
State estimation for large-scale partitioned systems: a moving horizon

approach

Marcello Farina, Giancarlo Ferrari-Trecate, Riccardo Scattolini

Abstract— In this paper we propose novel state-estimation
methods for large-scale discrete-time constrained linear systems
that are partitioned, i.e. made by coupled subsystems with
non-overlapping states. We focus on moving horizon estimation
(MHE) schemes due to their capability of exploiting physical
constraints on states and noise in the estimation process.
We propose three different partition-based MHE (PMHE)
algorithms where each subsystem solves reduced-order MHE
problems to estimate its own state. Different estimators have
different computational complexity, accuracy and transmis-
sion requirements among subsystems. Numerical simulations
demonstrate the viability of our approach.

I. INTRODUCTION

State-estimation problems for large-scale systems decom-

posed into physically coupled subsystems has received great

attention within the control community since the 70’s. The

main motivation is that decentralized state-estimation enables

the development of output-feedback decentralized control

schemes that are ubiquitous in numerous applications such

as power systems [20], transport networks [16] and process

control [19].

Many studies focused on the design of decentralized Kalman

filters. Early works, e.g. [9], [12] aimed at reducing the

computational complexity of centralized Kalman filtering by

parallelizing computations, requiring all-to-all communica-

tion and assuming each subsystem has full knowledge of

the whole dynamics. In [11] the focus was on the use of

reduced-order and decoupled models for each subsystem.

This paper, beside neglecting coupling, exploits communi-

cation networks that are almost fully connected. Subsystems

with overlapping states have been considered in [10], [18],

[17], [19]. While the estimation schemes in [19] require all-

to-all communication, in [10], [18], [17] the topology of

the network is defined by dependencies among the states

of subsystems resulting in a fully decentralized scheme.

One drawback of Kalman filtering is that known physical

constraints on noise and state variables are not exploited in

the estimation process. This can lead to suboptimal estimates

or instability of the error dynamics [15]. In order to overcome

these issues, moving horizon estimation (MHE) has been

proposed for discrete-time linear [1], [13], nonlinear [2],

[3], [14] hybrid systems [7], and is employed in distributed
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estimation schemes for linear systems [5], [4]. MHE amounts

to solve at each time instant an optimization problem whose

complexity scales with the number of states, inputs and the

estimation horizon. These demanding computational require-

ments often hamper the applicability of centralized MHE

schemes to large-scale systems.

In this paper we propose decentralized MHE algorithms with

the goal of reducing the computational complexity of the

centralized solution. More specifically, we consider linear

constrained systems that are partitioned, i.e. decomposed

into interconnected subsystems with no overlapping states,

and propose three partition-based MHE (PMHE) schemes,

named PMHE1, PMHE2 and PMHE3. In all cases each

subsystem solves a reduced-order MHE problem in order

to estimate its own states and transmits information to the

neighboring subsystems. For all the proposed schemes we

provide sufficient conditions for convergence to zero of the

estimation errors. The three solutions have different features

in terms of communication requirements among subsystems,

accuracy and computational complexity. While PMHE1 and

PMHE2 provide a decentralization of the MHE scheme

proposed in [13], PMHE3 is inspired to the MHE strategy for

unconstrained systems described in [1]. Moreover, compared

to PMHE2, PMHE3 has lower computational complexity

at the price of a loss in noise filtering performance. In-

terestingly, when the whole system is viewed as a single

subsystem, PMHE3 generalizes the MHE scheme proposed

in [1] to the case of constrained estimation.

The paper is structured as follows. Section II introduces the

partitioned systems considered in the following. Section III

describes the proposed MHE procedures, while convergence

results are provided in Section IV. An illustrative example

using a compartmental system is given in Section V. The

proofs of the theorems and some generalizations can be

found in [6].

II. PARTITIONED SYSTEMS

Consider an observed process which obeys to the linear

constrained dynamics

xt+1 = Axt +wt , (1)

where xt ∈ X ⊆ R
n (0 ∈ X) is the state vector and the term

wt ∈W⊆R
n (0 ∈W) represents a white noise with variance

equal to Q ∈ R
n×n. Let the sets X and W be convex. When

X=R
n and W=R

n we say that the system is unconstrained.

