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A state estimator and various model-based control systems have been designed for a real anaerobic digestion (AD) pilot reactor
fed with dairy manure. 
e model used is a modi�ed Hill model which is a relatively simple dynamical AD process model. 
e
state estimator is an Unscented Kalman Filter (UKF) which uses only methane gas �ow measurement to update its states. 
e
model and the state estimates are used in di�erent control systems. One of the control systems aims at controlling the methane gas
�ow to a setpoint. Simulations indicate that the setpoint tracking performance of a predictive control system is considerably better
comparing with PI control, while disturbance compensation is not much better. Consequently, assuming the setpoint is constant,
the PI controller competes well with the predictive controller. A successful application of predictive control of the real reactor is
presented. Also, three di�erent control systems aiming at retaining the reactor at an operating point where the volatile fatty acids
(VFA) concentration has a maximum, safe value are designed. A simulation study indicates that the best control solution among
the three alternatives is PI control based on feedback from estimated VFA.

1. Introduction

Anaerobic digestion (AD) of organic substrates can produce
biogas which consists mainly ofmethane and carbon dioxide,
[1–3]. In a well-operated AD reactor, the methane content
is suciently large to make the biogas combustible; that is,
the AD process produces applicable energy. Moreover, the
reactor digestate is o�en high in nutrients and can be used
in fertilization. Animal waste, in many cases combined with,
for example, food waste, is a typical feedstock of AD reactors.
A presentation of AD of animal wastes, from dairy, beef,
poultry, and swine, is provided, for example, in [4].

UASB (up�ow anaerobic sludge blanket) type reactors are
e�ective AD reactors as they allow for relatively high load
rates (feed rates) and/or small reactor volumes, [1, 5]. 
e
e�ectiveness is due to relatively large solids retention time
(SRT), which is the retention time of the microorganisms
which degrades the substrate and generates, for example,
methane, compared with the hydraulic retention time (HRT)
of the reactor. 
e AD reactor studied in the present paper is
a UASB reactor.

Anaerobic digestion is a complex and nonlinear dynamic
process and most plants su�er from a lack of robust online-
measurement systems for online process monitoring [3].

erefore, automatic plant control is a challenging task. 
e
present paper presents an attempt to use a mathematical
dynamic model to estimate online, nonmeasured AD state
variables and to use these estimates in a model-based control
system. Results of the application of state estimation and
model-based control to a real pilot AD reactor using dairy
waste as feedstock are shown. 
e reactor is situated at Foss
Farm, Skien, Norway. 
e results from the pilot reactor are
assumed to be transferable to a planned full-scale reactor at
the farm.

In this paper, state estimates are used both in industry-
standard PI controllers and in predictive controllers.
e only
online measurement used by the estimator, and thus by the
controllers, is the methane gas �ow. 
e reactor temperature
is retained at a constant setpoint by means of a temperature
control system [6].

Several control systems are designed and applied to the
reactor. One aims at retaining the produced methane �ow at
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a setpoint which can stem from a speci�ed power production.
Another control system aims at retaining the reactor at a safe
operating point, where the concentration of the VFA (volatile
fatty acids) is not above a certain value.


emodel-based design and the simulations are based on
the modi�ed Hill model adapted to the pilot reactor [7]. 
is
model is summarized in Section 3.3.


is paper is organized as follows. Section 2 gives a
literature review. Section 3 provides a system description,
including the mathematical reactor model used as the basis
for state estimation and model-based control. In Section 4,
safe reactor operation conditions are de�ned in terms of
an acceptable range of VFA (volatile fatty acids). Section 3.2
presents a general structure of a model-based optimization
and control system, applicable to the reactor. Application
of the Unscented Kalman Filter (UKF) to estimate the state
variables of the reactor and itsmain disturbance, namely, �vsin ,
is described in Section 5.
ese estimates are used for control
of �meth, which is described in Section 6, which includes
both simulated and real results. 
e estimates are also used
for control of �vfa, which is described in Section 7, which is
simulation study. Conclusions are given in Section 8.

Matlab and Simulink (MathWorks, Inc.) are used for
numerical computations and simulations. 
e real control
system is implemented in LabVIEW (National Instruments,
Inc.) running on a laptop PC. In the LabVIEW program,
the algorithms of the UKF and the predictive controller are
implemented in a Matlab Script Node.

2. Literature Review

2.1. State Estimators for AD Reactors. Literature about state
estimators applied to AD reactors fed speci�cally with dairy
manure has not been found. Below are references to state esti-
mators applied to reactors fed with other types of substrates,
assumed to be also relevant for the present application.

In a simulation study, Jones et al. [8] apply an Extended
Kalman Filter (EKF) to estimate four states of a simpli�ed
version of the AD model by Hill and Barth [9], using �ve
online measurements.

Bernard et al. [10] estimate the six states of a real AD
reactor fed with e�uents from a wood processing plant
using an asymptotic observer [11]. Available online mea-
surements were CH4 gas �ow and CO2 gas �ow. In�uent
concentrations are assumed to be known. 
e estimator is
based on a state variable transformation leading to a model
having auxiliary state variables where the reaction rates are
eliminated. 
ese rates are then estimated from the state
estimates. 
e estimator is designed so that the estimation
errors converge towards zero with dynamics of the mass
balances of the model, determined by, for example, the feed
rate. 
e asymptotic observer is an open-loop estimator and
has no tuning parameters, contrary to a Luenberger observer
and a Kalman Filter which are closed loop, or feedback
estimators with parameters which can readily be used for
performance adjustment.

Alcaraz-González et al. [12] estimate four out of six
states of a real AD reactor fed with industrial wine distillery

vinasses, namely, the methanogens and acidogens concen-
trations, COD (chemical oxygen demand), and alkalinity, by
using online measurements of CO2 gas �ow, VFA, and TIC
(total inorganic carbon). 
e AD process model is as in [10].

e estimator is an interval observer based on the structure of
an asymptotic observer. An important property of an interval
observer is that the estimates are guaranteed to be within
bounds given by uncertainty bounds of model parameters
and AD process inputs.

In a study based on real data, 
eilliol et al. [13] estimate
the six state variables and three unknown in�ow concen-
trations, namely, COD, VFA, and TIC, of an AD reactor
fed with industrial wine distillery vinasses, using �ve online
measurements: COD, VFA, alkalinity, CH4 gas �ow, and CO2
gas �ow. 
e estimator is based on manipulating the original
state space model using SVD (singular value decomposition)
to �nd an observable subsystem insensitive to unmeasured
inputs. 
en, a Luenberger observer based on this subsystem
is used to estimate the state and the unmeasured inputs.

