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Results of relativistic multiconfiguration Dirac-Fock calculations with an extended nucleus are
used to analyze the volume isotope shifts of the resonance transitions in the group-11a and -11 b ele
ments as well as in Vb. This is done together with a review of the isotope shift theory, including a
critical evaluation and comparison of the semiempirical calculation of volume isotope shifts com
monly used today. Electronic factors F;, proportional to differences of electronic densities over the
nuclear volume, are discussed within various approximations and compared with experimental re
sults.

I. INTRODUCTION

For many elements systematic measurements of optical
isotope shifts (IS) and hyperfine-structure splittings (hfs)
in spectral lines for series of stable as weIl as radioactive
isotopes have been carried out for a long time. I -

4 During
the last years many of these old investigations have been
extended considerably''<" due to the access to good
narrow-band tunable-Iaser radiation in broad wavelength
regions. In particular alkali-metal, alkaline-earth (group
Ila), and alkaline-earth-like atoms (group-IIb) have been
studied with use of different laser spectroscopic tech
niques with ever-increasing accuracy.

Parallel to these experimental developments, theoretical
methods and computer programs for treatment of atomic
systems within the self-consistent-field (SCF), Hartree
Fock (HF),9,10 Dirac-Fock (DF),11,12 multiconfiguration
Hartree-Fock (MCHF), and multiconfiguration Dirac
Fock (MCDF)9,13-16 approaches have been developed. In
addition many-body perturbation theory (MBPT) ap
proaches17,18 have been developed further, nonrelativisti
cally as weIl as relativisticaIly. This type of ab initio

atomic calculation opens the possibility to test semiempir
ical methods1,2,19-22 for the derivation of electronic prop-
erties such as breakdown of LS coupling, perturbation
from different configurations, and different expectation
values.

Examples of areas where semiempirical approaches
have been used for a long time is the analysis of experi
mental hfs and IS data. The possibility ofdoing ab initio

calculations eliminates the need of the semiempirical ap
proach. As the semiempirical approach has been used
very frequently with relatively good success the ab initio

calculations can be used to test the validity of that ap
proach. Further, detailed evaluations of the electronic
part of the hfs and the volume IS will give accurate values
for nuclear properties like nuclear radial moments and
change of charge radii between isotopes, respectively.
These calculated nuclear quantities can then be compared

with results of other fields like the study of muonic and
electronic x-rays or electron scattering23-2S as acheck of
the evaluation procedure. To summarize, hfs and IS are
excellent properties for testing of and linking together
ab initio semiempirical rnethods and electronic-nuelear
properties.

Recently the electronic faetors of the volurne isotope
shift were caleulated in an ab initio way with the DF and
the MCDF method for states in BaI, BaII,26 and AUI.27

In this paper we extend those calculations to all other ele
ments in group IIa and group IIb of the periodic table as

. weIl as Yb. Usually IS for these elements have been mea
sured in the resonance lines of the ionized system. Caleu
lations have, therefore, been done for some low-lying
states of the second spectrum as weIl.

The paper is organized as folIows. Seetion 11 gives a
short review of the MCDF method and isotope shift
theory including a review of the semiempirical ap
proaches. A presentation of the results of the calculations
and comparison of experimental data is presented in Sec.
111, with the eonclusions in Sec. IV.

11. THEORETICAL APPROACH

A. Multiconfiguration Dirac-Fock method

The MCDF method is weIl known. 1S,16 Two computer
programs by Desclaux':' and by Grant et al. 14 now exist
so that abrief description should be sufficient here.

In its most eomrnonly used form the MCDF method
starts from the following zeroth-order Hamiltonian

H = ~HD(i)+ ~ r;jl ,
i i.j

i <t

Le., a surn of one-electron Dirac operators H D plus the
classical Coulomb repulsion between the eleetrons. The
Dirac equation which has to be solved is

31 2038 @1985 The American Physical Society



31 STATE-DEPENDENT VOLUME ISOTOPE SHIFTS OF LOW- ... 2039

The total wave function I 'IJ) for a given atom is ex
pressed as a linear combination of configuration state
functions (CSF) ItPi),

(1)

B. Isotope shift theory

The measured isotope shift in optical spectral lines or in
electronic and muonic x rays is given as the sum of the
volume (field) isotope shift and mass shift where the latter
is composed of the normal mass shift (NMS) and specific
mass shift (SMS),1-4,36 i.e.,

The Slater determinants Ia) are constructed from N
one-particle wave functions tp which in the relativistic
case are spinors of rank four,

where each of the CSF is a simultaneous eigenstate of the
total angular momentum J2, its projection Jz ' and the
parity operator. This is achieved by a linear combination
of Slater determinants Ia j ) :

ItPi )= ~ ßij Iaj) ·
j

(2)

(3)

AA AA AA
Sv } 2=Bvp~ 2+BVM~ 2 ,

where Aland A 2 denote the mass number of two iso
topes. For a certain transition the NMS can be evaluated
exactly':" while usually some semiempirical procedure is
used in the estimation of the SMS.4 Some ab initio calcu
lations of the SMS have been done using the HF37 and
MCHF methods38,39 as weIl as many-body calculations
for light atoms.40,41 Correcting the measured IS for the
NMS and SMS gives theremaining part, i.e., the volume
isotope shift or field shift.

Generally, the volume isotope shift Bvps can be written
as a sum of the four integrals

&VFS= _e 2 f f dt ds' . 1
Ir-r' I

PnK(r)/r and QnK(r)/r are the large and small components
of the radial wave functions. The angular part is a linear
combination of spherical harmonics Y]" and the spin
function 8

m3 which is a spinor of rank 2:

Using the variational principle to achieve the minimum in
the total energy of the whole atom both the mixing coeffi
cients W i and the radial components Pir) and Q(r) of
the Dirac spinors are optimized in a self-consistent pro
cess. Since this variation is performed usually with
respect to the radial part of the wave function only, this is
a restricted Dirac-Fock procedure. This means that the
radial wave functions are the same for all values of mj for
a givenj.

In more sophisticated calculations, conceming especial
ly good total energies, additional contributions like spin
spin, spin-other-orbit, and retardation are added in pertur
bation theory via the expectation value of the Breit opera
tor.28- 32 The same is done with the contribution of the
lowest-order vacuum polarization potential as weIl. The
influence of vacuum fluctuation, which is the main part
of the quantum electrodynamic (QED) correction in elec
tronic atoms33,34 up to now, is included in a heuristic
manner only.31,32 This approach implies that the SCF
wave functions do not include the effect of the Breit and
QED operators.