The initial condition x0 ∈R
n is a random variable with mean

mx0
and covariance matrix ΠΠΠ0. Measurements on the state

vector are performed according to the sensing model

yt = Cxt +vt (2)
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where the term vt ∈R
p represents white noise with variance

equal to R ∈ R
p×p.

Let the system (1) be partitioned in M low order inter-

connected non overlapping sub-models, where a generic

sub-model has x
[i]
t ∈ R

ni as state vector, i.e., xt =

[(x
[1]
t )T . . . (x

[M]
t )T ]T and ∑M

i=1 ni = n. According to such de-

composition, the state transition matrices A[1] ∈ R
n1×n1 , . . . ,

A[M] ∈ R
nM×nM of the M subsystems are diagonal blocks of

A, whereas the off-diagonal blocks of A define the coupling

terms between subsystems, which can be seen as inputs to

the individual subsystems. It results that the i-th subprocess

obeys to the linear dynamics

x
[i]
t+1 = A[i] x

[i]
t +u

[i],x
t +w

[i]
t , (3)

where x
[i]
t ∈ Xi ⊆ R

ni is the state vector, u
[i],x
t collects state

variables of other subsystems (and will be specified later on),

and the term w
[i]
t ∈ Wi ⊆ R

ni represents a disturbance with

variance equal to Q[i] ∈R
ni×ni . The sets Xi and Wi are convex

by convexity of X and W. The initial condition x
[i]
0 ∈R

ni is a

random variable with mean m
[i]
x0

and covariance matrix Π
[i]
0 .

As far as the outputs of the subsystems are concerned, they

can be assigned according to (2) and to the state partition. In

this way the measurements on x
[i]
t are performed according

to the sensing model

y
[i]
t =C[i] x

[i]
t +u

[i],y
t + v

[i]
t (4)

where u
[i],y
t collects the effect of the state variables of other

subsystems (it will be specified later on), and the term

v
[i]
t ∈ R

pi represents white noise with variance equal to

R[i] ∈ R
pi×pi . Notice that, in general, some outputs of the

system (1) can be considered as outputs of more than one of

the process subsystems, i.e., p̄ = ∑m
i=1 pi ≥ p. We now define

ȳt = [(y
[1]
t )T . . . (y

[M]
t )T ]T . Accordingly, there exists a matrix

H ∈ R
p̄×p with rank p, such that the following equation is

verified ȳt = Hyt ∀yt ∈ R
p. We set C̄ = HC. From now on,

we assume that the system partitioning has been carried out

in such a way that the following assumption holds.

Assumption 1: The pairs (A[i],C[i]) are observable, for all i=
1, ...,M.

Notice that, neither Assumption 1 implies that the pair

(A,C) is observable, nor observability of (1)-(2) implies

Assumption 1.

We define no
i as the observability index of the

pair (A[i],C[i])1 and n̄o = maxi=1,...,M(no
i ). Denote

A∗ =diag(A[1], . . . ,A[M]), Ã = A − A∗, where Ã has the

structure Ã =
[

(Ã[1])T . . . (Ã[M])T
]T

, and Ã[i] ∈ R
ni×n.

Furthermore C∗ =diag(C[1], . . . ,C[M]), C̃ = C̄ − C∗, where

C̃ has the structure C̃ =
[

(C̃[1])T . . . (C̃[M])T
]T

, and

C̃[i] ∈ R
pi×n.

The inputs u
[i],x
t and u

[i],y
t in (3) and (4) are computed

according to the algebraic equations u
[i],x
t = Ã[i] xt and u

[i],y
t =

C̃[i] xt . We say that a system partition is trivial if M = 1.