In a simulation study based on a full-scale agricultural
biogas plant, Gaida et al. [14] use discriminant analysis and
classi�cation-based pattern recognition methods to �nd the
static mapping function between the measurement data,
which are biogas �ow, CH4 and CO2 gas concentrations, pH
in the reactor, the amount of each substrate, and the state of
the AD process. 
e state variables are those of the ADM1
model (Anaerobic Digestion Model No. 1) [15]. 
e various
substrates considered are maize silage, grass, manure, and
manure solids.

Dochain [16] and Bogaerts and Vande Wouwer [17] give
an overview of various state estimators suitable for biopro-
cesses, including the estimators applied in the references
above.

In the applications referred to above, the estimators use
two or more online measurements. In the present paper,
only one measurement is used, namely, �meth (CH4 gas �ow).
Furthermore, in the present paper the Unscented Kalman
Filter (UKF) is used. 
e UKF can be used without any
linearization or model manipulation; that is, it uses the
nonlinear state space model directly in the algorithm. We
have not found literature on application of the UKF to AD
reactors.

2.2. Model-Based Control of AD Reactors. We have not found
literature on model-based control systems of AD reactors
fed speci�cally with dairy waste. Below are references to
model-based control systems of reactors fed with other types
of substrates, assumed to be also relevant for the present
application.

Bernard et al. [10] have implemented a model-based
adaptive linearizing controller and a fuzzy controller
designed to maintain the intermediate alkalinity (VFA,
volatile fatty acids) and the total alkalinity within speci�ed
limits to ensure stable process conditions and to avoid
VFA accumulation despite organic load disturbances. 
e
so-called AM2model, [18], is used for design and simulation.

Puñal et al. [19] have designed an automatic fuzzy logic-
based control system to maintain the online-measured VFA
concentration at a proper setpoint.
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Méndez-Acosta et al. [20] have designed a model-
based controller for maintaining the COD (chemical oxygen
demand) of the reactor e�uent at its setpoint, using the AM2
model, [18].

Méndez-Acosta et al. [21] have designed a multivariable
control system for controlling the concentration ofVFA in the
reactor to its setpoint using the feed rate and controlling the
total alkalinity to its setpoint using the addition of an alkali
solution.

Strömberg et al. [22] have identi�ed, using simulations,
three controllers for AD processes to be the most suitable
ones for maximizing gas production, while being able to
react properly to process disturbances due to variations in
pH, ammonia, and concentration in the reactor feed. 
e
simulations use the ADM1 model [15]. All of the controllers
have the feed rate as control variable (controller output).

e controllers resemble an expert system, with logics (if-
clauses) in the control function. 
e three controllers are (1)
the extremum-seeking variable gain controller by Liu et al.
[23], (2) the disturbance monitoring controller by Steyer et
al. [24], and (3) the hydrogen-based variable gain controller
by Rodŕıguez et al. [25]. Strömberg et al. [22] note that no
uniform tuning method could be derived to tune the three
controllers. Instead, trial-and-error procedures are used.

In a simulation study, Gaida et al. [26] have implemented
a nonlinear predictive controller to control a simulated
ADM1, assuming all states are available, and, therefore, a
state estimator is not used. 
e controller allows alternative
optimization criteria, for example, economical optimization
and minimum methane concentration of the biogas. 
e
plant is the same as in [14], compared with the above section
about state estimation.

In a simulation study,Ordace et al. [27] have implemented
a predictive controller based on transfer functions adapted
to the ADM1 model to control the ADM1. 
e optimization
criterion of the controller contains the square of the control
error, while the control signal usage is not included; that is, it
has no cost in the criterion.

3. System Description

3.1. AD Reactor with Control System. Figure 1 depicts the AD
reactor with its control system. 
e reactor type is UASB
(up�ow anaerobic sludge blanket). 
e reactor is part of a
pilot biological plant for nutrient and energy recovery named
Foss Biolab, situated at Foss Farm, Skien, Norway. Input to
the plant is dairy manure diluted with 25% water and �ltered
with a sieve, and outputs are fertilizer and biogas consisting
of approximately 70% methane. 
e reactor’s temperature
is kept �xed at its setpoint with an automatic temperature
control system.

In Figure 1, the block denoted “Model-based controller”
may comprise a state estimator and alternative controller
functions (predictive controller and PI controller with feed-
back from state estimates). 
e model-based controller uses
an online measurement of �meth which is provided by sensor
FT. 
is measurement is obtained by multiplying the online
biogas �owmeasurement from a thermal gas �ow sensor and
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Figure 1: Control system of the AD reactor.

the online methane concentration measurement from an IR-
based sensor. 
e raw measurement signals are smoothed
using so�ware �lters.

�feed is used as control variable. 
e demanded �ow is
obtained with a peristaltic feed pump operated with PWM
(Pulse width modulation) with a cycle time of 700 sec.

In principle, �reac is also a candidate as control variable
since it has a clear impact on �meth, but in [28] we argue why
�reac is not considered a usable control variable.

An online measurement of �reac is used by the controller,
since �reac is an important model variable. �reac is retained
at its (�xed) setpoint with a separate temperature control
system, where the controller is a PI (proportional plus
integral) controller [6].

In this paper, �reac is kept at 35∘C because this is a typical
temperature at which AD reactors are operated (mesophilic
conditions). However, this temperature is not necessarily
optimal. In [29] we show how the temperature can be
speci�ed using model-based optimization.

3.2. Control System Structure. Figure 2 shows the structure of
the control system.

In the block diagram: � = �feed, and � = �vsin . � comprises
here the four state variables of the modi�ed Hill model,
compared with Section 3.3: � = [�bvs, �vfa, �acid, �meth]�.
Depending on the applications in this paper, 	 = �meth,
compared with Section 6, or 	 = �vfa, compared with
Section 7. Furthermore, the Process is the reactor. 
e Con-
troller implements predictive control, PI control, or manual
control.
e Estimator is an Unscented Kalman Filter (UKF).

e Control Designer is the algorithm or strategy used
to transform the speci�cations of the optimal operation
into (optimal) setpoints and/or control signals. 
e Control
Designer may also set parameters for controller tuning,
for example, cost factors in the optimization criterion of
a predictive controller, or itmay be an optimization algorithm
to calculate optimal setpoints.
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Figure 2: Block diagram of model-based optimization and control system. (Terms and variables are de�ned in the text.)


e symbol 
� in various blocks in Figure 2 represents
the assumed mathematical model used in the block. 
e
�
symbol in the Process block is themodel representing the real
system (process). Only ifmodel errors are assumed to be zero,

� and
� will be identical.


e connections from � and/or �est to the Control
Designer are due to � being an input to the process, and the
value of� or�est is included in themodel-based optimization.
For example, the value of �vsin in the feed of the reactor has
an impact on the speci�c value of �feed needed to produce a
speci�ed �meth which in turn is closely related to the power
production in the reactor.