Of course, by far the largest influenee on the wave
funetion at the origin, r =0, comes from the extended nu
eleus. We use a Fermi-type charge distribution of the nu
clear charge with the best-known half-density radii Re

and skin thickness t.35

X [PA
l
(r)Pe

l
(r') -PA} (r)Pe2(r')

(4)

where PA- is the nuclear charge distribution of the two iso-
I

topes Aland A 2, and P». the electronic charge distribu-
I

tion of two electronic states el and e2. Usually a spheri-
cal nucleus is assumed which changes the denominator
from Ir-r' I to r>, which means the larger of the two
values Ir I and Ir' I during the integration. The electron
density within the nucleus, Le., r <R, normally is ex-
pressed as a polynominal '

p=ao +aZr2+a4r4+ · .. . (5)

Each of the above integrals in Eq. (4) can be expressed
with this ansatz as

and if we take the difference of the four integrals in Eq.
(4) we get

211' 2 2 A A 3 A A
BVPs=TZ e L:~aoa(r ) } 2+lOaa2a(r4) 1 2

++aa4 a(r 6
) A 1A

2+ ... ) (6)

with aao the difference of the electronic densities in the
two configurations at r =0, usually written as a 1 'IJ(O) 1

2
,

and a (ra) A 1A
2 the difference of the expectation values of

r" over the nuclear charge distribution of the two nuclei.
Expression (6) can be written in various ways:4,4Z-44
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(7)

and

with A the so-called nuclear parameter. Fis the electronic
factor which is proportional to the electron density differ
ence in the two configurations at r = 0,

The values C2/C1 and C3/Cb etc. can be expressed in
terms of ~ a 2 1 aao and ~ a 4 1 aao. The change of electron
density at the nucleus between two configurations can be
attributed nearly totally to the direct and indirect change
of the sand Pl/2 densities, which all more or less have a
parabolic behavior at r = O. Thus the quotient ~ a 21Sa0

is very much independent of the specific configuration as
long as the neutral atoms are concerned, so that it is equal
to a2/aO (and analogous the other quotients); then

C2 3 aa2 3 a2

~=W Jiao =W~

C3 1 aa4 1 a4

~=7 aao = 7 ~

This fact allows us to calculate the expression in the large
parentheses on the second line of Eq. (7)-defined there as
K-as a function of the atomic system and thus as func
tion of Z if we use an estimation of the term
a(r4)AIAZla(r2)AlAZ, etc. Using the liquid drop model
with the nuclear radius R =roA 1/3 (usually ro is taken as
1.2 fm) we arrive at the expression

C2 10 2 C3 5 4
K=K(A)=I+--R +--R +.... (9)

Cl 7 Cl 3

(11)=Eil(Z) ,

c. Semiempirical estimate of F,

In the semiempirical approach the change of the densi
ty at the nucleus Ji I \11(0) 1

2 in Eq. (8) is obtained from
various experimental quantities containing 1\1'(0) 1

2. The
first step in this approach is to factorize a I \1'( 0) I2 into
the product of the difference of the total nonrelativistic
charge density for a point nucleus and a function I(Z),

which takes care of the relativistic corrections to F, for a
certain type of nuclear charge distribution, i.e.,

2 1Ta
3

Fi = ; Ze
2 !11 'IJ(O) 12

= Z
0

!1/ 'IJ(O) I ~rf(Z)

where we have followed the convention used by Heilig and
Steudel."

Normally I( Z) is taken from a paper by Babushkin'"
in which he calculates the quantity c ~ n 1 ; , which is the
main part of1 (Z), for a uniform and, trapezoidal nuclear
charge distribution. (Recently Zimmermann'" has pointed
out that there is an error in the formulas of Babushkin'"
and that an additional normalization constant should be
added.) In this way the problem is reduced to the esti
mate of the difference of the total nonrelativistic (nr)

charge density for a point nucleus at r =0, i.e.,
a\l'l (0) I ~f' which will now be related to the charge densi
ty of the ns valence electron.

If we consider a transition for an alkali-metal atom, the
difference of the total charge density between the two
electronic states n s ~ n p can be expressed as

(8)F= 21T Ze 2 a I \1'(0) 1
2 •

3

(10)

In the earlier analysis of the x-ray isotope shift by
Seltzer42 he calculated the C21Cl and C31Cl factors
from the 1s wave functions only. The relatively small
differences between his values and ours (given in Sec. 111),

which are calculated from neutral atoms, show that
indeed the main contribution comes from the 1s 2shell.

To summarize the expression for the volume isotope
shift we get

( 2)AIAZ
BVFS=Fa r K.

The electronic factor F for the volume isotope shift as
weIl as the correcting factor Kare known if one has cal
culated the charge density at the nucleus plus the expan
sion of the charge density over the nuclear volume accord
ing to Eq. (5) using the ab initio wave functions. Howev
er, evaluations of the electronic factor are performed
mostly in a semiempirical wayl,2,4,45 as reviewed in Sec.
IIC.

Ji I \11(0) I ~ -+np = I \11(0) I ~ore + I \I'ns (0) I2

- I \{J(O) I ~ore'- I \l'np(O) 1
2

~ß / \{Jns(O) /2 (12)

with

I\{J(0) I ~ore + I\fIns(0) I2 - I\{J(0) / ;ore'
ß ~ - - - - - - - - - - _ . . . : . . . . - - -

I \fIns(O) 1
2

where in the last relation the contribution from the np

electron is neglected. The screening factor ß, which takes
into account the screening of the core electrons when the
valence electron is excited, normally is taken from HF or
DF calculations. If no isotope-shift measurements in
alkali-metal-like transitions are available Blaise and Steu
del48 (quoted by Heilig and Steudel'I have given the fol
lowing empirical screening ratio to be used with n = 6 or
7.
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(13)

(14) (18)•

while the contribution from the outermost ns electron in
the volume isotope shift analysis is

4. I

' TI ( ) 1 2 -1· [pns(r )2+ Qns(r )2 ]
1T 't"ns 0 rel- im 2

r--.O r

=F( ns l/2)(1-6)41T I\{Ins(O) I ~r (17)

F i ( (core-l- ns 2) - (core-l- nsnp)
----------~0.65

Fj ( (core +ns )- (core +np ))

with an uncertainty of 10%.
Finally, in the evaluation procedure of F, the nonrela

tivistic value of I\{Ins(O) I ~r for.the outermost electron has
to be estimated. This usually is done in an empirical way
by the following schemes.

As described by Kopfermann1 the fine-structure level
scheme can be used to calculate I\{Ins (0) I ~r by the
Goudsmit-Fermi-Segre formula

2 1 ZZ; I da II\{Ins(O) Inr= -3-3- I--
dttai, na n

with Za =2 for the alkaIine-earth ions, na the effective
quantum number, o the quantum defect, and ao the Bohr
radius. Although Kopfermann1 claims that the charge
density calculated with Eq. (14) is a nonrelativistic charge
density this is probably not too correct, as the whole equa
tion is a very rough approximation only.