1In view of Assumption 1, no
i is defined as the minimum value of N such

that the matrix
[

(C[i])T . . . (C[i](A[i])N−1)T
]T

has full column rank ni

III. THREE MOVING HORIZON PARTITION-BASED

ALGORITHMS

Our aim is to design, for each of the subsystems, an

algorithm for computing a reliable estimate x̂
[i]
t/t

of the

subsystem’s state x
[i]
t , based on the measurements y

[i]
t and on

the estimates of the crosstalk terms u
[i],x
t and u

[i],y
t provided

by the estimators associated to the other subsystems. To this

end, we propose three solutions, named PMHE1, PMHE2

and PMHE3.

A. Models for estimation and transmission of information

We denote with x̂
[i]
t1/t2

the estimate of x
[i]
t1

performed at time t2
by subsystem i. Its error covariance matrix is denoted with

Π
[i]
t1/t2

and we define

x̂t1/t2
= [(x̂

[1]
t1/t2

)T . . . (x̂
[M]
t1/t2

)T ]T (5a)

We approximate Var(xt1 − x̂t1/t2
) as

ΠΠΠt1/t2
= diag(Π

[1]
t1/t2

. . . Π
[M]
t1/t2

) (5b)

that corresponds to assume that the errors of different

subsystems are uncorrelated. This approximation will allow

decentralization of the centralized MHE problem. At time t

the estimation model is, for k = t −N, . . . , t

x̂
[i]
k+1 = A[i] x̂

[i]
k + Ã[i] x̃k/t−1 + ŵ

[i]
k (6a)

y
[i]
k =C[i] x̂

[i]
k +C̃[i] x̃k/t−1 + v̂

[i]
k (6b)

and defines constraints of the PMHE estimation problem

specified in the next section. In (6), x̃k/t−1 ∈ R
n denotes

estimates of the subsystem states available at time t, and can

differ from x̂k/t−1. Next we introduce two models for x̃k/t−1,

ŵ
[i]
k and v̂

[i]
k , that are related to different communication

protocols: the first one will be used in PMHE1, while the

second one will be used in PMHE2 and PMHE3.

Model 1: the system partition induces an interconnected

network of subsystems, which can be described by a directed

graph G = (V ,E ), where the nodes in V are the subsystems

and the edge ( j, i) in the set E ⊆ V ×V models that the j-

th subsystem influences the dynamics of the i-th subsystem.

Therefore, we assume that, at time t, if ( j, i)∈ E , then x̂
[ j]
k/t−1

and Π
[ j]
k/t−1

for k = t −N, . . . , t are transmitted to subsystem

i. The noise terms ŵ
[i]
k and v̂

[i]
k in (6) encompass both the

noise appearing in the equations (3), (4) and the estimation

error of the variables u
[i],x
t and u

[i],y
t . Therefore their variance

is given by

Var(ŵ
[i]
k ) = Q[i]+(Ã[i])ΠΠΠk/t−1(Ã

[i])T (7a)

Var(v̂
[i]
k ) = R[i]+(C̃[i])ΠΠΠk/t−1(C̃

[i])T (7b)

Moreover, we set x̃k/t−1 = x̂k/t−1. Note that, in (6) and (7),

the terms Ã[i] x̂k/t−1, C̃[i] x̂k/t−1, Var(ŵ
[i]
k ) and Var(v̂

[i]
k ) depend

only upon the quantities transmitted by the neighboring

subsystems j ∈ V [i] = { j : ( j, i) ∈ E }.
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Model 2: we assume an all-to-all communication, so that

all the subsystems at time t − 1 know the vector x̂t−N/t−1

and, for PMHE2, the matrix ΠΠΠt−N/t−1. Accordingly, at time

t, the i-th subsystems estimation model, for k = t −N, · · · , t,
is (6), where x̃k/t−1 = Ak−(t−N) x̂t−N/t−1, for k = t −N, . . . , t.