In general, the operational objectives, which are the
inputs to the Control Designer in Figure 2, may be adjusted
based on results of an evaluation of the factual process
operation, but this possible adjustment is not depicted in
Figure 2.

A large number of model-based controllers exist [30]. In
this paper, a predictive controller [31, 32] is selected (a pre-
dictive controller is also denoted as model-based predictive
controller (MPC)). 
e selection of a predictive controller is
due to its popularity (as model-based controller) in the pro-
cess industry [33] anddue to our view that it implementsmost
of the important controller features which would otherwise
require a number of special solutions, that is, feedback, feed
forward, integrator antiwindup, constraints handling, and
time-delay compensation.Whennonlinear predictive control
is used, as in this paper, process nonlinearities are taken into
account naturally and without approximations. Furthermore,
a predictive controller is relatively easy to tune, if the process
model is accurate.

3.3. AD Process Model. 
e mathematical model of the AD
processes in the reactor is a modi�cation of the Hill model
[34] adapted to the pilot reactor [7]. 
e model is based
on material balances of biodegradable volatile solids, volatile
fatty acids, acidogens and methanogens, and a calculation of
the produced methane gas �ow. 
e model is summarized
below:

material balances:

̇�bvs = (0�vsin − �bvs) �feed� − ��1�acid

̇�vfa = (��0�vsin − �vfa) �feed� + ��2�acid − ���3�meth

�̇acid = (� − �� − �feed/�� )�acid

�̇meth = (�� − ��� − �feed/�� )�meth;

(1)

methane gas production:

�meth = ����5�meth; (2)

reaction rates:

� = �	 �bvs
�
 + �bvs

�� = �	� �vfa
�
� + �vfa

�	 = �	� = 0.013�reac − 0.129 for 20∘C < �reac < 60∘C.
(3)

Table 1 shows model parameter values as adapted to AD
reactor at Foss Farm, [7].

One example of a set of steady-state values of the AD
process variables is given in Table 2.

4. Safe Operation Condition


e various control systems proposed in this paper are
designed to retain the reactor at a safe reactor operation
condition, de�ned below. Hill et al. [35] have found, from a
comprehensive study of literature reporting operational data
for reactors fed with swine and beef manure and con�rmed
by their own laboratory experiments, that �vfa > 0.8 g/L
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Table 1: Parameters in the modi�ed Hill model adapted to the AD
reactor at Foss Farm.

Parameter Value Unit

�� 0.69 (gVFA/L)/(g BVS/L)

� 2.90 d/d

0 0.25 (g BVS/L)/(gVS/L)

�1 3.89 g BVS/(g acidogens/L)

�2 1.76 gVFA/(g acidogens/L)

�3 31.7 gVFA/(gmethanogens/L)

�5 26.3 L/g methanogens

�� 0.02 d−1

��� 0.02 d−1

�
 15.5 g BVS/L

�
� 3 gVFA/L

� 250 L

Table 2: 
e ultimate safe steady-state operating point.

Variable Value Unit

�vfa 0.8 g/L

�feed 35.3 L/d

�feed/� = � 0.14 (L/d)/L

�/�feed =HRT 7.1 d

�meth 174.2 LCH4/d

�meth/� 0.70 (LCH4/d)/L

�bvs 4.14 g/L

�acid 1.80 g/L

�meth 0.39 g/L

�vsin 30.2 g/L

�reac 35 ∘C

indicates an impending reactor failure, causing a reduction
of methane production. Hence, it is here stated that

�vfa ≤ 0.8 g/L = �max

vfa (4)

de�nes safe operation conditions for the reactor. For practical
reasons, we have not been able to conduct our own experi-
ments to verify inequality (4) or to identify a di�erent �max

vfa .
However, a new value of �max

vfa will not change the principal
results of this paper.

Hill et al. [35] found that also the propionic to acetic acid
(P/A) ratio is a good indicator of health. However, this ratio
cannot be calculated from the mathematical model used in
this paper, and, therefore, the analysis here is not based on
this ratio.

Hill et al. [35] did not use dairy manure in their analysis
since reliable data for such manure were not available.
Nevertheless, it is here assumed that the aforementioned safe
range of �vfa also applies approximately for reactors fed dairy
manure. A support for this assumption is that the validated
AD reactor model by Hill [34] has the same parameters
describing the AD process for dairy, swine, poultry, and beef
manure, except for parameters expressing the fraction of the
organic feed that is degradable, but the AD process dynamics
are independent of the latter parameters.

Figure 3 shows simulated static (steady-state) responses
in a number of variables to a range of constant feed rates
(�feed). 
e cyan horizontal line in the �vfa plot represents
�vfa = 0.8 g/L. 
e green intervals on the abscissas indicate
safe reactor operation, and, conversely, the red interval
indicates unsafe operation.

Table 2 shows the values of several variables at the
ultimate safe steady-state operating point. 
e set of three
corresponding values (�vfa, �feed, and �meth) constitutes the
ultimate safe steady state operating point of the reactor.
Table 2 also shows, for completeness, values of other model
parameters and variables than those discussed here.

One question arises about the applicability of the modi-
�edHill model to predict safe/unsafe operation of the reactor.
Is it necessary to include �max

vfa = 0.8 g/L explicitly to �nd
the ultimate (maximum) safe operating point? Assuming the
reactor model is accurate, safe operating points should be
implicit in the model; that is, they can be calculated from
the model, for example, by simulations. 
e modi�ed Hill
model used in the present paper is relatively simple. It is
not clear to what extent the model is able to predict unsafe
operation of the real reactor due 10 to high concentration
of VFA. 
erefore, as long as this simple model is chosen, it
will be safer to de�ne �max

vfa explicitly instead of relying on the
model alone to predict a possible failure.

De�ning explicit limits on model variables for safe oper-
ation is consistent with the approaches in, for example, [10,
21], where limits on VFA and TA (total alkalinity) are set
explicitly.

