 ; j g R diag 1 j ) 0 and diag 1 j s 0
Ž . K � 4II j , j g R k: j s 00 k

q y 0 Ž .J , J , J see 6.2
q � � q4 � q44I diag 1 1 g J , . . . , 1 K g J
y 0 � � y4 � y44 � �I , I diag 1 1 g J , . . . , 1 K g J , diag 1 1 g

04 � 044J , . . . , 1 K g J
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Conventions. Vectors are understood to be columns. For a convex set
K Ž . Ž .G : R and x g G, N x and T x denote, respectively, the normal andG G

tangent cones at x :

N x s z g R
K : z T

? j y x F 0 for all j g G ,� 4Ž . Ž .G

T x s z g R
K : z T

? j F 0 for all j g N x .Ž . Ž .� 4G G

A vector- or matrix-valued function f is locally Lipschitz if for every compact

set KK ; R
K, there exists a constant LKK such that

< 1 2 < KK < 1 2 < 1 2 Kf j y f j F L j y j , j , j g R ;Ž . Ž . `

f is globally Lipschitz if LKK can be chosen independently of K. Integrals H t
0

stand for H .w0, t x
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