The noise terms ŵ
[i]
k and v̂

[i]
k encompass now also the un-

certainty characterizing the terms Ã[i] x̃k/t−1 and C̃[i] x̃k/t−1,

respectively, and hence their covariance is given by

Var(ŵ
[i]
k ) = Q[i]+ Ã[i]ΠΠΠol

k/t−1(Ã
[i])T (8a)

Var(v̂
[i]
k ) = R[i]+(C̃[i])ΠΠΠol

k/t−1(C̃
[i])T (8b)

where ΠΠΠol
t−N/t−1 = ΠΠΠt−N/t−1 and, for k ≥ t −N +1

ΠΠΠol
k/t−1 =Ak−(t−N)ΠΠΠt−N/t−1(A

k−(t−N))T+ (8c)

+
k

∑
i=t−N+1

Ai−(t−N+1)Q(Ai−(t−N+1))T

B. The PMHE1 and PMHE2 estimation problems

For a given estimation horizon N ≥ 1, each node i ∈ V at

time t solves the constrained minimization problem MHE-i

defined as

min
x̂
[i]
t−N ,{ŵ

[i]
k
}t−1

k=t−N

J[i](t −N, t, x̂
[i]
t−N , ŵ

[i], v̂[i],Γ
[i]
t−N) (9)

where, for brevity, ŵ[i] and v̂[i] stand for {ŵ
[i]
k }

t−1
k=t−N and

{v̂
[i]
k }

t
k=t−N+1, respectively, under the constraints

{
System (6) with transmission Model 1 for PMHE1

System (6) with transmission Model 2 for PMHE2

(10a)

ŵ
[i]
k ∈Wi and x̂

[i]
k ∈ Xi (10b)

where k = t−N, . . . , t and the local cost function J[i] is given

by

J[i](t −N, t, x̂
[i]
t−N , ŵ

[i], v̂[i],Γ
[i]
t−N) =

1
2
(∑t

k=t−N ‖v̂
[i]
k ‖

2

(R
∗[i]
k/t−1

)−1
+

+∑t−1
k=t−N ‖ŵ

[i]
k ‖

2

(Q
[i]∗
k/t−1

)−1
)+Γ

[i]
t−N(x̂

[i]
t−N ; x̂

[i]
t−N/t−1

)

(11)

Let x̂
[i]
t−N/t

and
{

ŵ
[i]
k/t

}t−1

k=t−N
be the optimizers to (9) and x̂

[i]
k/t

,

k = t−N, ..., t the local state sequence stemming from x̂
[i]
t−N/t

and
{

ŵ
[i]
k/t

}t−1

k=t−N
. In (11), the function Γ

[i]
t−N(x̂

[i]
t−N ; x̂

[i]
t−N/t−1

)

is the so called initial penalty, defined as follows

Γ
[i]
t−N(x̂

[i]
t−N ; x̂

[i]
t−N/t−1

) =
1

2
‖x̂

[i]
t−N − x̂

[i]
t−N/t−1

‖2

(Π
[i]
t−N/t−1

)−1
, (12)

In (11) and hereafter, the notation ‖z‖2
S stands for zT Sz, where

S is a positive-semidefinite matrix. Notice that, in case of

gaussian uncertainties, the problem (11) can be interpreted

as a maximum a posteriori likelihood problem, see [8].

The positive definite symmetric matrix Π
[i]
t−N/t−1

appearing

in (12) plays the role of a covariance matrix and is a design

parameter whose choice is discussed in detail in the next

section.

C. Computation of Π
[i]
t−N/t−1

for PMHE1 and PMHE2

We choose the matrix Π
[i]
t−N/t−1

, i ∈ V , as the result of one

iteration of the difference Riccati equation associated to a

Kalman filter for the system
{

x
[i]
t−N = A[i]x

[i]
t−N−1 +w

[i]
t−N−1

z
[i]
t−N = O

[i]
N x

[i]
t−N +C

[i]
N X [t−N,t−1]/t−2 +V

[i]
t−N

where X [t−N,t−1]/t−2 = [(x̂t−N/t−2)
T , . . . ,(x̂t−1/t−2)

T ]T are in-

puts, O
[i]
N+1 is the extended observability matrix of the pair

(A[i],C[i]) defined as

O
[i]
N+1 =

[

(C[i])T . . . (C[i](A[i])N)T
]T

(13a)

and

C
[i]
N =








C̃[i] 0 . . . 0

C[i]Ã[i] C̃[i] . . . 0
...