5. State Estimation

State estimation is used in the control systems described in
Sections 6 and 7. State estimators can also be useful solely for
monitoring purposes, that is, for estimation of state variables
in the lack of sensors. 
e state estimator used in the present
paper is a Kalman Filter [36] algorithmbased on themodi�ed
Hill model presented in Section 3.3. While there exist several
state estimation algorithms (cf. Section 2), we select here
the Kalman Filter because it has a relatively simple and
straightforward structure and because it can be easily �ne-
tuned.


e modi�ed Hill model is a nonlinear model. 
e
Extended Kalman Filter (EKF) is a commonly used extension
of the basic Kalman Filter for nonlinear models. 
e EKF
involves linearization of the process model. An alternative
to the EKF is the Unscented Kalman Filter (UKF) [36].
Two bene�ts of the UKF, compared to the EKF, are that no
linearization is necessary and that the estimates are more
accurate as the propagation of the estimation covariances,
needed to calculate the optimal state estimates, are calculated
more accurately. Because of these two bene�ts, the UKF is
selected as state estimator in this paper.

5.1. Variables and Parameters of theModel. 
e state variables
of themodi�edHill model are (cf. Section 3.3) �bvs, �vfa,�acid,
and �meth. 
ey are estimated with the UKF. It is decided
to also estimate �vsin with the UKF since it is assumed that
its value may vary, though slowly. As is common, �vsin is
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Figure 3: Simulated static (steady-state) values of a number of variables versus �feed (constant) at �reac = 35∘C. 
e green intervals on the
abscissas indicate safe reactor operation as de�ned inequality (4). Conversely, the red intervals represent unsafe reactor operation.

modeled as a “random walk”: ̇�vsin = �, where � is a random
disturbance.
us, the augmented state vector to be estimated
by the UKF is

� = [�bvs, �vfa, �acid, �meth, �vsin]�. (5)

�feed is regarded as an input variable to the UKF. �feed is
the control variable, which is always known.


emodel parameters are known frommodel adaptation
[7]. �reac may vary but is always known as it is measured
continuously.


e process measurement, 	, used by the UKF is �meth

available from sensor FT in Figure 1. Hence, 	 = �meth in the
UKF.

5.2. Observability. 
e linearized reactor model, augmented
with �vsin , is found observable at a number of typical operating
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points using the obsv function of the Matlab Control System
Toolbox (further details are not shown here).

5.3. Tuning of the UKF. 
e tuning parameters of the UKF
are as follows: �̂(�0 | �0) (initial estimated state; the initial

a posteriori estimate), �̂(�0 | �0) (initial state estimation
error covariance), � (measurement noise covariance), and  
(process noise covariance). Ideally, these parameters are set
equal to their known values, but some of them may not be
available. Good tuning guidelines are actually hard to �nd.
Even an otherwise thorough book as [36] gives little advice.
In this paper the tuning is done as follows.

(i) �̂(�0 | �0) is set equal to the values from laboratory
analysis at the start of the pertinent time interval.

is applies ideally to �bvs, �vfa, and �vsin . However, for�vsin , we impose, for the purpose of demonstration,
a large initial estimation error, by setting the initial
estimate of �vsin equal to 20% of the value known from
laboratory analysis.

�acid and�meth are not known, but their initial values
are calculated from the model assuming steady state
(details of the calculation can be found in [7]).

(ii) �̂(�0 | �0) is set as a diagonal matrix as follows:

�̂�� (�0�0) = [���̂� (�0�0)]2, (6)

with �� = 0.01.
(iii) � is a diagonal matrix, which, since the number of

measurements is one (�meth), is reduced to a scalar—
themeasurement variance. From a representative real
time series,

var (�meth) = 1.44 = �. (7)

(iv)  is typically set as a constant matrix (diagonal).

Assuming that �̂(�0 | �0), �̂(�0 | �0), and � are set,
 can be used as �nal tuning parameter.

(a) Increasing �,� makes the estimate for state vari-
able�� converge faster to the assumed true value,
but with the drawback that the estimate for ��
becomes more noisy (caused by the increased
propagation of the measurement noise, via the
Kalman Filter gain(s)).

(b) Reducing  �,� has the opposite e�ects.
It is proposed to relate the diagonal element (i.e.,
the process noise variance) to the magnitude of the
pertinent state variable:

 �,� = [�%���(�0 | �0)]2. (8)

With the initial setting of %� = 1, it is found that
� = 0.0005 is a proper value. 
en the ultimate
tuning is made by adjusting %�. By trial-and-error,
{%�} = {10, 1, 1, 1, 10}.

5.4. Results and Discussion. Figure 4 shows estimates with
the UKF together with real data from online sensors and
laboratory analysis over a time interval of 85 days. (
is
time interval includes the interval where the UKF is applied
to the real reactor as part of the predictive controller, cf.
Section 6.5.) 
e process measurement used by the UKF is
�meth.

Overall, the UKF gives reasonably good estimates (real
values of�acid and�meth are not known).


e large initial estimation error �vsin imposed on purpose
is e�ectively reduced during approximately 15 days.

From � = 150 d, there is a noticeable di�erence between
the estimate and the laboratory analysis of �vfa. It is not clear
what the cause of this di�erence is. If the model is trusted,
the di�erence may indicate an inaccuracy of the laboratory
analysis.

6. Control of Methane Gas Production

6.1. 
e E�ect of Feedback Control. To demonstrate the e�ect
of feedback (or automatic or closed-loop) control of �meth,
Figure 5 shows, for the real pilot reactor, experimental time-
series of �meth and �feed (and �reac) with feedback control and
without control. It is clear that �meth varies less with control
than without control. �meth remains close to �methsp

even a�er

the setpoint is changed. 
e variations are due to inevitable
disturbances. In the case of feedback control,�feed is of course
varying, while it is constant in the case of no control (i.e.,
open-loop control). �reac is actually di�erent in the two cases,
but it is assumed that the di�erence between the two cases is
independent of the temperature di�erence.

Whether the variation in �meth in open-loop control is
acceptable or notmust be decided in each speci�c application.
A comparison of the performance of closed-loop control and
open-loop control when disturbances are assumed can be
made using simulations with the AD model presented in
Section 3.3.

6.2. Operational Objective and Control Strategy. It is here
assumed that a sucient rationale for feedback control of
�meth exists. 
e operational objective is stated as producing
a demanded methane gas �ow. A speci�c value of �meth

is related to the power, � (kW), as the energy content of

methane gas is 9.95 kWh/m3 at NTP.

e methane gas �ow setpoint must be feasible. 
e

feasibility can be checkedwith steady-state simulations.More
speci�cally, it can be checked using the upper-le� plot in
Figure 3.

Furthermore, safe reactor operation must be ensured,
which here means that inequality (4) is satis�ed.

Relating to Figure 2, the above speci�cations concerning
�meth, the limitation of variations of �feed, and the condition
inequality (4) are inputs to the Control Designer. Outputs
from the Control Designer are �sp

meth
and &��. 
e latter is

the cost factor of the control signal variations of a predictive
controller.