Further, if the magnetic dipole interaction constant ans

is know in the ground state, the following relation has
been given: 12

a:;pt= 1 ~ 1 T :; JLB I"'ns(O) I ~r JL; F(ns 1/2)( I-B)(l-€) ,

(15)

where J-LB is the Bohr magneton, I the nuclear spin, and
J-LI the nuclearmagnetic dipole moment. F(nsl/2) is a rel
ativistic correction factor for the magnetic dipole interac
tion. 1, 20, 12 The factors (I-S) and (I-E) represent the
Breit-Rosenthalt" and Bohr-Weisskopf factors.i" respec
tively. These take into account the effect of an extended
nuclear charge distribution and the extended distribution
of the magnetic moment. The nonrelativistic charge den
sity thus is given by

a
expt

2 nsI \{Ins(0) Inr =: •

161T J-to J-tI
----J-tB-F(nsl/2)( l-ö)( l-E)

3 41T I

(16)

The F, values are then obtained by introducing the
I\l!ns(O) I ~r values of Eqs. (14) and (16) into Eq. (12) and
then (11).

Instead of using an ab initio value for a 1\1'(0) 1
2

, in
both approaches a mixture of experimental, pure theoreti
cal and semiempirical values is used. Here it is interesting
to note that in a nonrelativistic treatment, both the mag
netic dipole interaction and the volume isotope expression
pression are assumed to be proportional to the nonrela-
tivistic value of I \{Ins (0) I ~r'

However, this does not hold in a relativistic treatment
due to the different tensorial structure of the two interac
tions as discussed for example by Bauche." This question
is also discussed in arecent paper by Blundell et al. 52

A relativistic treatment gives the following contribution
to the magnetic dipole interaction from the outermost ns

electron in an alkali-metal atom:

It should be noted that we have included the Breit
Rosenthal correction in Eq. (17) because our calculations
of P and Q have been done for an extended nucleus.

111. RESULTS AND DISCUSSIONS

A. Electronic structure

The group-Ila and -llb elements are characterized by
an outermost closed ns 2 shell configuration in the ground
state. Excitation of one of these electrons results in sim
ple two-electron systems with quite different wave func
tions for the singlet Ip and triplet 3p states, already no
ticed by Hartree et al. 53 a long time aga in LS-dependent
HF calculations. Some recent calculations for these sys
tems can be found in Refs. 9 and 54. Schematic experi
mental level energy diagrams of the lowest states SS,56 for
the first spectra of those elements are presented in Figs.
lta) and ltb) for the group-Ila and -llb elements, respec
tively. In Fig. ltb) we include the element Yb as weIl,
which has an analogous ground state 4f146s 2•

As a general trend, the levels for the even as weIl as the
odd configurations of the Ila elements in Fig. lta) move
together closer in heavier elements. For the very heavy
element Ra the trend is reversed again, due to the influ
ence of strong relativistic effects. This demonstrates that
it is absolutely necessary to include relativity and configu
ration interaction on an equal basis and to evaluate wave
functions with one-electron angular momenta j, coupled
to good total J within the particular configurations. In
our MCDF calculations those levels of positive and nega
tive parity as weIl as good J were taken into account,
which can be constructed from the nSl/2' npl/2' np3/2'
i n - l)d3/2' and i n -1)dS/2 one-electron wave functions.

The permitted resonance line corresponds to the transi
tions ns 2 1S 0 ~ nsnp 1PI in the single LS-configuration
description. Due to the breakdown of LS coupling a mix
ture will take place between the 3Pt and IP 1 states, which
means that measurements in the transition
n s 2 1 S o ~ n s n p 3 P l may be done. The other 3Po and 3P2
states are metastable and can be populated in a plasma
discharge oven or in a radio frequency discharge.S7- 59

Furthermore, populations in these metastable states open
up the possibility of doing measurements in spectrallines
connected with these states. This was done, for example,
in Ca (Ref. 57) and Cd (Ref. 59) in transitions connected
with the nstn + l)s 3S1 state. As can be seen in Fig. lta)
the ID and 3D states originating from the nsin - 1)d con-
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FIG. 1. (a) Schematic energy-Ievel diagram of the lowest configurations of the neutral group-IIa elements. (b) Schematic energy
level diagram of the lowest configurations of the neutral group-11b elements and Vb.

figuration are bound even stronger than the lp and 3p

states, whieh originate from the nsnp eonfiguration, in
heavier elements, e.g., Ba. This implies that these states
are metastable for heavier elements and may act as a plat
form for investigations of transitions to the npin -I)d
eonfiguration. Extensive measurements of this kind have
been performed reeently in Ba.60,61

The energy-level diagrams for the group-IIb elements,
shown in Fig. ltb), are quite different. The eonfiguration
nsnd is loeated for all elements at higher energy than the
states in the nsnp configuration. The nsnd ID and 3D

states are elose in energy and reversed. The npnd, np2,

and nd? eonfigurations have not been observed to be
bound for these elements. The reason for this differenee
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in term structure of the group-IIa and -IIb elements is
probably the presence of the occupied shell of i n - 1)d

electrons just below the two valence electrons in the
group-IIb elements. The level scheme for Vb, however,
reminds one more of the Ila elements.

The results for the single-configuration and multicon
figuration Dirac-Fock calculations for the group-IIa and
-IIb elements are shown in Tables land 11. Table I sum
marizes the results for the ground-state calculations.
Columns 1 and 2 give the element as weIl as the half
charge radius Re and skin-thickness parameter t in the
two-parameter Fermi charge distribution, which was used
to describe the extended nucleus. In the remaining
columns we present the contributions of the various con
figurations, in percent, which were taken into account to
calculate the ground state. In addition, the electronic
charge density at the nucleus (at r =0) is shown in the last
column.

For the IIa elements the configuration ns2 contributes
between 90% and 93% to the mixing in the wave func
tions, whereas the np2 configuration takes over 6-8 %.
The higher (n -1 )d

2 configurations (only possible for the
element Ca and heavier) contribute very little. As only
the sand (much less) the PI/2 wave functions contribute
to the charge density at r =0 it is easy to understand that
this quantity is larger for the single ns2 configuration cal
culations than in multiconfiguration calculations where
the weight of the ns 2 configuration is reduced. The addi
tional configurations contribute very little or nothing with
their np and (n - l)d electron wave functions. For the
IIb elements the np2 and nd 2 configurations are not even
bound, so we present the single-configuration results only,
although they could contribute nonnegligibly in the
MCDF procedure. Analogous relativistic calculations
have been published for the even-parity state of Ba I by
Rosen et al., 62 and for nonrelativistic ones by McCavert

and Trefftz.i" Their results are very comparable to ours.
Table 11 contains the analogous results for the 3P1 and

IP1 states of the IIa and Ilb elements. For each state we
present up to four rows denoted a-d. Under a we give
the results of those calculations where only the nsnpl/2

and nsnp3/2 configuration state functions are taken into
account. As the calculations are done in a jj basis the per
centage mixing of the nsnpl/2 and nsnp3/2 configurations
are given. For pure LS coupling the mixing of these two
states for the 3P1 state is 66.7% and 33.3%, respectively,
and vice versa for the 1PI state. In b we present the re
sults for those MCDF calculations taking into account all
five odd configurations with J = 1, which can be con
structed from the ns, np, and (n - l)d single-electron
states. We see that pd states contribute quite consider
ably, although we notice that their influence is much
larger on the IP 1 states than on the 3P1 states. For an
easy comparison with the experimental analysis in d we
state und er c the weights of the two configurations
nsnpl/2 and nsnp3/2 from the calculation b, renormalized,
however, to 100%.