...
. . .

...

C[i](A[i])N−2Ã[i] C[i](A[i])N−3Ã[i] . . . C̃[i]








(13b)

C
[i]
w,N =








0 0 . . . 0

C[i] 0 . . . 0
...

...
. . .

...

C[i](A[i])N−2 C[i](A[i])N−3 . . . C[i]








(13c)

R
∗[i]
N/t−2

=diag
(

R
∗[i]
t−N/t−2

, . . . ,R
∗[i]
t−1/t−2

)

(13d)

Q
∗[i]
N−1/t−2

=diag
(

Q
∗[i]
t−N/t−2

, . . . ,Q
∗[i]
t−2/t−2

)

(13e)

Cov[w
[i]
t−N−1] = Q

∗[i]
t−N−1/t−2

(13f)

Cov[V̄ i
t ] = R̃

[i]
N/t−2

= R
∗[i]
N/t−2

+C
[i]
w,NQ

∗[i]
N−1/t−2

(C
[i]
w,N)

T

(13g)

In the Kalman filter, the covariance of the estimate

x̂
[i]
t−N−1/t−2

is set as

Π̄
[i]
t−N−1/t−2

=
(

(Π
[i]
t−N−1/t−2

)−1 +(C[i])T (R
∗[i]
t−N−1/t−2

)−1C[i]
)−1

(14a)

As a result, we obtain the Riccati equation

Π
[i]
t−N/t−1

=A[i]Π̄
[i]
t−N−1/t−2

(A[i])T +Q
∗[i]
t−N−1/t−2

+

−A[i]Π̄
[i]
t−N−1/t−2

(O
∗[i]
N )T×

×
(

O
[i]
N Π̄

[i]
t−N−1/t−2

(O
[i]
N )T + R̃

[i]
N/t−2

)−1
×

×O
[i]
N Π̄

[i]
t−N−1/t−2

(A[i])T (14b)

Note that, for the computation of Π
[i]
t−N/t−1

, the matrix update

(14a) and (14b) is applied, and that R
∗[i]
k/t−2

and Q
∗[i]
k/t−2

(k =
t−N, . . . , t−1) are computed as in (7) for PMHE1 [resp. (8)

for PMHE2]. Therefore, such recursive equations have, as

input terms

• the error covariance matrices Π
[ j]
k/t−2

(k = t −N, . . . , t −
1) of the neighbors to subsystem i, i.e., the subsystems

3182



Algorithm Type of Order of the Transmitted
transmission optimization problem information

Centralized MHE NO transmission n× (n̄o +1)

PMHE1 Neighbor-to-neighbor ni × (n̄o +1) x̂
[ j]
k/t−1

,Π
[ j]
k/t−1

,k = t −N, . . . , t

PMHE2 All-to-all ni × (n̄o +1) x̂
[ j]
t−N/t−1

,Π
[ j]
t−N/t−1

PMHE3 All to all ni x̂
[ j]
t−N/t−1

TABLE I

Comparison of PMHE1, PMHE2, PMHE3 and centralized MHE in terms of transmission requirements and computational load.

indexed by the set Vi = { j : ( j, i) ∈ E } in case of

PMHE1;

• ΠΠΠt−N/t−1, used in (8), in case of PMHE2.

The positive feedback effect emerging from this interaction

might cause unboundedness of the sequence Π
[i]
t−N/t−1

, ∀i ∈
V , which must be avoided, in order to guarantee bounded-

ness of the weighting matrices Q
∗[i]
k/t−1

and R
∗[i]
k/t−1

and the

applicability of the proposed PMHE1 and PMHE2 algo-

rithms. Some solutions are proposed in [6] for guaranteeing

boundedness of Π
[i]
k/t−1

, at the price of suboptimality in noise

filtering.