6.3. Control Functions. In control system design, the PI(D)
controller should normally be taken into account when
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Figure 4: Estimates and real data from laboratory analysis with UKF. Standard deviations of estimation errors: �bvs: 0.62 g/L; �vfa: 0.32 g/L;�vsin : 1.02 g/L. (For �vsin , the standard deviation is calculated from � = 120 d, since a relatively large initial estimation error is imposed on
purpose.)

di�erent controllers are evaluated. If oscillations can be
tolerated, even the on-o� controller should be considered.
Using on-o� controllers and PI controllers for �meth control
of the pilot reactor is discussed in detail in [28].

In many cases, advanced controllers can give improved
control compared with the simple PI(D) controller and
the on-o� controller, but typically the implementation is
considerably more demanding. As argued in Section 3.2, a
predictive controller is used as advanced controller in this

paper. A predictive controller to retain �meth at its setpoint
is implemented both on a simulator of the reactor and
on the real reactor. 
e model is the modi�ed Hill model
(cf. Section 3.3). A time-delay of '� = 0.2 d is included at the
control input of the model:

�feed (�) = � (� − '�) , (9)

where �feed is the feed rate of the modi�ed Hill model and �
is the control signal. 
is time-delay accounts approximately
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Figure 5: �meth and �feed and �reac, for the real reactor, with (automatic) control and without control. (
e length of each of the time intervals
for these two cases is di�erent.) (Reprinted from [28] by permission.)

for the dynamics not included in the modi�ed Hill model
presented in Section 3.3. 
e optimization objective of the
predictive controller is

min� *obj, (10)

where

*obj = ∫
�+�ℎ

�
[72 (:) + &���̇2 (:)] �: (11)

with constraint �min ≤ �(�) ≤ �max which is included in
the optimization problem formulation; that is, it is an input
argument in the fmincon function call in Matlab. � is the
present time instance. 7 is the control error, 7 = �sp

meth
−�meth.


e time derivative, �̇, represents the control signal changes.

e larger the &��, the smoother the control actions.

In implementations, the discretized version of *obj is
minimized, giving an optimal control sequence, {�}opt, over
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the prediction horizon. 
e �rst element of this sequence,
that is, (�0)opt, is applied as control signal at the present time
point. 
e prediction horizon is receding and the procedure
of obtaining {�}opt and �(�0)opt is repeated as time evolves.


e prediction made by the controller is based on the
modi�ed Hill model discretized with the Euler explicit
(forward) method. {�}opt is calculated with the nonlinear
optimization function fmincon in the Optimization toolbox
of Matlab. 
e present state, �(�), needed for the prediction,
is calculated with the augmented Unscented Kalman Filter
presented in Section 5.

6.4. Simulations

6.4.1. Controller Settings. 
e settings of the predictive con-
troller in the simulations are as follows.

A time-step of '
 = 0.025 d is used in the discrete-time
version of themodi�edHill model used for prediction.
is is
also the time-step of the discretization of *obj. 'ℎ corresponds
to 1/0.025 = 40 time-steps, which is then the prediction
horizon in number of time-steps.

&du = 0.01 in (11) is found by trial-and-error on a
simulator. A proper value of the prediction horizon is found
as 'ℎ = 1 d (with 'ℎ < 0.5 d, a change in performance can be
observed).

In the simulations, the predictive controller is compared
with the PI controller. 
e PI controller is tuned at the
operating point shown inTable 2 using the Skogestadmethod
[37], with the modi�cation of the '� setting as proposed in
[38]. 
e PI settings are �� = 0.89 [(L CH4/d)/(L feed/d)]
and '� = 0.8 d.

6.4.2. Performance and Robustness Measures. 
e control
system performance and robustness measures applied in the
simulations are described in the following.

(1) IAE (Performance). 
e IAE index (Integral of Absolute
Error) is a commonly used measure of control system
performance. IAE
 measures the setpoint tracking:

IAE
 = ∫
���

���
|7| ��. (12)


e IAE� measures the disturbance compensation:

IAE� = ∫
���

���
|7| ��. (13)

(2) Control Signal Variations (Performance). As measures
of the variation of the control signal, both the standard
deviation, ?�, and the mean of the absolute value of the rate
of changes, �|�̇|, are calculated.
(3) Stability Margins (Robustness). 
e traditional measures
for robustness of linear control systems are the gain margin
(GM) and the phase margin (PM). 
e predictive controller
is a nonlinear controller, and the (reactor) is a nonlinear
process. 
us, the predictive control system and the PI
control system are nonlinear systems. We propose here to
expand the use of GM and PM as stability margins also for
these nonlinear systems, as explained in the following.

An adjustable gain,Δ�, is inserted into the loop (between
the controller and the process); see Figure 6. Normally, Δ� =
1. 
e (ultimate) value Δ�� that brings the (simulated) con-
trol system to the stability limit, with sustained oscillations, is
found by trials. 
en,

GM = Δ��. (14)

To calculate the PM, an adjustable time-delay, Δ'delay,
is inserted into the loop; see Figure 6. Normally, Δ'delay =0. 
e value Δ'delay� that brings the control system to the

stability limit, that is, causing a sustained oscillation, is found
experimentally on the simulator. Denote the period of the
oscillation as �� [s]. As shown in [39] (Appendix 1),

PM [deg] = 360∘Δ'delay��� . (15)

Seborg et al. [40] propose the following ranges for appropriate
values of the stability margins: 1.7 = 4.6 dB ≤ GM ≤ 4.0 =
12.0 dB and 30∘ ≤ PM ≤ 45∘.

Relating to Figure 2, Δ� and Δ'delay are included before
the Process block, a�er the branch from � to the Estimator.

6.4.3. Simulations. Figure 7 shows simulated time-serieswith
predictive control and, for comparison, PI control.
e initial
operating point of the reactor is as shown in Table 2, which
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Figure 7: Simulated responses with predictive control and PI control.

is the ultimate (maximum) safe steady-state operating point.

e setpoint �sp

meth
is varied as a sequence of two ramps of

slope±2 (LCH4/d)/d each lasting for 1 d.
e disturbance �vsin
is varied as a ramp of slope 2 (g/L)/d during 1 d which is a
realistic variation [28].


e simulations shown in Figure 7 are without mea-
surement noise. To measure the control signal variations,
simulations have been run with measurement noise in the
form of a normally distributed random signal with zeromean
and standard deviations ?� = 1.2 L CH4/d, which is realistic
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Table 3: Performance and robustness measures for predictive
control and PI control.