Analysis of the mixing between different states is per
formed normally by a least-squares fit of parametrized en
ergy expressions, including electrostatic and magnetic in
teractions to the experimental energy levels as, for exam
ple,described by Condon and Shortley.!" Usually, this
type of analysis is performed in terms of pure LS states
with total J as the good quantum number. The
configuration-interaction contribution and the breakdown
of LS coupling for heavier elements will then appear in
the change of the mixing parameters as compared with
the results for pure LS states. The intermediate wave
functions are in this way expressed as linear combination
ISLJ) states within the investigated configuration.

In our case-the coupling of IP1 and 3P1 states----one
may write

TABLE I. DF and MCDF results for the ISO ground state of the IIa and IIb elements and Vb.

N uclear parameters Electron

Re t state Configuration contributions (%) 41T I \11(0) I ~t
Element (fm) (frn) ns

2
1 SLJ) ns 2

npT/2 np~/2 i n -1 ) d ~ / 2 i n -1 ) d ~ / 2 [(a.u.)-3]

4Be 1.97 2.34 2s 2
ISO

100 447.8675
90.3 3.2 6.5 447.1048

12Mg 2.85 2.6 3s 2 ISO
100 14541.152
92.5 2.5 5.0 14539.628

20Ca 3.6 2.51 4s 2 ISO
100 77301.282
91.8 2.7 5.2 0.1 0.2 77297.680

38Sr 4.8 2.3 5S21S0

100 765 147.49
92.2 2.6 4.7 0.2 0.3 765 138.27

56Ba 5.83 1.79 6S21So
100 4052630.1
91.8 2.8 4.4 0.3 0.6 4052608.5

88Ra 6.7 2.3 7S2 1S0

100 56397338
93.3 2.8 2.8 0.3 0.7 56397202

30Zn 4.24 2.3 4S2 1S0 100 315037.27

48Cd 5.24 2.3 5S21S0 100 2006489.1
80Hg 6.44 2.3 6S21So 100 29341 769

70Yb 6.37 2.3 6S21S0

100 12866018
92.8 2.9 4.2 12865956
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TABLE 11. Results for nsnp 3P1 and nsnp IP1 states of IIa and IIb elements. (a) MCDP calculation with two configurations, (b)
MCDP calculation with five configurations, (c) normalization of the mixing contribution of (b) to only mixing of nsnp1/2 and nsnp3/2

configurations, (d) mixing of nsnpl/2 and nsnp3/2 configurations as derived from the experimental energy-Ievel scheme.

Configurations contributions (%)

Electron state ns ns np1/2 np3/2 np3/2 417 I \fI(0) I;ot
Element nsnp ISLJ) + np1/2 + np3/2 +(n -1)d3/2 +(n-l)d3/2 +(n -1)d5/ 2 (a.u.)-3

4Be 2s2p 3Pl a 66.6 33.4 441.086
d 67.04 32.96

IP
1 a 33.6 66.4 443.25

d 32.96 67.04

12Mg 3s3p 3P
1 a 66.8 33.2 14525.549

d 67.03 32.97
IP

1 a 33.2 66.8 14531.822
b 31.7 63.6 1.6 0.3 2.9 14528.561
c 33.3 66.7 inpnd configurations)
d 32.97 67.03

20Ca 4s4p 3P
1 a 67.0 33.0 77279.146

b 65.7 31.3 0.5 1.7 0.9 77277.843
c 67.7 32.3
d 67.4 32.6

IP
1 a 33.0 67.0 77288.244

b 26.6 54.7 6.3 1.2 11.2 77277.332
c 32.7 67.3
d 32.6 67.4

3SSr 5s5p _3P
1

. a 67.8 32.2 765091.35
b 67.0 29.5 0.7 1.9 0.8 765087.65
c 69.4 30.6
d 69.5 30.5

IP 1 a 32.1 67.9 765114.34
b 24.5 55.2 7.0 1.3 12.0 765086.32
c 30.7 69.3
d 30.5 69.5

56Ba 6s6p 3P
1 a 69.2 30.8 4052503.9

b 69.1 26.0 1.3 2.8 0.9 4052492.4
c 72.7 27.3
d 75.0 25.0

IP 1 a 30.6 69.4 4052556.1
b 17.7 51.8 11.5 1.7 17.4 4052471.9
c 25.5 74.5
d 25.0 75.0

ssRa 7s7p 3P
1 a 74.1 25.9 56396456

b 77.3 18.8 1.6 2.0 0.2 56396397
c 80.4 19.6
d 84.5 15.5

IP 1 a 25.3 74.7 56396782
b 13.4 67.1 8.6 0.9 10.0 56396386
c 16.6 83.4
d 15.5 84.5

30Zn 4s4p 3P
1 a 67.5 32.5 314953.23

d 68.0 32.0
IP

1 a 32.6 67.4 314975.61
d 32.0 68.0

4SCd 5s5p 3P
1 a 69.1 30.9 2006267.7

b 71.0 29.0
IP

1 a 30.9 69.1 2006321.9
d 29.0 71.0

soRg 6s6p 3P
1 a 75.7 24.3 29340002

d 80.7 19.3
a 24.2 75.8

IP
1 d 19.3 80.7 29340302
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TABLE 11. t.Continued).

Electron state
Configurations contributions (%)

ns ns np1/2 np3/2 np3/2 41T I\11(0)I fot
Element nsnp ISLJ) + np 1/2 + np3/2 +(n -1 )d3/2 +(n -1)d3/ 2 +(n -1 )dS/2 (a.u.)-3

70Yb 6s6p 3Pl a 71.0 29.0 12865675
b 72.5 24.9 0.8 1.5 0.4 12865657
c 74.4 25.6
d 77.6 22.4

1Pl a 28.7 71.3 12865800
b 21.3 65.0 5.3 0.8 7.7 12865679
c 24.7 75.3
d 22.4 77.6

(19)

1

3P 1 )'=(I_y2)1/ 2 13P 1 )+y 11P1) ,

11P1)'=-y 1
3P 1 )+(I_y 2)1/ 2 11P 1 ) ,

where the states to the right are pure LS states. This
evaluation procedure normally includes the electrostatic
and spin-orbit interaction, although recently some refined
analysis has been performed with different spin-orbit pa
rameters for the diagonal and off-diagonal matrix ele
ments as weIl as the inclusion of the spin-spin interac
tion. 64,65 The parameters evaluated by the least-squares
fit should be considered as effectiue ones within the
analyzed nsnp configuration.