D. The PMHE3 estimation problem

For a given estimation horizon N ≥ 1, each node i ∈ V at

time t solves the optimization problem

min
x̂
[i]
t−N

J
[i]
3 (t −N, t, x̂

[i]
t−N , v̂

[i],Γ
[i]
3,t−N) (15)

under the constraints

system (6) with transmission Model 2 (16a)

w
[i]
k = 0 for k = t −N, . . . , t −1 (16b)

x̂
[i]
k ∈ Xi for k = t −N, . . . , t (16c)

and the local cost function J
[i]
3 is given by

J
[i]
3 (t −N, t, v̂[i], x̂

[i]
t−N) =

1

2

t

∑
k=t−N

‖v̂
[i]
k
‖2 +Γ

[i]
3,t−N(x̂

[i]
t−N ; x̂

[i]
t−N/t−1

)

(17)

The term Γ
[i]
3,t−N(x̂

[i]
t−N ; x̂

[i]
t−N/t−1

) is the initial penalty defined

as

Γ
[i]
3,t−N(x̂

[i]
t−N ; x̂

[i]
t−N/t−1

) =
µ

2
‖x̂

[i]
t−N − x̂

[i]
t−N/t−1

‖2

where µ ≥ 0. Moreover, notice that x̂
[i]
t−N/t−1

is computed as

x̂
[i]
t−N/t−1

= A[i]x̂
[i]
t−N−1/t−1

+ Ã[i]x̂t−N−1/t−1

E. Communication requirements and computational load

The three solutions proposed in this section have different

features in terms of communication requirements among

subsystems, accuracy and computational complexity (see

Table I). More specifically, PMHE1 relies on a partially

connected communication graph in the sense that subsys-

tems exploit a communication network where links are

present only if subsystem dynamics are coupled. Algorithms

PMHE2 and PMHE3 assume an all-to-all communication

but a reduced amount of information is transmitted over

each communication channel. The main difference between

PMHE1 and PMHE2 consists in the type of communication

required among subsystems, and on how the estimates of

u
[i],x
t and u

[i],y
t are used. While in PMHE1 and PMHE2

the transmitted information amounts to state estimates and

estimation error covariances, in PMHE3 no information on

the noise variances is required and the weights on the

different components of the cost functions are constant,

allowing for a significant reduction in terms of transmission

and computational load.

IV. CONVERGENCE PROPERTIES OF THE PROPOSED

ESTIMATORS

The main purpose of this section is to extend the convergence

results of [13] and [1] to the proposed PMHE methods in

presence of constraints. Similarly to [13], the analysis is

conducted in a deterministic setting.

Definition 1: Let Σ be system (1) with wt = 0 and denote

by xΣ(t,x0) the state reached by Σ at time t starting from

initial condition x0. Assume that the trajectory xΣ(t,x0) is

feasible, i.e., xΣ(t,x0) ∈ X for all t. PMHE is convergent if

‖x̂t/t −xΣ(t,x0)‖
t→∞
−→ 0. �

Note that, as in [13], convergence is defined assuming that

the model generating the data is noiseless, but the possible

presence of noise is taken into account in the state estimation

algorithm.

The estimation error is defined as εk1/k2
= xΣ(k1,x0)− x̂k1/k2

.

Let O∗
N+1 and ON+1 be the extended observability ma-

trices, defined as in (13a), of the pairs (A∗,C∗)
and (A, C̄), respectively. Note that, by construction,

O∗
N+1 =diag

(

O
[1]
N+1, . . . ,O

[M]
N+1

)

∈ R
(N+1) p̄×n. We denote by

fmin = σmin(O
∗
N+1) and fmax = σmax(O

∗
N+1), the minimum

and the maximum singular value of O∗
N+1, respectively. By

Assumption 1, if N ≥ n̄o−1, then rank(O
[i]
N+1) = ni for all i∈

V . From this it follows that rank(O∗
N+1) = n, and therefore

fmin > 0. Furthermore, define ∆ f = ‖O∗
N+1 −ON+1‖2, κ =

‖A‖2, and κ∗ = ‖A∗‖2.

Then, the following results can be established. Their proof

is provided in [6].