Predictive PI Ratio Pred./PI

IAE
 0.093 0.72 0.13

IAE� 1.46 2.20 0.66

?� 0.69 1.29 0.67

�|�̇| 7.07 25.2 0.28

GM ≈∞ 2.6 N/A

PM 63.9∘ 47.6∘ 1.34

for the present reactor.
e simulations are run over 10 d with
a constant setpoint and a constant disturbance (simulations
are not shown here).

6.4.4. Results andDiscussion. Table 3 shows performance and
robustness measures with predictive control and with PI
control. 
e IAE indexes, (12) and (13), are calculated with
��� = 1 d, ��� = 7 d, ��� = 7 d, and ��� = 14 d.

Comments on the results shown in Table 3 are the
following.

(i) IAE
 with predictive control is 13% of IAE
 with PI
control. Hence, predictive control is clearly the best.

(ii) IAE� with predictive control is 66% of IAE� with PI
control. Again, predictive control is the best, but the
improvement compared with PI control is not large.

(iii) ?� with predictive control is approximately 67% of
the value with PI control, while �|�̇| with predictive
control is approximately 28% of the value with PI
control. 
ese numbers vary with the realization of
the randomprocesses generated in the simulation, but
they are representative.

By detuning the PI controller for more relaxed con-
trol (reducing �� and increasing '� according to
Skogestad’s formulas), both ?� and �|�̇| are reduced.
By a proper retuning, either of them can become
approximately equal to the value with predictive
control. 
e consequence of such a retuning is that
the IAEmeasures with PI control will increase. In one
simulated example, the PI controller was retuned so
that �|�̇| with predictive control and PI control was
approximately equal. 
e IAE� with PI control then
increased 4.5 times; that is, the control performance
became radically worse.


e smoother control action with predictive control
compared with PI control has been observed from
experiments on the real reactor.

(iv) GM is acceptable with PI control. With predictive
control the notion of GM is questionable, since the
simulated control system does not actually become
unstable for any gain increase at the process input.
Rather, the gain increase is seen by the UKF as a
change in the disturbance, or, more speci�cally, as an
increase in �vsin . Consequently, the estimate of �vsin is
increased, which in turn is used in the prediction by
the predictive controller, causing a large overshoot or

undershoot in �meth before it eventually reaches �spmeth
(plots of simulations not shown). From simulations it
is found that �sp

meth
is back at its setpoint during 1-2 d

for 0.5 ≤ Δ�� ≤ 4.
(v) PM is larger with predictive control (63.9∘) compared

with PI control (47.6∘).

6.4.5. Concluding Remarks. Above, the predictive controller
has been compared with the PI controller tuned using
a standard method, namely, the Skogestad method [37].
Simulations indicate that predictive control has better perfor-
mance and better robustness than the PI controller. It can also
be claimed that the predictive controller, here including the
state estimator, is more intuitive to adjust since its parameters
have a direct relation to practical factors such asmeasurement
noise and control signal variation. 
e drawbacks with pre-
dictive control are that a mathematical model of the reactor
is required and that it is more complicated to implement.


e setpoint tracking performance of the predictive
controller is considerably better than that of the PI controller,
while the improvement in disturbance compensation is not
large. Taking into account that the PI controller ismuch easier
to implement, it may be claimed that the PI controller is the
preferred controller if the setpoint is constant.

6.5. Experiments on the Real Reactor. Predictive control has
been applied to the real reactor. Some of the settings in the
practical experiment di�er from those used in the simulation
study presented in Section 6.4, which has been accomplished
approximately one year a�er the practical experiment. (How-
ever, simulations were used to test the control system before
the practical implementation.) 
e di�erences in settings are
shown below.

(i) In the practical experiments, '
 = 0.05 d and '� =2 d. In the simulations in Section 6.4, '
 = 0.025 d and'� = 1 d. '
 = 0.05 d has been tested in simulations,
giving a slight change in performance, probably due
to less accurate numerical integration (explicit Euler
is used). D� = '�/'
 = 40 is the same both in the
practical experiments and in the simulations.

(ii) �feed is limited to 40 L/d, which is also used in
the simulations in Section 6.4. 
is limit is reached
in the practical experiment but is not reached in
the simulations since the perturbations are relatively
small there.

(iii) No time-delay term is included in the model used by
the predictive controller in the practical experiment,
while it is found appropriate to include a time-delay
in the simulation study as the model analysis in [7]
indicates that a time-delay is present.

(iv) 
e cost factor&�� in (11) was set to 0.8 in the practical
experiment, while 0.01 was found appropriate in the
simulation study (cf. Section 6.4). 
e smaller &�� in
the simulations may be due to dynamic phenomena
of the real reactor not encapsulated by the model. In
any case, &�� is typically a tuning parameter.
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6.5.1. Results and Discussion. Figure 8 shows the time-series
of the practical experiments. Below are comments on this
�gure.

(i) At � = 99.8 d, �sp
meth

was reduced instantly from
190 to 150 L/d. Since the reduction was instant, the
predictive controller could not take any control action
in advance. 
e response in the gas �ow is stable and
shows acceptable stability, but the stability is reduced
compared with the simulated response. 
e control
error is less than 3 L/d a�er approximately 1 d.

A possible explanation of the damping of the real
response being less than in the simulated response
is that the predictive controller does not include any
processmodel time-delay while, as pointed out above,
there is actually a time-delay in the real process.

(ii) At � = 102.3 d, a preset-ramped setpoint pro�le
started. 
e predictive controller adjusts �feed before�sp
meth

starts increasing. 
e tracking is accurate. 
e
upper bound of �feed of 40 L/d is eventually reached,
causing the rate of change of�meth to become less than
the rate of change of �sp

meth
.

(iii) At � = 102.8 d, the rate of change of �sp
meth

is instantly
adjusted from +20 (L CH4/d)/d to −20 (L CH4/d)/d.

e observed lag in �meth can be explained with the
instant change of �sp

meth
which prevents predictive

control action.

(iv) At � = 104.1 d, a preset step change of �sp
meth

from 150
to 155 L CH4/d is applied. 
e predictive adjustment
of �feed is obvious. �meth shows a clear overshoot, but
it is expected that the response will stabilize.

(v) At � = 104.4 d, the predictive control experiment had
to be stopped as other experiments were scheduled to
start at this point of time. 
e controller was actually
set to manual mode. 
e saved future control signal
sequence generated by the predictive control shows
a declining behavior, indicating that �meth eventually
would have been brought back to its setpoint.

As pointed out earlier, themethane gas �ow setpointmust
be feasible. For the above experiments, the feasibility can be
checked using the upper-le� plot in Figure 3. According to
this plot, the setpoint values used in the experiments (cf.
Figure 8) are actually feasible.