With the experimental energy levels given by Moore"
and the formulas by Olsson and Salomonson.P' one ob
tains the mixing parameter values given in row d for the
3P1 and 1Pl states in Table 11. As a comparison we
transformed these LS-coupled wave functions into jj
coupled ones. The values for r [according to Eq. (19)]

range from -0.004 for 4Be and 12Mg up to -0.008 for
20Ca, -0.014 for 30Zn, -0.031 for 38Sr, -0.047 for 48Cd,
-0.092 for 50Ba, -0.122 for 70Yb, -0.16 for 80Hg, and
-0.21 for 88Ra. It can be seen that in this semiempirical
analysis the mixing is rather close to the pure LS coupling
for elements up to Sr, while a significant breakdown of
LS coupling takes place in the heavier elements like 56Ba,
88Ra, 80Rg, and 70Yb.

A comparison of the mixing obtained from the analysis
in row d with the renormalized ab initio values in row c
shows that the inclusion of the mixing with the
nptn -l)d configuration in the calculations leads to a
much better agreement than what is achieved with the cal
culations in row a. This semiempirical analysis was done
only within the nsnp 3PI and 1PlI SLJ) states. A better
approach would be a new analysis with the inclusion of
the configurations used in row b.

Concluding, one may say that the agreement of the
MCDP calculations with the semiempirical analysis is
very promising.

B. Electronic charge density at the nucleus

The single-configuration DF and MCDF results
presented in Tables land 11 also include the electronic
charge density at the nucleus (at r =0). The last columns
of these tables give the value ao=41TI '11(0) I;ot for the

1~0' 3p1, and IP 1 states of the neutral systems. ao is the
first of the expansion coefficients of the charge density
defined in Eq. (5).

As mentioned in the Introduction, the analysis of opti
cal IS for the neutral systems is performed normally with
reference to the ionized atom. We have, therefore, done
single-configuration HF and DF calculations for the
ground state ns 2S1/2 and first excited np 2P I / 2 and
np 2P 3/ 2 states in the ions as weIl. The resulting total
charge densities at the nucleus (at r =0) are presented in
Table 111, columns 3 and 4, with the same nuclear param
eters as for the neutral systems. The comparison of the
nonrelativistic and relativistic results shows the dramatic
i n c ~ e a s e of the ~harge density at the nucleus for higher Z,
which usually IS called the direct relativistic effect and
which is for Ra, e.g., already a factor of 9.3. '

In an ab initio evaluation of the electronic part of the
v?lume isotope shift it is not sufficient just to give the

, difference of the electronic charge density at r =0. The
influence of the variation of the electronic charge over the
nuclear volume must be discussed as weIl. As shown in
formulas (6) and (7), this leads to additional contributions
to th~ isotope shifts which are dependent on the change of
the higher moments of the nuclear charge distribution as
weIl as on the change of the expansion coefficients of the
e ~ e c t r o n i c charge distribution within the two configura
nons, The correction factor K, defined in Eq. (7), sum
marizes all these contributions. As nearly 90% of the
charge density at the nucleus originates from the two ls

electrons, and the main part of the remaining 10% comes
from the other s electrons, the change of the electron
charge density has an s-wave-function behavior and is al
most independent of the specific configuration. The coef
ficients C2/C I and C3/CI [defined in Eqs. (6) and (7)

which were first introduced by Seltzer42] were calculated
by us for many elements and transitions. Table IV
presents these values together with those of Ref. 42
which include the contribution from only the ls 2 elec
trons. In Fig. 2 a visual presentation of these coefficients
is given as a function of the atomic number Z. The coef
ficients C2/C I appear to be very linear, while C3/C1
show a somewhat structured behavior.

If the values for a<r 4
) A

1
A

2
, a<r 6

) A
1

A
2

, etc., in Eq. (7)

were known, the total correction factor K would be
known as weIl. There is the possibility of getting realistic



TABLE 111. Dirac-Fock results for the singly ionized ions of the group-IIa and -IIb elements. In addition, semiempirical charge densities as weIl as a comparison of relativistic and N

nonrelativistic parameters for the volume isotope shift and the magnetic dipole interaction are given. ~
0\

41T I '11(0) 1
2 (a.u.)-3

ab initio F(nsl/2)( 1-6) R tot R ns ß
Config. 41T I'11(0) I;ot (a.u.I":' Rel. Semiempirical ab initio ab initio Hydrogenie Nonrel. Rel.

Ion state Nonrel. Rel. Nonrel. Eq. (IS) Eq. (17) Eq. (14) Eq. (16)a Eq. (17) Hydrogenic" Eq. (20) Eq. (21) Eq. (22) Eq. (12)

4Be+ 2s 2S1/2 440.612 443.907 10.155 10.235 10.170 12.5 12.5c 1.001 1.002 1.007 1.00S 1.008 1.042 1.043

2p 2Pl/2
430.019

433.231 1.007
2p 2P 3/ 2 433.214

12Mg+ 3s 2S1/2 13716.19 14531.58 21.341 22.735 21.677 28.7 27.0d 1.02 1.01 1.059 1.065 1.064 1.097 1.097

3p 2P 1/ 2 13692.77
14506.64 1.059

3p 2P 3/ 2 14506.64

20Ca+ 4s 2S1/2 66669.02 77287.49 24.186 28.532 25.318 33.9 1.05 1.03 1.159 1.180 1.170 1.116 1.114

4p 2P 1/ 2 66642.02
77255.70 1.159

4p 2P3/ 2 77255.67 P
3SSr+ 5s 2S1/2 475265.14 765 111.50 41.220 71.298 49.256 55.5 56.Se 1.20 1.14 1.610 1.730 1.657 1.110 1.101 ~

5p 2P 1/ 2 765033.02
0

475219.38 1.610 ~

5p 2P 3/ 2 765032.52
Cj

0
56Ba+ 6s 2S1/2 1546317.7 4052548.3 50.861 157.695 77.007 77.0 74.4d 1.51 1.37 2.621 3.100 2.780 1.111 1.087 ::t:

6p 2P 1/ 2 1546261.2
4052376.9

2.621
~

6p 2P 3/ 2 4052373.8 ~

88Ra+ 7s 2S1/2 6058540.6 56396722 74.561 1102.00 246.96 124.7 3.31 2.35 9.309 14.780 10.837 1.106 1.039 I'tj