Lemma 1: If matrices Π
[i]
t−N/t−1

are computed as in Sec-

tion III-C and N ≥max{n̄o −1,1}, then the dynamics of the

state estimation error generated by PMHE1 is given by

O
∗
N+1εt−N/t =−CN+1Et/t−1 +α1

t (18a)

Et+1/t −M1εt−N/t = M2Et/t−1 +α2
t (18b)
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where Ek1/k2
=
[

εT
k1−N/k2

. . . εT
k1/k2

]T

and

CN+1 =








C̃ 0 . . . 0

C∗Ã C̃ . . . 0
...

...
. . .

...

C∗(A∗)N−1Ã C∗(A∗)N−2Ã . . . C̃








(19a)

M1 =








A∗

...

(A∗)N

(A∗)N+1








, M2 =








Ã 0 . . . 0
...

...
. . .

...

(A∗)N−1Ã (A∗)N−2Ã . . . 0

(A∗)NÃ (A∗)N−1Ã . . . Ã








(19b)

and α
j

t are asymptotically vanishing terms, i.e. ‖α
j

t ‖
t→∞
−→ 0,

j = 1,2. �

Lemma 2: If matrices Π
[i]
t−N/t−1

are computed as in Sec-

tion III-C and N ≥max{n̄o −1,1}, then the dynamics of the

state estimation error generated by PMHE2 is given by

O
∗
N+1εt−N/t =

(
O

∗
N+1 −ON+1

)
Aεt−N−1/t−1 +αt (20a)

where αt is an asymptotically vanishing term, i.e. ‖αt‖
t→∞
−→ 0.

�

Lemma 3: Assume that A∗ is non singular, and that one

of the following conditions holds: (a) κ∗ ≤ 1, (b) κ∗ > 1

and µ < µmax, where µmax =
f 2
min

(κ∗)2−1
. If N ≥max{n̄o −1,1},

then the dynamics of the state estimation error generated by

PMHE3 obeys to (20). �

From these lemmas, sufficient conditions for the convergence

of the PMHE algorithms are given in the next theorem.

Theorem 1:

I) Under the assumptions of Lemma 1, PMHE1 is conver-

gent if the matrix Φ1 is Schur, where

Φ1 = M2 −M1

(
(O∗

N+1)
T
O

∗
N+1

)−1
(O∗

N+1)
T
CN+1

II) Under the assumptions of Lemma 2, PMHE2 is conver-

gent if the matrix Φ2 is Schur, where

Φ2 =
(
(O∗

N+1)
T
O

∗
N+1

)−1
(O∗

N+1)
T
(
O

∗
N+1 −ON+1

)
A

(21)

III) Under the assumptions of Lemma 3, PMHE3 is conver-

gent if the matrix Φ2 is Schur.

V. EXAMPLE: A COMPARTMENTAL SYSTEM

Consider the interconnected system reported in Figure 1-

A. The subsystems 1, . . . , 4 are third order compartmental

subsystems, whose structure is depicted in Figure 1-B. If

subsystem i has m inputs and p outputs, its discrete-time

dynamical model is defined by

A[i] =

[
1− k12 k21 k31

k12 1− (k21 + k23 + pk2y) 0
0 k23 1− k13

]

B[i] =

[
1 . . . 1
0 . . . 0
0 . . . 0

]

︸ ︷︷ ︸

, C[i]∗ =






0 k2y 0
...

...
...

0 k2y 0












p rows

m columns
We chose ki j = 0.1 for all i and j, k2y = 0.1, and we

2

3

4

2

1

...

...+

A B

Fig. 1. Scheme of the compartmental system in the example. A:
connections between subsystems 1, . . . , 4. B: general structure of
the subsystems 1, . . . , 4.

introduce the vectors b =
[
1 0 0

]T
and c =

[
0 k2y 0

]
.