7. Control for Safe Reactor Operation

7.1. Objective and Control Strategies. Here, the operational
objective of the reactor is de�ned as retaining the reactor
at the ultimate safe steady-state operating point given in
Table 2 (this is the input to the Control Designer in Figure 2).
To this end, the following three alternative control strategies
are tested (they comprise the “output” from the Control
Designer in Figure 2).

(1) �feed is controlled to a setpoint of �sp
feed

, which
is 35.3 L/d, assuming the operating point shown
in Table 2. 
is control strategy is described in
Section 7.2.

Table 4: Performance measures for three control strategies for
controlling �vfa.
Measure Const. �feed Predictive PI

IAE� 1.52 0.20 0.090

GM N/A ≈∞ 5.5

PM N/A ≈∞ 71.0∘

(2) �vfa is controlled to a setpoint of �sp
vfa
, which is

0.8 g/L according to Table 2. In principle, this control
requires feedback from themeasurement of �vfa. Such
sensors do exist [41, 42], but they are not in use on the
present reactor. Instead, the estimate of �vfa calculated
continuously with a state estimator (Kalman Filter) is
used (cf. Section 5). 
is control strategy is described
in Section 7.3.

(3) �meth is controlled to a setpoint of �sp
meth

, which
is 174 L CH4/d according to Table 2. 
is control
requires feedback from the measurement of �meth.

is control strategy is described in Section 7.4, where
also PI control is applied for comparison.

In each of the control strategies, the feed rate is used as
control variable, � = �feed (cf. Section 3.2).


e applicability of the three control strategies described
above is demonstrated with simulations in the following
subsections. In each of the simulations, a disturbance in �vsin
is applied.

7.2. Control of �feed. �feed is held constant at 35.3 L/d (cf.
Table 2). On the real reactor, this can be implemented easily
since the feed pump is a peristaltic pump which gives the
demanded �ow without feedback (�ow) control.

Figure 9 shows the simulated response with constant
�feed. Table 4 shows performance measures.

7.3. Control of �vfa. �vfa is controlled to its setpoint, �sp
vfa

=
�max

vfa , using feedback from �estvfa from the Kalman Filter (cf.
Section 5). Both predictive control and PI control are tested.

7.3.1. Predictive Control. 
e optimization criterion of the
predictive controller is selected as

min� *obj, (16)

where

*obj = ∫
�+�ℎ

�
[72 (:) + &���̇2 (:)] �: + &ℎ72 ('ℎ) (17)

with constraint �min ≤ �(�) ≤ �max. 
e control error is
7 = �sp

vfa
− �estvfa. Comparing with the criterion of predictive

control of �meth, (11), the term 72('ℎ), which is 72 at the end
of the prediction horizon, is now included. 
e term brings
7(� + 'ℎ) approximately to zero. Without this term, 7(� + 'ℎ) is
0.1 g/L, and the control signal is actually constant. It is found
that &�� = 0.2 and &ℎ = 20 are proper settings.
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Figure 8: Time series from application of predictive control of �meth on the real reactor.

It is found that the predictive control is considerably
smoother with 'ℎ = 4 d than with 'ℎ = 1 d which is used
in Section 6. Increasing '
 from 0.025 d, which is used in
Section 6, to 0.1 d, here, has very little impact on the control
system performance over the simulation time interval used
here, while the computational burden is noticeably less.

7.3.2. PI Control. PI controller is also applied. 
e PI settings
are �� = 50.9 (L/d)/(g VFA/L) and '� = 0.9 d found using
the Relaxed Ziegler-Nichols closed-loop method based on
relay oscillations [38] which is a quick method to use on a
simulator.

7.3.3. Simulations. 
e initial operating point is as shown in
Table 2. 
e setpoint is �sp

vfa
= �max

vfa = 0.8 g/L. At � = 10 d,
the disturbance �vsin is changed as a ramp of slope 2 (g/L)/d
during 1 d, which is the same variation as in �meth control (cf.
Section 6). 
is is a reasonable variation for the real reactor.
Measurement noise is not included in simulations.

Figure 9 shows simulated responses in �vfa, �meth, �feed,
and �vsin with predictive control and PI control and with
constant �feed. Table 4 shows performance measures.

7.3.4. Results andDiscussion. Table 4 shows performance and
robustness measures with the three control strategies above.
IAE�, de�ned by (13), is calculated over the simulated time
interval. |7|max is the maximum control error. GM and PM
are found as explained in Section 6.4.

Comments

(i) In Figure 9 it is seen that the setpoint tracking works
for both predictive control and PI control. However,
the PI controller gives amore smooth response in �vfa.

(ii) 
e lower-right plot in Figure 9 shows the manipu-
lated �feed which is adjusted by the controllers. 
e
control action is smoother with PI control than with
predictive control.

(iii) 
e performance measures shown in Table 4 indicate
that PI control of �vfa, based on feedback from UKF,
is the best control strategy here.

(iv) Also using a constant �feed can be regarded as accept-
able with the disturbance change simulated.

(v) 
e upper-right plot in Figure 9 illustrates that �meth

is not under control. Although not shown here, �meth

settles at steady state at approximately � = 120 d.
(vi) GM is large with PI control. With predictive control,

the notion of GM is questionable, since the simulated
control system does not actually become unstable for
any gain increase at the process input. Rather, the
gain increase is seen by the UKF as an increase in
�vsin . 
e relatively large estimate of �vsin is used in the
prediction by the predictive controller, causing a large
overshoot in �meth before it eventually reaches �sp

meth
(plots are not shown here). 
is behavior is the same
as with predictive control of �meth (cf. Section 6.4).

(vii) PM is large with PI control. With predictive control,
no limit was found; that is, the controller handles
unmodeled time-delays in the controlled process
even as large as 10 d.

7.4. Control of �meth

7.4.1. Controllers. 
e third control strategy proposed in
Section 7.1 is controlling �meth to a setpoint, �sp

meth
, set equal

to the value of �meth at the ultimate operating point (cf.
Table 2). Both predictive control based on feedback from
UKF estimates and PI control based onmeasurement of�meth

are simulated.

7.4.2. Simulations. 
e simulation scenario di�ers from the
scenario of the simulations in Section 7.3 as �vsin is now
decreased instead of increased. Decreasing �vsin is selected
here because, in the corresponding response, �vfa increases
(in steady state), and an increase of �vfa is more critical than
a decrease.

In the predictive controller, '
 is set as 0.05 d, and 'ℎ is 1 d.
Figure 10 shows simulated responses in �vfa, �meth, �feed,

and �vsin with predictive control based on feedback fromUKF
estimates and PI control based on measurement of �meth.