7p 2P 1/ 2 56395577
~

6058458.1
~

9.309 (J

7p 2P 3/ 2 56395504 ~
J!1

3oZn+ 4s 2S 1/2 230816.17 314972.92 75.286 109.209 85.398 98.3 1.13 LOS 1.365 1.451 1.389 1.099 1.095 >
4p 2P 1/ 2 314853.37 Z

230733.43 1.365 tj

4p 2P 3/ 2 314852.97 >
48Cd+ 5s 2S1/2 967895.25 2006313.4 111.281 274.330 157.720 147.6 158.3g 1.42 1.25 2.073 2.465 2.166 1.096 1.082

~
5p 2P 1/ 2 967773.27

2006016.5
2.073

0

5p 2P 3/ 2 2006013.0
CI)
ttj,

8oHg+ 6s 2S1/2 4545278.9 29340 140 189.338 2079.96 572.74 303.Oh 329.d 3.03 1.99 6.455 10.985 7.290 1.088 1.038 Z

6p 2Pl/2
4545072.8

29337980
6.455

6p 2P 3/ 2 29337879

70Yb+ 6s 2S1/2 3035943.8 12865772 79.59 449.416 160.30 128.1 123.8j 2.01 1.66 4.238 5.647 4.693 1.099 1.050
6p 2P 1/ 2 3035856.3

12865300
4.238

6p 2P 3/ 2 12865284

"Reference 66 (nuclear moments and spins),
bAccording to Eqs. (26.18) and Fig. 71 in Ref. 1.
'Reference 67.
dReference 68.
'Reference 69.
fReference 70.
gReference 71.
"Reference 72. I~
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Electronic coefficients in the parameter A in Eq. (7) from MCDF calculations and Ref.

31

TABLE IV.
44.

Element

4Be

12Mg

20Ca

30Zn

3SSr

4SCd

56Ba

70Yb

soHg

ssRa

Source C2/CI (10-4 fm- 2)

Ref. 42
MCDP 0.26
Ref. 42
MCDP 1.12
Ref. 42
MCDP 2.14
Ref. 42 3.40
MCDP 3.70
Ref. 42 4.45
MCDP 4.75
Ref. 42 5.96
MCDP 6.42
Ref. 42 7.03
MCDP 7.47
Ref. 42 9.29
MCDP 9.46
Ref. 42 10.9
MCDP 12.0
Ref. 42 12.1
MCDP 13.5

C3/C1 (10-6 fm- 2) K [Eq. (9)]

0.41 0.99987

1.02 0.99885

1.37 0.9964
1.39
1.87 0.9915
1.56
1.97 0.9860
1.88
2.37 0.978
2.04
2.38 0.968
2.54
2.75 0.952
2.90
3.66 0.938
3.16
4.06 0.926

2047

values for K by use of changes of the nuclear moments
from other experiments, like electron scattering.f Howev
er, this is probably too much of an effort as K is only a
small correction factor. Most likely it is quite sufficient
to use the nuclear droplet model with a nuclear radius R
proportional to A 1/3. The resulting equation for K is

..:I' 3
I

e
\I-

~ .
~ 2

x

then Eq. (9). The values for K calculated in this way are
given in Table IV. Figure 3 shows the function l-K as
function of Z which presumably is correct within ±10%
or better.

Having this in mind we are able to calculate the elec
tronic factors F; according to the definition of Eq. (8),

xx

x

x
x

x

x Z

N 12 XX
I

e
"""""

x
~

I 80 )( x....
XX

x

u 4
x

x
........
N X

U x

10 20 30 40 SO 60 70 10 90

Atomic Number Z

FIG.2. Theoretical values of the factors C2/CI and C3/CI which describe tbe change of the electron density over the nuclear ra
dius as function of the atomic number Z.
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Unfortunately the experimental magnetic dipole in
teraction constants are only known for some isotopes of
the elements (quoted in Table 111) and a complete compar
ison is therefore not possible. The resulting values ac
cording to this second semiempirical procedure are given
in column 9.

It is astonishing that the semiempirical values of
I\}Ins (0) I ~r in columns 8 and 9 are so similar while they

are evaluated in such different ways. The difference to
the ab initio nonrelativistic values in column 5 makes
clear that there are contributions beyond Hartree-Fock.
As these semiempirical values contain experimental infor
mation they include part of higher polarization and corre
lation effects which for the ionic transitions are not con
tained in our ab initio values. On the other hand, the
semiempirical values also include theoretical values like,
e.g., Ft ns 1/2), from rather simple calculations, whereas
the ab initio calculations do not contain any correction
factors [like, e.g., (1-ö)] as they are automatically in
cluded. The semiempirical evaluation of F; in addition
needs the value for ß in Eq. (12) and j'I Z) in Eq. (11).

In addition, in order to give a complete comparison
with the semiempirical approach, we present in Table 111
values of the various correction factors like F(nsl/2), R,

and ß which we do not need in our ab initio evaluation of
the electronic factors.

The correction factors F(nsl/2)( 1-6), as defined in Eq.
(17), are given in column 10 from DF results in columns 5
and 7, whereas column 11 presents analogous values cal
culated with hydrogenic wave functions according to
Kopfermann.'

In columns 12 and 13 we present the relativistic correc
tion factors R from our ab initio calculation which are
defined as follows:

where only the change of the electron charge density at
r =0 is needed. Before we discuss these results from the
ab initio calculations in Tables V and VI we will first
analyze in Table 111 the semiempirical calculation of the
charge density I \}Ins(O) 1

2 for the ions as weIl as the vari-
ous correction factors which are needed in this evaluation.

In order to check and discuss the semiempirical ap
proach reviewed in Sec. 11 C, we present in Table 111 the
relativistic charge densities 41T I 'IJns(0) I2 for the outer
most ns electron as weIl, using our ab initio ns wave
functions. The first method is the evaluation of the value
according to Eq. (18) in column 6, and the second is the
magnetic dipole interaction integral according to Eq. (17)

in column 7. In addition, analogous nonrelativistic calcu
lations were done, which we present in column 5. We no
tice that the magnetic dipole integral and the relativistic
ns charge density at r =0 are almost the same for ele
ments up to Ca.+ For heavier elements like Hg+ and Ra+
the volume isotope-shift values are bigger than the mag
netic ones by approximately a factor of up to 5. We
present the ab initio values of I 'IJns(0) I2 in Table 111 only
to give a comparison with the semiempirical approxima
tion as we use only the results of III 'IJ(O) I;ot to calculate
the F; factors.

As reviewed in Sec. 11 C, essentially two types of
semiempirical approaches are used to calculate the elec
tronic charge density at the nucleus. The most straight
forward one is to estimate I 'lJns(O) I ~r from the atomic en
ergy levels for the alkali-metal-like systems according to
the Goudsmit-Fermi-Segre formula [Eq. (14)]. In the cal
culation the quantity (l-da/dn) is evaluated from the
energy levels given by Moore. 55 The resulting values are
given in the eigth column, It was found that the value of
(l-da/dn) for Hg+ of 1.248 given by Kopfermann ' is
not correct, it should be 1.17 instead.