If we connect the 4 subsystems according to the scheme in

Figure 1-A we obtain a 12-states system with the structure (1)

and (2), given by

A =







A[1] bc O3×3 bc

O3×3 A[2] bc O3×3

bc O3×3 A[3] O3×3

O3×3 O3×3 bc A[4]







and C =diag(c,c,c,c). Note that the spectral radius of

A is 1. We assume that states of each subsystem are

affected by leakages represented by additive negative

noise terms wk. We take wk =max(−1,−|ek|), for all

k, where ek is a white noise signal with zero mean

and Q= var(ek)=diag(1, ε , ε , 1, ε , ε , 1, ε , ε , 1, ε , ε), where

ε = 10−8. Therefore, the first state of each subsystem is

affected by leakage more severely than the other states.

We assume white measurement noise with covariance R =
0.01 I12. Since the states represent masses in the compart-

ments, they are constrained to be non negative. Furthermore,

we take ΠΠΠ0 = 340I12.

Next we compare the PMHE1, PMHE2, PMHE3 strategies

with a centralized MHE estimator. For the design of PMHE3,

we compute κ∗ = 0.9913 < 1 and, by Lemma 3, all µ > 0

guarantee convergence of the estimates. We choose µ =
0.001. The convergence properties of PMHE estimators can

be proved using Theorem 1. In order to guarantee the

applicability of the four estimators, the estimation horizon

is set as N = 3 in all the PMHE schemes (to satisfy the

assumptions of Lemmas 1, 2 and 3) as well as in the central-

ized MHE. In Fig. 2 we compare the estimated and real state

trajectories. We have also explored the effect of the variation

of the estimation horizon N on the estimation performances

and on the computational burden through simulations. The

root mean square error for t ∈ [15,45] (i.e., neglecting the

initial transients) and the time required to run the estimation

algorithms, for N = 3,7,10, are reported in Table II.

Interestingly, the time required for each node to perform

PMHE1, PMHE2 and PMHE3, is reduced with respect to

the time required to perform centralized MHE, at the price of

obtaining suboptimal estimations in terms of noise rejection.

Although as N increases a larger set of data is used in the

optimization problem, this does not lead a significant im-

provement of the accuracy of the results. On the other hand,

an increase in N leads to a significant grow in computational

(and transmission) burden (i.e. Tc = 3.8s if N = 3, Tc = 11s
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PMHE1 PMHE2 PMHE3

N 3 7 10 3 7 10 3 7 10

RMSE (rel) 1.2Jc 1.3Jc 1.2Jc 1.2Jc 1.3Jc 1.3Jc 1.7Jc 1.7Jc 1.6Jc

RMSE (abs) 4.43 4.36 4.38 4.42 4.47 4.42 6.1 5.84 5.76
Req. time (rel) 0.79Tc 0.34Tc 0.2Tc 0.8Tc 0.34Tc 0.2Tc 0.4Tc 0.13Tc 0.07Tc

TABLE II

Comparison of the root mean square error (RMSE) 1
31 ∑45

k=15 ‖x̂k/k − xk‖
2
2 and of the time required (for each subsystem) to perform the

proposed estimates. Jc and Tc denote the RMSE of the centralized MHE estimation error and the time required to perform the

centralized MHE, respectively.

0

20

40

60
PMHE1

0

20

40

60
PMHE2

0

20

40

60
PMHE3

5 10  15 20  25 30  35 40  45
0

20

40

60
Centralized MHE

steps

Fig. 2. Real trajectories xt (grey lines) and estimated trajectories
x̂t/t (black lines) for the different estimation schemes.

if N = 7 and Tc = 21.9s if N = 10).

VI. CONCLUSIONS

In this paper we have proposed three decentralized MHE

schemes for partitioned large-scale systems. Sufficient con-

ditions for convergence of the state-estimate to the true state

have been derived. Algorithms PMHE2 and PMHE3 require

an all-to-all communication network and future research

will focus on methods for weakening this assumption. A

promising research direction is to merge PMHE with ideas of

distributed MHE [4], [5] in order to generalize the proposed

schemes to the case of subsystems with overlapping states

and guarantee that estimates of states that are shared by some

subsystems converge to a common value. Further studies are

also needed for designing PMHE schemes capable to cope

with non-idealties in the communication network such as

quantization and transmission delays.
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