Journal of Control Science and Engineering 15

Svfa setpoint

MPC

PI

Const. feed

(g
/L

)

t (d)

0.87

0.86

0.85

0.84

0.83

0.82

0.81

0.8

0.79
0 20 40 60 80 100

(a)

PI

Const. feed

t (d)

0 20 40 60 80 100

Fmeth MPC
(L

/d
)

195

190

185

180

175

170

(b)

0 20 40 60 80 100

Svsin
real

Estim.

32.5

32

31.5

31

30.5

30

(g
/L

)

t (d)

(c)

PI

Const. feed

t (d)

0 20 40 60 80 100

Ffeed MPC

(L
/d

)

35.5

35

34.5

34

33.5

33

32.5

(d)

Figure 9: Control of �vfa with di�erent control functions: constant �feed, predictive control (MPC), and PI control. Simulated responses in
�vfa, �meth, �feed, and �vsin are shown.

7.4.3. Results

(i) As seen in Figure 10,�meth ismuch closer to�sp
meth

with
predictive control than with PI control.

(ii) With both predictive control and PI control, �vfa
increases. Simulations over 400 d show that �vfa goes
toward approximately 1.05 g/L, which is 0.25 larger

than the critical value of 0.8 g/L. 
is makes this
control strategy questionable.

7.5. What Is the Best Control Strategy for Safe Reactor
Operation? From the results in Sections 7.3, 7.2, and 7.4,
it can be concluded that the best control strategy for safe
reactor operation is controlling �vfa to a (�xed) setpoint
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Figure 10: Predictive control and PI control of �meth. 
e process perturbation is a change in �vsin . Simulated responses in �vfa, �meth, �feed,
and �vsin are shown.

using feedback from the state estimator (UKF). In the
aforementioned control strategy, PI control is evaluated as
better than predictive control. 
ese two controllers give
similar disturbance compensation, but the control signal is
smoother with PI control than with predictive control.

8. Conclusions


e original four states of the modi�ed Hill model, �bvs, �vfa,�acid, �meth, and the assumed unknown organic content,
�vsin , of the feedstock of a real pilot AD reactor have been
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mainly successfully estimated with an Unscented Kalman
Filter (UKF), but with an estimation error for �vfa in a part
of the time interval.


ese estimates, together with the model, have been
applied in two di�erent model-based control systems. 
e
�rst system aims at retaining �meth at a possibly time-varying
setpoint, which may originate from a demanded power pro-
duction by the reactor. Simulations indicate that the setpoint
tracking performance of the predictive controller is consid-
erably better while disturbance compensation, assuming that
the disturbance has an unknown value, is not much better
compared with PI control, con�rming a well-known fact,
compared to, for example, [33]. Consequently, assuming the
setpoint is constant, the PI controller competes well with the
predictive controller. A successful application of predictive
control of the real reactor is reported.


e second control system aims at retaining the reactor
at an ultimate safe operating point, where �vfa has a critical
maximum value. 
is operating point is characterized by
three corresponding values of �feed, �vfa, and �meth, as found
from steady-state simulations of the reactor model. 
ese
operating point values can be used as setpoints in pertinent
control systems. Simulations indicate that the best control
solution among the three alternatives is PI control based on
feedback of �vfa estimated by Kalman Filter.


e results of this paper indicate that a model-based con-
trol system, using a relatively simple mechanistic dynamical
reactor model, can be designed and implemented on real AD
reactors.
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AD: Anaerobic digestion
BVS: Biodegradable volatile solids
COD: Chemical oxygen demand
EKF: Extended Kalman Filter
FC: Flow controller
FT: Flow transmitter (sensor)
HRT: Hydraulic retention time
IAE: Integral of absolute error
MPC: Model-based predictive control
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PI: Proportional plus integral (control)
PWM: Pulse width modulation
TIC: Total inorganic carbon
UKF: Unscented Kalman Filter
VFA: Volatile fatty acids
VS: Volatile solids.

Nomenclature

��: Amplitude of the control
error and the process
output (measurement)

�� ((g VFA/L)/(g BVS/L)): Acidity constant��: Amplitude of the on-o�
control signal

0 ((g BVS/L)/(g VS/L)): Biodegradability
constant

&��: Cost (weight) factor of

�̇2 in predictive control
&ℎ: Cost (weight) factor of

72('ℎ) in predictive
control

� (d−1): Dilution rate
7: Control error
*obj: Objective function

�feed (L/d): In�uent or feed �ow or
load rate, assumed equal
to e�uent �ow (constant
volume)

�meth (L CH4/d): Methane gas �ow

�sp
meth

(L CH4/d): Setpoint of �meth

GM: Gain margin
�: Discrete-time index
�1 (g BVS/(g acidogens/L)): Yield constant
�2 (g VFA/(g acidogens/L)): Yield constant
�3 (g VFA/(g methanogens/L)): Yield constant
�5 (L/g methanogens): Yield constant
�
 (g BVS/L): Monod half-velocity

constant for acidogens
�
� (g VFA/L): Monod half-velocity

constant for
methanogens

�� (d−1): Speci�c death rate of
acidogens

��� (d−1): Speci�c death rate of
methanogens

� (d−1): Reaction (growth) rate
of acidogens

�� (d−1): Reaction (growth) rate
of methanogens

�	 (d−1): Maximum reaction rate
for acidogens

�	� (d−1): Maximum reaction rate
for methanogens

� (kW) Power
�� (d): Period of oscillation

�̂: State estimation error
covariance

PM (degrees): Phase margin
 : Process noise covariance
�: Measurement noise

covariance
�vfa (g VFA/L): Concentration of VFA

acids in reactor

�estvfa (g VFA/L): Estimate of �vfa�vfain (g VFA/L): Concentration of VFA in
biodegradable part of
in�uent

�max

vfa (g VFA/L): Upper limit of safe range
of concentration of VFA
in reactor

�sp
vfa

(g VFA/L): Setpoint of �vfa
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�bvs (g BVS/L): Concentration of BVS in
reactor

�bvsin (g BVS/L): Concentration of BVS in
in�uent

�vsin (g VS/L): Concentration of volatile
solids in in�uent

?� (L/d): Standard deviation of
control signal

�reac (∘C): Reactor temperature
'ℎ: Prediction horizon
'� (d): Controller integral time
: (d): Integration variable in

predictive control
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� (L): E�ective reactor volume
(assumed �lled with
liquid)

�̂: Estimated state vector
�acid (g acidogens/L): Concentration of

acidogens
�meth (g methanogens/L): Concentration of

methanogens.
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