The other approach is to use the experimental magnetic
dipole interaction constants a;pt for the ground state of
the 2S1/2 state of the ion according to Eq. (15). As the
Bohr-Weisskopf correction factor (1-6) and the Breit
Rosenthal correction (1 - e) are taken from Kopfermann 1

we have to use the hydrogenic factor F( ns1/2) discussed
below to be consistent.

1-K

R tot =
I \}I (0) I ;ot,rel

I \11 (0) I ;ot,nr

and

R ns =
I'l'ns(O) I;el

2 •I 'I'ns ( 0) Inr

(20)

(21)

0.08

0.04 -

0.02

10 20 30 40 50 60 70 80 90

Atomic Number Z

FIG.3. The correction factor K as defined in Eq. (9), presented here as 1-K.
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TABLE V. A summary of ab initio charge density differences and F, values for transitions in neutral atoms and singly ionized group-IIa elements. In addition, semiempirical and

experimental F, values are presented.

41Ta IqJ(O) /2 (a.u.l"" F i (GHz/fm2
)

Wave- ab initio ab initio Expt.

length Nonrel. Rel. Rel. Rel. Rel. Semiempirical Muonic

Spectra Transition (nm) HF DF MCDF DF MCDF GFS Eq. (14) hfs x rays

Bell 2s 2S1/2--+2p 2P1/2 313.2 10.593 10.676 -0.01672 tf.l
~

--+2p 2P3/2 313.1 10.593 10.693 -0.01675
~

Bel 2S21S
0--+2s 2p IP1 235 4.618 3.855 -0.00723 -0.00604 t.n

--+2s2p 3P1 455 6.782 6.019 -0.0106 -0.00943
.
tj

Mg II 3s 2S1/2--+3p 2P1/2 280.4 23.42 24.94 -0.1172 ~
--+3p 2P3/2 279.6 23.42 24.94 -0.1172 t.n

Z
MgI 3S2 1S0--+3s3p IP 1 285 9.33 11.067 -0.0438 -0.05201 tj

--+3s3p 3P1 457 15.60 14.079 -0.0733 -0.06616
t.n

Ca II 4s 2S 1/2 --+4p 2P1/2 397.0 27.0 31.79 -0.2490 ~
--+4p 2P3/2 393.5 27.0 31.82 -0.2492 <

0
Cal 4s 2lSo--+4s4p IP1 423.7 13.038 20.348 -0.1021 -0.1594 -0.176(10)a ~

--+4s4p 3P1 657.3 22.136 19.837 -0.1734 -0.1554 -0.182(5)b
c::
~

Srll 5s 2S 1/2 --+5p 2P1/2 421.6 45.76 78.48 -1.168 -1.49 t.n

--+5p 2P3/2 407.8 45.76 78.90 -1.174-
.....
tf.l

Srl 5 S 2 1 S 0 - - + ~ S 5p IP1 460.7 33.15 51.95 -0.4933 -0.7731
0

d
--+5s 5p 3P1 689.4 56.14 50.62 -0.8354 -0.7533 Io'd

Ball 6s 2S1/2--+6p 2P1/ 2 493.4 56.5 171.4 -3.759 -4.98c -4.81 -3.80(33)d t.n

--+6p 2P3/2 455.5 56.5 174.5
tf.l

-3.827 =Bai 6S21S
o--+6s6p IP1 553.5 74.0 136.6 -3.04(26)f

.....
-1.623 -2.996 -3.93e ;]

--+6s6p3P1 791.1 126.2 116.1 -2.768 -2.546 -2.59(22)d tf.l

Ra II 7s 2S 1/ 2--+7p 2P1/ 2 463.4 82.5 1145 -39.460 0
t'!j

--+7p 2P3/2 381.6 82.5 1218 -41.976 SRal 7S2 lSo--+7s 7p IPI 482.7 556 816.0 -19.160 -28.122
--+7s7p 3P1 714.3 882 805.0 -30.394 -27.743

~.
aReference74.
bReference75.
'Reference 76.
dReference26.
~eference 77.
fReference 78.

~
\0
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TABLE VI. A summary of ab initio charge density differences and F; values for transitions in neutral atoms and singly ionized group-IIb elements. In addition, semiempirical and
experimental F; values are presented.

9
es
~
Cd
o
=
~
~
~
~
~

(J

~
St1
>
Z
t1

?>"

~
o
CI)
tf.j,

Z

- 57.4(2.9)b

Experimental
Electronic Muonic

x rays x rays

- 53.9(5.3)a

-16.2

-10.9d

F; (GHz/fm2)

-67.6 -73.4

-6.39 -6.67

-16.8

-44.9a

-48.8c

-11.4d

Semiempirical
GFS Eq. (14) hfs

-7.59
-8.20

ab initio

Re!. Rel.
DF MCDF

-12.94
-13.38
-5.98
-9.40

-67.67
-70.84
-45.96

-55.36

-1.405
-1.409
-0.724
-0.987

-5.581
-5.647
-3.143
-4.162

Rel.
MCDF

119.55
119.95
61.66
84.04

296.9
300.4
167.2
221.4

2160
2261
1467
1767

472
488
218 277
343 299

41T~ I '1'(0) 1
2 (a.u.)-3

ab initio

Re!.
DF

87.5
87.5

206.1
206.1

82.74
82.74

121.98
121.98

Nonrel.
HF

Wave-
length

Spectra Transition (nm)

Znll 4s 2S1/2-+4p 2P1/2 206.3
-+4p 2P3/2 203.6

Znl 4S24S
0-+4s4p IP1 213.9

-+4s4p 3P1 307.7

Cd II 5s 2S1/2-+5p 2P1/2 226.5
-+5p 2P3/2 214.4

Cdl 5s 2lSo-+5s 5p IP1 228.8
-+5s5p 3P1 326.1

Hg II 6s 2S1/2-+6p 2P1/2 194.2
-+6p 2P3/2 165.0

HgI 6S21S
0-+6s6p' IP1 184.9

-+6s6p 3P1 253.7

Ybll 6s 2S1/2~6p 2Pl/2

-+6p 2P3/2

Ybl 6s2lSo-+6s6p IP1 398.8
-+6s6p 3P1 555.65

"Reference 72.
"Reference 25.
'Reference 79.
dReference 80.

I~
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In the literature there exists another factor R:Id which is
obtained with the hydrogenic wave functions'" presented
in column 14. As the relativistic ns wave function for a
point nucleus diverges are v=0, the value at the nuclear
radius rN is used-thus it is defined at

hyd I\IJ:';d('N ) I;el
R - (22)

ns - I \II:';d( 0) I ~r

with 'N = 1.2 A 1/3 fm. Thecomparison between the three
columns shows that there are quite significant differences,
especially for the high-Z elements. The quantities R tot

and R:Id are relatively close to each other. There are two

reasons for this. First, the choice to use the charge densi
ty at the distance 'N from the point-nucleus calculations
is a good approximation for the total charge density at
r =0 from an extended-nucleus calculation. Second, the
quantity R:Id

, as defined in Eq. (22), is independent of n

and as the total charge density is determined by the 1s
contribution-which in every type of calculation also is
hydrogeniclike-both quantities are very comparable.

In columns 15 and 16 in Table 111 we present the
screening constant ß, defined in Eq. (12), as calculated
from our ab initio HF and DF calculations, respectively.
Similar calculations have been carried out earlier by Wil
son82, 83 and Rajnak and Fred84 which are in rather good
agreement with our nonrelativistic results. A small differ
ence exists between the relativistic and nonrelativistic
values. The relativistic value is smaller because the rela
tivistic ns wave function has a much higher probability in
the vicinity of the nucleus and thus is screened less by the
other electrons.

C. Electronic factors in volume isotope shifts

Finally, the electronic factors F, for the resonance tran
sitions of ions, and neutral atoms of the IIa and IIb ele
ments are presented in Tables V and VI, respectively. The
experimental wavelengths for these transitions are given
in column 3, the changes of the charge densities
41Ta I \11(0) 1

2 are presented in columns 4-6. They have
been calculated from the total charge densities at the nu
eleus (at r =0) for the particular states with our ab initio

HP, DF, and MCDP methods.
The comparison of nonrelativistic and relativistic

single-configuration calculations of a I qJ(0) I 2 shows an
even larger increase of the charge densities at the nucleus
for higher Z compared to the increase of the total charge
density; for Ra it is a factor of 13 already. The electronic
factors F, from the relativistic DF and MCDP results cal
eulated according to Eq. (8) are presented in columns 7
and 8. The MCDF calculations, which inelude the con
figurations discussed in Tables land 11, change the F,

factors quite drastically for all elements presented here.
The difference between the F, values for the ISo~IPl
and ISo~3Pl transitions, which can be seen for the DF
results in eolumn 7, becomes much smaller and is even in
verted in the MCDP calculations in column 8. The
reason for this behavior is the strong contribution of the
npin -1)d configuration in the 1Pl state which can be
seen in Table 11 and which is not present very strongly in

the MCDP calculations of the 3PI level.
These ab initio results of the F, values will now be

compared with the semiempirical estimates. To do this
the semiempirical values I\IIns(O) I ~r obtained in Table 111,
columns 8 and 9, have to be introduced in Eq. (12) and
then in Eq. (11) to calculate the F, factors. This means
that the values for ß and ft Z) have to be known as weIl.
To be consistent we use the nonrelativistic ß values in
Table 111, column 15, and !(Z) is taken from Babush
kin.46 The resulting F, values for the transitions dis
cussed are presented in columns 9 and 10 of Tables Vand
VI.We present in these tables only a few semiempirical
F, values because Babushkin has given his f( Z) values
for only a small number of elements. Of course, one
could use the values R:Id from Eq. (22) instead. To be
consistent we leave it to the reader to calculate the F,
values in this different way from the values given in Table
111. The F, values of transitions in the neutral systems
are usually connected to the F, values of the ions by
slopes in King plots. If such experimental data are not
available the F, values of the neutral systems can be con
nected to the F, values of the ionized systems by use of
Eq. (13).

As an overall trend it can be seen that the semiempiri
cal F, values are larger in nearly all cases than the
ab initio ones. In most cases the difference amounts to
about 30%. The only exception from this trend is Hg. It
is impossible to comment these findings in a physical way.
The ab initio calculation is a straightforward consistent
method only dependent on the quality of the MCDP
method to describe the charge density at the nucleus in
two different fully self-consistent calculations. On the
other hand, the semiempirical calculations, which we have
discussed in detail, are a mixture of experimental, sem
iempirical, and partially simple theoretical results. It is
astonishing that these semiempirical methods are 'at all
good enough that the agreement with a purely theoretical
method is within 30% or better. Of course, we do not
want to claim that the MCDP method leads to exact re
sults, but a careful analysis of the configurations used in
the multiconfiguration calculations allows us to claim
that most of the relevant configurations are taken into ac
count. A bit of evidence that this statement may be
correct comes from the comparison with the results of
columns 12 and 13 where we present the experimental
values of the electronic factors F, derived from a com
bination of optical isotope-shift data and Ö<,2 )AA' ob
tained in electronic and muonic x rays. The few values
which are available show better agreement with our
ab initio results than with the semiempirical results.

IV. CONCLUSIONS AND OUTLOOK

Although IIa and IIb elements in first approximation
are relati vely simple two-eIectron systems, they are still
not understood in great detail; the theoretical description
is not yet very satisfying. On the other hand, from the ex
perimental point of view we have a very good knowledge
of the various different quantities like atomic energy lev
els, fine-structure splittings, hyperfine-structure constants,
lifetimes, etc., for low-lying states as weIl as different
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Rydberg series.
In the analysis of the experimental data it is essential to

do the analysis on an ab initio basis and to try to explain
as many experimental quantities as possible with the
available theory. Isotope-shift and hyperfine-structure
data are, in this respect, of special interest as they are
especially sensitive to that part of the wave functions in
the vicinity of the nucleus where the inclusion of relativity
is especially important. This also means that results from
other experimental areas like electronic and muonic x rays
can be used as a test for the calculations.

The MCDF method used here is the most general
ab initio relativistic method nowadays applicable to all
elements of the Periodic Table. Of course, e.g., perturba
tion expansion methods or the random-phase approxima
tion are even more accurate, but can be used only either in
certain parts of the periodic system or in certain configu
rations. The practical problem and the disadvantage of
the MCDP method is that additional configurations,
which are used together with the main configuration, have
to be picked from an infinite possible number of configu
rations. The hope is that the few configurations which
are included in the calculations contribute dominantly.

The calculations presented here show that this pro
cedure is possible more or less as far as the volume isotope
shift is concerned. The F, values of the resonance transi
tions of the IIa and IIb elements, discussed in this paper,
are described fairly weIl, which definitely shows that the
multiconfiguration contributions have to be included.
Thus part of the correlation as weIl as the full effect of
the extended nucleus and relativity is included fully self
consistently in such calculations. On the other hand, the
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semiempirical method used to describe the F; values
shows that in this method a large number of approxima
tions, experimental values, ,and semiempirical formulas
are mixed together. It is astonishing that so many groups
still use these semiempirical approaches which include
such a large number of corrections, although it is possible
today to use standard theoretical methods like DP or
MCDP to obtain ab initio values of good accuracy.

With this review for all IIa and IIb elements we would
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